110 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Interval estimation of switched Takagi-Sugeno systems with unmeasurable premise variables

    Get PDF
    International audienceThis paper deals with interval observers design for nonlinear switched systems. The nonlinear modes are represented by the Takagi-Sugeno (T-S) fuzzy models with premise variables depending on unmeasurable terms, e.g. the state vector. This T-S structure can be used to represent exactly a nonlinear switched system in a compact set of the state space. The introduced method in this paper allows to compute the lower and upper bounds of the system state under the assumption that the disturbances as well as the measurement noises are unknown but bounded. First, the stability conditions of the proposed T-S interval observers are developed via Linear Matrix Inequality (LMI) formulations to ensure the convergence of the nonnegative observation error dynamics. Then, changes of coordinates are employed to relax the restrictive requirement of nonnegativity constraints. Theoretical results are applied to a numerical example to illustrate the effectiveness of the proposed method

    Electronic Throttle Valve Takagi-Sugeno Fuzzy Control Based on Nonlinear Unknown Input Observers

    Get PDF
    This paper deals with the synthesis of a new fuzzy controller applied to Electronic Throttle Valve (ETV) affected by an unknown input in order to enhance the rapidity and accuracy of trajectory tracking performance. Firstly, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate this nonlinear system. Secondly, a novel Nonlinear Unknown Input Observer (NUIO)-based controller is designed by the use of the concept of Parallel Distributed Compensation (PDC). Then, based on Lyapunov method, asymptotic stability conditions of the error dynamics are given by solving Linear Matrix Inequalities (LMIs). Finally, the effectiveness of the proposed control strategy in terms of tracking trajectory and in the presence of perturbations is verified in comparison with a control strategy based on Unknown Input Observers (UIO) of the ETV described by a switched system for Pulse-Width-Modulated (PWM) reference signal

    Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults

    Get PDF
    The goal of this paper is to describe a novel fault tolerant tracking control (FTTC) strategy based on robust fault estimation and compensation of simultaneous actuator and sensor faults. Within the framework of fault tolerant control (FTC) the challenge is to develop an FTTC design strategy for nonlinear systems to tolerate simultaneous actuator and sensor faults that have bounded first time derivatives. The main contribution of this paper is the proposal of a new architecture based on a combination of actuator and sensor Takagi-Sugeno (T-S) proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators together with a T-S dynamic output feedback control (TSDOFC) capable of time-varying reference tracking. Within this architecture the design freedom for each of the T-S estimators and the control system are available separately with an important consequence on robust Lâ‚‚ norm fault estimation and robust Lâ‚‚ norm closed-loop tracking performance. The FTTC strategy is illustrated using a nonlinear inverted pendulum example with time-varying tracking of a moving linear position reference. Keyword

    Robust stabilization and observation of positive Takagi-Sugeno systems

    Get PDF
    Esta tesis propone metodologías para diseñar controladores robustos y observadores para los sistemas positivos descritos por modelos de Takagi-Sugeno (TS), lineal, inciertos, y tal vez con retraso. Las condiciones de síntesis se expresan como LMIs (desigualdades matriciales lineales). En la primera parte, se establecen las condiciones para garantizar la estabilización asintótica y la α-estabilización de los sistemas T-S lineales positivas y, tal vez afectados por incertidumbres de intervalo, usando controladores de retroalimentación de estado descompuestos. En la segunda parte, se dan las condiciones necesarias y suficientes para la estabilización de los sistemas de T-S positivos con retraso, en dos casos: cuando las variables de premisa del sistema son medibles o no. Además, el problema de diseño de control basado en observador es considerado, por las leyes de retroalimentación del estado que se pueden elegir con o sin memoria. Para mostrar la eficacia de los métodos propuestos, se proporcionan ejemplos numéricos y prácticos, dando resultados satisfactorios.Departamento de Ingeniería de Sistemas y Proceso

    Switching Fuzzy Guaranteed Cost Control for Nonlinear Networked Control Systems

    Get PDF
    This paper deals with the problem of guaranteed cost control for a class of nonlinear networked control systems (NCSs) with time-varying delay. A guaranteed cost controller design method is proposed to achieve the desired control performance based on the switched T-S fuzzy model. The switching mechanism is introduced to handle the uncertainties of NCSs. Based on Lyapunov functional approach, some sufficient conditions for the existence of state feedback robust guaranteed cost controller are presented. Simulation results show that the proposed method is effective to guarantee system’s global asymptotic stability and quality of service (QoS)

    Active fault-tolerant control of nonlinear systems with wind turbine application

    Get PDF
    The thesis concerns the theoretical development of Active Fault-Tolerant Control (AFTC) methods for nonlinear system via T-S multiple-modelling approach. The thesis adopted the estimation and compensation approach to AFTC within a tracking control framework. In this framework, the thesis considers several approaches to robust T-S fuzzy control and T-S fuzzy estimation: T-S fuzzy proportional multiple integral observer (PMIO); T-S fuzzy proportional-proportional integral observer (PPIO); T-S fuzzy virtual sensor (VS) based AFTC; T-S fuzzy Dynamic Output Feedback Control TSDOFC; T-S observer-based feedback control; Sliding Mode Control (SMC). The theoretical concepts have been applied to an offshore wind turbine (OWT) application study. The key developments that present in this thesis are:• The development of three active Fault Tolerant Tracking Control (FTTC) strategies for nonlinear systems described via T-S fuzzy inference modelling. The proposals combine the use of Linear Reference Model Fuzzy Control (LRMFC) with either the estimation and compensation concept or the control reconfiguration concept.• The development of T-S fuzzy observer-based state estimate fuzzy control strategy for nonlinear systems. The developed strategy has the capability to tolerate simultaneous actuator and sensor faults within tracking and regulating control framework. Additionally, a proposal to recover the Separation Principle has also been developed via the use of TSDOFC within the FTTC framework.• The proposals of two FTTC strategies based on the estimation and compensation concept for sustainable OWTs control. The proposals have introduced a significant attribute to the literature of sustainable OWTs control via (1) Obviating the need for Fault Detection and Diagnosis (FDD) unit, (2) Providing useful information to evaluate fault severity via the fault estimation signals.• The development of FTTC architecture for OWTs that combines the use of TSDOFC and a form of cascaded observers (cascaded analytical redundancy). This architecture is proposed in order to ensure the robustness of both the TSDOFC and the EWS estimator against the generator and rotor speed sensor faults.• A sliding mode baseline controller has been proposed within three FTTC strategies for sustainable OWTs control. The proposals utilise the inherent robustness of the SMC to tolerate some matched faults without the need for analytical redundancy. Following this, the combination of SMC and estimation and compensation framework proposed to ensure the close-loop system robustness to various faults.• Within the framework of the developed T-S fuzzy based FTTC strategies, a new perspective to reduce the T-S fuzzy control design conservatism problem has been proposed via the use of different control techniques that demand less design constraints. Moreover, within the SMC based FTTC, an investigation is given to demonstrate the SMC robustness against a wider than usual set of faults is enhanced via designing the sliding surface with minimum dimension of the feedback signals
    • …
    corecore