2,850 research outputs found

    Exact constraint aggregation with applications to smart grids and resource distribution

    Get PDF

    Estimation of Energy Activity and Flexibility Range in Smart Active Residential Building

    Get PDF
    The smart active residential buildings play a vital role to realize intelligent energy systems by harnessing energy flexibility from loads and storage units. This is imperative to integrate higher proportions of variable renewable energy generation and implement economically attractive demand-side participation schemes. The purpose of this paper is to develop an energy management scheme for smart sustainable buildings and analyze its efficacy when subjected to variable generation, energy storage management, and flexible demand control. This work estimate the flexibility range that can be reached utilizing deferrable/controllable energy system units such as heat pump (HP) in combination with on-site renewable energy sources (RESs), namely photovoltaic (PV) panels and wind turbine (WT), and in-house thermal and electric energy storages, namely hot water storage tank (HWST) and electric battery as back up units. A detailed HP model in combination with the storage tank is developed that accounts for thermal comforts and requirements, and defrost mode. Data analytics is applied to generate demand and generation profiles, and a hybrid energy management and a HP control algorithm is developed in this work. This is to integrate all active components of a building within a single complex-set of energy management solution to be able to apply demand response (DR) signals, as well as to execute all necessary computation and evaluation. Different capacity scenarios of the HWST and battery are used to prioritize the maximum use of renewable energy and consumer comfort preferences. A flexibility range of 22.3% is achieved for the scenario with the largest HWST considered without a battery, while 10.1% in the worst-case scenario with the smallest HWST considered and the largest battery. The results show that the active management and scheduling scheme developed to combine and prioritize thermal, electrical and storage units in buildings is essential to be studied to demonstrate the adequacy of sustainable energy buildings

    Model Predictive Control for Smart Energy Systems

    Get PDF

    Towards 2050 net zero carbon infrastructure:a critical review of key decarbonization challenges in the domestic heating sector in the UK

    Get PDF
    One of the most challenging sectors to meet “Net Zero emissions” target by 2050 in the UK is the domestic heating sector. This paper provides a comprehensive literature review of the main challenges of heating systems transition to low carbon technologies in which three distinct categories of challenges are discussed. The first challenge is of decarbonizing heat at the supply side, considering specifically the difficulties in integrating hydrogen as a low-carbon heating substitute to the dominant natural gas. The next challenge is of decarbonizing heat at the demand side, and research into the difficulties of retrofitting the existing UK housing stock, of digitalizing heating energy systems, as well as ensuring both retrofits and digitalization do not disproportionately affect vulnerable groups in society. The need for demonstrating innovative solutions to these challenges leads to the final focus, which is the challenge of modeling and demonstrating future energy systems heating scenarios. This work concludes with recommendations for the energy research community and policy makers to tackle urgent challenges facing the decarbonization of the UK heating sector.</p

    Buildings-to-Grid Integration Framework

    Full text link
    This paper puts forth a mathematical framework for Buildings-to-Grid (BtG) integration in smart cities. The framework explicitly couples power grid and building's control actions and operational decisions, and can be utilized by buildings and power grids operators to simultaneously optimize their performance. Simplified dynamics of building clusters and building-integrated power networks with algebraic equations are presented---both operating at different time-scales. A model predictive control (MPC)-based algorithm that formulates the BtG integration and accounts for the time-scale discrepancy is developed. The formulation captures dynamic and algebraic power flow constraints of power networks and is shown to be numerically advantageous. The paper analytically establishes that the BtG integration yields a reduced total system cost in comparison with decoupled designs where grid and building operators determine their controls separately. The developed framework is tested on standard power networks that include thousands of buildings modeled using industrial data. Case studies demonstrate building energy savings and significant frequency regulation, while these findings carry over in network simulations with nonlinear power flows and mismatch in building model parameters. Finally, simulations indicate that the performance does not significantly worsen when there is uncertainty in the forecasted weather and base load conditions.Comment: In Press, IEEE Transactions on Smart Gri

    Advances in Theoretical and Computational Energy Optimization Processes

    Get PDF
    The paradigm in the design of all human activity that requires energy for its development must change from the past. We must change the processes of product manufacturing and functional services. This is necessary in order to mitigate the ecological footprint of man on the Earth, which cannot be considered as a resource with infinite capacities. To do this, every single process must be analyzed and modified, with the aim of decarbonising each production sector. This collection of articles has been assembled to provide ideas and new broad-spectrum contributions for these purposes

    Characterization of Aggregated Building Heating, Ventilation, and Air Conditioning Load as a Flexibility Service Using Gray‐Box Modeling

    Get PDF
    Integrating large amounts of volatile renewable power into the electricity grid requires ancillary services (ASs) from multiple providers including flexible demand. These should be comparable by uniform and efficiently evaluable performance criteria. The objective is to characterize the technical flexibility of aggregated building heating, ventilation, and air conditioning (HVAC) under different operating conditions. New bounds of flexible power and holding durations, accordingly pay-back power and recovery times, and ramping rates are derived, using a new gray-box model of stochastically actuated aggregations of thermostatically controlled loads (TCLs) that can serve as well for load control. New closed formulas of the expected switching temperatures are derived using survival processes and hazard functions. This ex-ante characterization enables fast decision tools for AS feasibility testing and planning by demand aggregators, as it neither relies on simulation or optimization, nor on the identification and clustering of unit-level parameters. The estimates are explored in a sensitivity study of urban-level heat pump heating with respect to six key input factors. A case study using dynamic regulation signals from Pennsylvania–New Jersey–Maryland (PJM) demonstrates the benefit, in terms of tracking precision, of the refined energy measures over pure energy or power capacity bounds
    corecore