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1. Introduction

A large part of the final energy demand in industrialized coun-
tries serves for the heating, ventilation, and air conditioning
(HVAC) of buildings,[1] and the fraction provided electrically,
e.g., through heat pumps, is increasing. These electric HVAC
loads provide the grid with fast mechanisms to balance uncon-
trollable and unpredictable feed-in from intermittent renewable

generation (i-RES), e.g., wind and photovol-
taics (PV), as power consumption can be
switched or modulated quickly (requiring
no mechanical inertia), while the primary
HVAC function is maintained using
the thermal inertia in the background.
Compared with generator plants with a
steady fuel supply, the heat stored in build-
ings or tanks provides limited flexible
energy. Therefore, the main target of
flexible HVAC is short-term demand
response (DR).

Working examples now exist in many
parts of the world including Europe, the
USA, and China.[2–6] Large commercial
buildings have been providing dynamic
regulation services on USA energy markets
since 2011 and get payed for performance
(Pennsylvania–New Jersey–Maryland
[PJM][7]). Many small residential systems
pooled together, especially thermostatically
controlled loads (TCLs), can provide simi-
larly good load balancing services.[8,9]

However, they need an aggregation inter-
face due to their low individual consump-

tion, and aggregators’ business models are still being
challenged.[10] These doubts point to several larger problems,
one being the imprecisely quantified value of residential DR
for the grid compared with batteries (stationary or mobile) or
to backup plants (fuel-based or storage-based), especially in
future scenarios with ever higher shares of i-RES. On the other
hand and beyond doubt, the flexibility costs in electricity systems
are rising.[11]

Our study aim is to characterize the aggregated flexibility from
end uses with thermal constraints, subsumed not only under
“HVAC,” such as domestic heating, separate water heating, air
conditioning including ventilation, but also refrigeration and
freezers. We refer to flexibility services (FSs)[12] as adjustments
made to compensate for residual load due to forecasting errors
or failures and compared with a previous state of knowledge
implemented, for example, in a balanced schedule. The adjust-
ment is to inject into, or absorb from the grid extra power, or
to modify the consumption accordingly. The generic term
includes ancillary services (ASs) defined in regulatory frameworks
and initiated by the responsible grid operators to solve specific
problems, e.g., to stabilize the grid frequency after an imbalance.

This article paper focuses on short-term FS/AS, especially
real-time tracking and balancing of residual load such as
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Integrating large amounts of volatile renewable power into the electricity grid
requires ancillary services (ASs) from multiple providers including flexible
demand. These should be comparable by uniform and efficiently evaluable
performance criteria. The objective is to characterize the technical flexibility of
aggregated building heating, ventilation, and air conditioning (HVAC) under
different operating conditions. New bounds of flexible power and holding
durations, accordingly pay-back power and recovery times, and ramping rates are
derived, using a new gray-box model of stochastically actuated aggregations of
thermostatically controlled loads (TCLs) that can serve as well for load control.
New closed formulas of the expected switching temperatures are derived using
survival processes and hazard functions. This ex-ante characterization enables
fast decision tools for AS feasibility testing and planning by demand aggregators,
as it neither relies on simulation or optimization, nor on the identification and
clustering of unit-level parameters. The estimates are explored in a sensitivity
study of urban-level heat pump heating with respect to six key input factors. A
case study using dynamic regulation signals from Pennsylvania–New Jersey–
Maryland (PJM) demonstrates the benefit, in terms of tracking precision, of the
refined energy measures over pure energy or power capacity bounds.
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exemplified by the PJM dynamic regulation signals,[7] and also
contingency support, e.g., taking specified load steps or ramps.

Criteria to characterize the flexibility technically include
energy and power capacity, ramping speed, response times,
response granularity and accuracy, recovery and payback
needs,[13,14] tracking performance,[7] and reliability of services.[15]

Trading and procuring FS/AS on the basis of abstract require-
ment specifications as proposed in the studies by Bondy[16]

and the EU project SmartNet[17] requires multicriteria fact sheets
to compare different FS supplier technologies, which seem to be
lacking. At the operational level, DR aggregators need quick esti-
mation and decision tools for feasibility testing, to match the spe-
cific flexibility (multicriteria) requirements with the capabilities
under contract, before bidding into a flexibility market and before
calculating detailed cost-optimal operating schedules.

2. Problem Definition, Related Work, and
Contributions

We narrow down the scope and sharpen the requirements and
assumptions of our study on DR characterization as follows.
Figure 1 provides an overview of the envisaged system
architecture.

a)Grid focus: We seek technical criteria to characterize the flex-
ibility limits. That is, the values or amounts should not rely on
existing electricity markets and pricing mechanisms to allow for
a technology-open comparison of different sources of flexibility,
such as stationary or mobile batteries or flywheel storage com-
pared with DR. The results should help shape future flexibility

markets, and the criteria be relevant mainly for balancing respon-
sible operators to assess how helpful the FS/AS from flexible
demand are for transmission or distribution grids. Still, the cri-
teria should be measured at the flexible resource itself, at the
interface of requests and load responses.[18]

b) Criteria depth: We critically address the common criteria of
flexibility performance, maximum power and energy deviation.
Services such as secondary frequency response and short-term
operating reserves impose requirements more stringent and
specific than these, e.g., how long certain load deviations can
be sustained.[19–22] As shown, holding durations do not trivially
follow from a single energy bound. Certain tasks, such as voltage
regulation in distribution grids, require analytical results on
tracking errors under varying operating conditions.[23] In addi-
tion, to obtain a tailored flexible counterpart to intermittent solar
and wind power, the dynamic ramping capability as well as the
recovery and payback characteristics are crucial and need to be
quantified.

c) Load types, data knowledge: We consider large pools of pri-
marily residential buildings with their HVAC systems as the
“units” (Figure 1, left). Unlike large commercial buildings that
operate individually in markets and often have detailed and vali-
dated thermoelectrical models created in connection with a
building energy management system (BEMS), the residential
parameters at a community or city scale are often unknown or
highly uncertain and strongly heterogeneous. At the unit level,
only contractual information such as thermal constraints (limits)
and power ratings may be reliable. During operation, the aggre-
gate load sum is the only measurable response to the control sig-
nals issued to shape the load curves.

Figure 1. Aggregated flexible HVAC demand: system architecture and grid integration (left), and modeling tools (right). The green arc on the bottom
symbolizes HVAC appliances being formally modeled as on/off controlled TCL units; i.e., the thermal end-use constraints are translated into switching
points Ti,�, Ti,þ; power ratings go into a separate distribution (on the right). Actual HVAC units might be more complex than TCL, for instance, admit
continuous load modulation. The further TCL parameters αi (drift rates), T∞

i,0, T
∞
i,1 (limit temperatures) will be discussed in Section 3.1.
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d) Control interface: When providing short-term FS/AS, we
assume the units to be economically invisible, hidden by an
aggregator (Figure 1, left). Unit-level consumption is not sched-
uled or economically dispatched but controlled in a closed loop
and in real time by the aggregator. We therefore focus the achiev-
able performance of aggregated services, not the unit properties.
Assuming binary (on/off ) controllable units, we analyze in par-
ticular randomized load control (stochastic switching, SSW) in
addition to hard switching or programmable thermostats. The
load is modified by specifying switching probabilities or rates
or by selecting random subsets of units, possibly combined with
random delays.[24–27] We want to characterize the flexibility
achievable through stochastic actuation without assuming any
specific control algorithm.

e) Ex ante estimates: Decision and planning tools for aggrega-
tors to check whether a service request is feasible with the con-
tracted resources and to scale participation should provide
performance limits quickly and easily, possibly those with
reduced accuracy. Model-based estimates (of controlled load
aggregations, in our case) can be categorized as “ex ante” or
“ex post.” The former estimates are obtained in closed form
based on analysis of the model itself, the latter only by repeated
simulation and/or optimization in the time domain with appro-
priately varied input signals and initial values, and subsequent
extraction of performance data. Cost curves[28] and flexibility
functions[29] that characterize the response to penalty signals
are prominent examples of the ex post approach.

We study stochastic control (SSW in (d)) for three reasons.
1) SSWmethods fully entrust to the local level, the units, to main-
tain their constraints; in particular, SSW satisfies all thermal end-
use requirements by design. 2) SSW mitigates the oscillating
dynamics that is due to synchronized hard switching, set point
changes of thermostats, or energy refill of the population
(payback/rebound). 3) SSW enables decentralized control schemes
through broadcasting that require a minimal measurement and
communication overhead[26,30,31] and meet requirement (c).

One possible practical barrier to mention is that thermostat
controllers—be that domestic refrigerators or invertible heat
pumps with a thermostat-guided compressor loop—respond to
stochastic signals and make random choices. Though simple
enough, these extensions lie beneath the optimization level of
BEMS and are, to the best of our knowledge, not state-of-the
art in most smart thermostat designs today.

2.1. Related Work

Flexibility characterization of DR as a research topic gained
momentum with the proposal of energy storage and conversion
models, such as the energy hub concept.[32] Thermal batteries
(TBs)[33] are the probably best-known model to characterize elec-
trical end-uses with quality constraints, especially TCL, and have
been used for DR potential assessment, e.g., in California.[34] TBs
characterize the admissible load profiles by specifying maximum
upward and downward power deviations from the baseline con-
sumption as well as maximum (thermal) energy deviation. The
use of Minkowski summation lifts the TB description from units
to aggregations. To express the overall flexibility again as a TB
model, Hao et al.[33] derived upper and lower bounds, which

diverge with the degree of population heterogeneity and assume
the unit parameters to be known. This is not suitable for large
load aggregations of incompletely modeled units (c).

Parallel to TB, convex polytopes and zonotopes have emerged
as geometric flexibility characterizations in the power and energy
dimensions.[35,36] The bounds defined by the union polytope are
conservative to remain analytically tractable, and the geometric
approach hardly scales with the problem complexity. Each
new criterion or influencing parameter, such as the ambient tem-
perature that shifts the baseline consumption as the reference
point, creates a new dimension of analytical complexity, which
conflicts with requirements (b) and (e).

Some efforts have been made in the TB framework to bound
also the ramping speed of aggregate power and to consider lock-
out constraints that exclude TCL units temporarily from switch-
ing so to extend compressor life.[37–39] Bounds of the ramp rate[37]

are derived from inventory equations of the TCL that are about to
switch or have recently switched and require dynamic simulation
to apply (e). The underlying analysis relies on the priority stack
control (PSC), a centralized algorithm[33,37,39] that collects tem-
perature measurements to determine a global switching priority,
which becomes highest for the units closest to their regular
switching points. The information architecture of PSC disagrees
with our requirements (c,d). Ziras et al.[39] design the lockout
periods so to minimize their adverse effects on the energy flexi-
bility. The authors also compare the tracking performance of
PSC with a stochastic controller in simulations. Other service
types, e.g., contingency-type reserve actions that include the pre-
charging of energy storage and the reconnection after service,
have been analyzed in the study by Abiri-Jahromi and
Bouffard.[40]

Coffman et al.[41,42] study lockout constraints as well but pur-
sue a different goal named reference planning. A grid balancing
authority successively extracts and assigns suitably shaped por-
tions from a residual load signal to those flexible resources that
can best handle these according to their capacities. This incre-
mental matching problem is formulated as a convex optimization
over a time horizon. Similarly as in Barth et al.,[43] the flexibility
constraints describe TCL units mainly to optimally schedule
them, less to characterize the overall performance that all flexible
resources together can achieve on the overall residual load signal,
contrary to (a,d,e).

While TB provide pure bounds on power or energy, the sus-
tained power criterion (b) has been defined and used in the
Belgian DR demonstration pilot LINEAR,[19,20,44] reasoning with
standardized regulation profiles. Roossien[44] analyzed a special
case of thermal buffers (deterministic control (d), time-linear
heating/cooling, and homogeneous devices). More recently,
Duong et al.[21] estimated expected durations under a coordina-
tion scheme that freezes TCL at specific temperatures and thus
might cause short-cycling. Duration estimates have also been
studied in the context of district heating systems (DHSs).[22] A
higher-order ordinary differential equation (ODE) model with
time delays describes the flow of hot water to the DHS-coupled
buildings through pipes, a more complex system than consid-
ered in (c). Deriving flexibility boundaries therefore requires
nonlinear optimization at each level of power deviation and does
not admit a closed form (e).
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By supplying capacity bounds as static constraints, TBs sup-
port planning and optimization tasks such as the economic dis-
patch of load and generation units.[35,41] To control and
characterize load aggregations dynamically, TCL in fact lend
themselves as a model and need no detour via TB or polytope
descriptions, because the Fokker–Planck partial differential
equation (FPE–PDE) raises their descriptive power to aggrega-
tions.[45–48] The FPE governs the evolution of temperature den-
sities in time. Exploiting it for flexibility assessment, however,
requires numerical PDE solutions (ex post analysis in the time
domain (e)) and temperature state histograms as data represen-
tations (Markov chains[24,25,27]) (c). Several performance criteria
have been assessed in this framework, e.g., granularity, ramping
speed, or payback/recovery needs.[9,28,49–52] These results often
characterize a specific load control algorithm developed and ana-
lyzed concomitantly (d), as discussed in the following text.

One important and indeed general characterization concerns
the granularity[13] or quantization of load levels realizable with
finitely many, the currently power-consuming TCL units.
Assuming binary loads and a distribution of their power ratings,
the aggregated load as a sum over random subsets is binomially
distributed, and its standard deviation follows from the central
limit theorem.[49,50,52,53] We exploit these results to factor out
individual power ratings as a statistically independent random
variable and rate load subsets as fractions of total rated power
proportional to their size (normalized load factor).

Power and energy bounds are crucial in DR potential assess-
ment studies,[34,54,55] some of which use TCL models for analy-
sis. The study[55] of domestic power-to-heat potentials in
Germany derives formulas for storage capacity, flexible power,
and also holding durations (b), but fundamentally underesti-
mates the latter by assuming that the units hold their desired
states continuously and without interruption. Most estimates
for DR potential assessment are too crude to serve as decision
tools or data sheets for grid operators or aggregators (a).

Detailed and accurate performance estimates are often derived
together with TCL control algorithm development (d). For exam-
ple, Vrettos et al.[9] study the performance of refrigerator popu-
lations delivering primary frequency control (PFC) through
stochastic switching and compare the impacts of various operat-
ing conditions, e.g., start-up load dynamics, thermostat resolu-
tion, and door openings on the load following accuracy. The
evaluation is based on very detailed simulation studies (“ex post”
(e)). Holding durations at specific power levels (b) are unknown,
although the loads are challenged by signals with nonzero energy
demand and might face energy depletion in several ways.

Ramping speed bounds (b) have not yet received very much
attention. Hu et al.[51,56] derive bounds for TCL aggregations
under centralized deterministic set point control. The authors
rely on clustering algorithms for heterogeneous populations
(c), on uniform temperature distributions, and on specific con-
trol assumptions (both the set points and the change rates of tem-
peratures serve as control input). The bounds do not cover
stochastic actuation (d). As they are asymmetric regarding
upward and downward regulation and quadratic in the rated
power, their theoretical and empirical justification is not obvious.

Tindemans et al.[26] develop a decentralized framework for
SSW control, where each TCL unit independently targets its
own reference load. Cooling and heating rates are controlled

as intermediary variables. The authors derive envelope bounds
for their algorithm “ex ante” (Equation 46 in the study by
Tindemans et al.,[26] for cooling devices under load reduction),
which are narrower than TB bounds of instant flexible power.
The control framework addresses heterogeneous populations
but uses solutions of the Fokker–Planck PDE which, however,
governs homogeneous populations (b).[57] Trovato et al.[30] embed
the concept into a leaky storage model and present an energy
bound based on the mean population dynamics.[47] To what
extent these bounds can be reached using explicitly stochastic
or randomized control input (d) is not explicitly addressed.
Related flexibility criteria of payback and recovery needs are dis-
cussed in the study by Trovato et al.[52] within a scheduling and
unit commitment framework (b,d).

2.1.1. Summary of Knowledge Gaps

Roughly speaking, two avenues exist to characterize the
flexibility of TCL load aggregates: TBs using geometric
aggregation (TB[15,33–41]), and dynamic analysis of temperature
densities or histograms based on the Fokker–Planck equations
(FPE,[8,9,24–27,45–52,56]). While the TB approach captures only
few criteria, the more versatile FPE requires a costly ex post
analysis through simulation or optimization. The measurability
or estimability of temperature densities appears to be a question-
able assumption. Both ways rely on unit-level parameters that are
difficult to identify, e.g., to cluster the units. The holding duration
criterion (b)—in our view important, but yet to be demonstrated—
and the power ramping dynamics have rarely been assessed and
only for special cases. We also miss probabilistic performance
(holding) guarantees for heterogeneous aggregates. Individual
closed from bounds available from the TCL literature[26,51,52]

depend on specific control algorithms and do not yet provide a
coherent basis for creating performance data sheets. Especially,
we miss a reachability analysis for SSW control in general.

2.2. Main Contributions

Themain contributions of this article are summarized as follows.
A) We derive novel formulas of the sustained flexible power for
TCL aggregations under stochastic control and independently for
direct load control. These imply further bounds of payback
power, recovery duration, and maximum service frequency.
Using survival processes, we analytically derive how the expected
switching temperatures depend on the switching rates (control
input). The change dynamics of switching temperatures corre-
sponds to and provides a link to the reachable load deviations.
B) By substituting the unit-level switching constraints (as hazard
functions), we obtain a new coupled ODE of mean population
temperature and aggregated load, denoted as a gray-box model
(GBM, Figure 1, right). The three-state nonlinear GBM, indepen-
dent of aggregate size, yields a new bound on power ramp rates
(upward and downward) and suggests new algorithms for real-
time stochastic load control that implement device-saving switch-
ing priorities locally. Using these controls, we can test how far the
flexibility bounds are achievable. C) We establish distributions of
the holding durations (HDDs) at any power level. The HDD
order statistics then allows probabilistic guarantees (lower
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bounds) of the flexible energy available at a given level of flexi-
bility (power). The supply of flexible energy compared with the
demand at high and low power levels decides how accurately a
reference load can be tracked, as we demonstrate in a case study
using the PJM dynamic regulation signals. Sufficient energy
capacity (TB) alone does not guarantee accurate tracking, espe-
cially not in case of strongly heterogeneous populations with
thermal diffusion (noise).

GBM in (B) are understood to be physics-based models of the
aggregated load dynamics; in our case, of thermoelectric applian-
ces with thermal constraints and derived from the FPE. Unlike
white-box models, GBM need not be constructed bottom-up from
detailed and validated building models. Compared with black-box
(artificial neural network) models of electricity consumption,[58]

GBM behavior is easier to understand and to diagnose. Due to
its built-in specialization, the training and identification effort
for useful models can be lower. Specifically, the initialization
of the parameters in a GBM can make use of prior knowledge
regarding building stock (for example, range estimates for ther-
mophysical parameters) or user behavior.

Key influences to our GBM comprise ambient temperature,
respectively, temperature-equivalent gains and losses, thermal
comfort or safety intervals as the end-use quality constraints, con-
trol input in the form of stochastic switching rates, and heating/
cooling rates that may (but need not) be specified through a
parameter distribution. Furthermore, unit-level operating condi-
tions such as the responsiveness to stochastic switching are spec-
ified by hazard functions (of the time in state).

The GBM coefficients for a fictitious aggregation can be gen-
erated by sampling from basic parameter distributions of the
building and the HVAC stock (Figure 1, bottom right). By modi-
fying these distributions, we empirically analyze the sensitivity of
the characterization results to heat insulation, construction type,
ambient temperature, and comfort constraints. To aggregate an
existing population, on the other hand, a GBM with the appro-
priate coefficients will be identified directly from aggregated load
traces under purposeful control excitation (nonlinear system
identification), skipping the unit-level parameters.

As we make no direct use of the Fokker–Planck equations, i.e.,
require neither analytical nor numerical PDE solutions, we can
characterize heterogeneous aggregates directly through transfor-
mations of probability densities (PDF) of input parameters. In
particular, we require no prior similarity clustering of unit
parameters. Second, obtaining crude ex ante flexibility bounds
in closed form through Monte Carlo sampling is much faster
than exploring-and-testing through simulation and optimization,
which entails nested iteration loops over time and over skillfully
varied initial conditions, controls, and disturbances. These are
major expected benefits.

2.3. Outline of the Article

The remainder of this article proceeds as follows. Section 3 pro-
vides an overview of the methodical derivations and lays the
foundations of the TCL theory used. Section 4 proposes the
new aggregate model of electrical end-use processes with ther-
mal constraints and presents new estimates of stationary or
dynamic flexibility criteria, preferably in closed-form. The results

will be empirically tested in Section 5 in several respects, verified
in detailed simulation case studies, and applied to fast regulation
service planning. Section 6 concludes our findings and suggests
future work.

3. Overview and Preliminaries

In this section, an overview of the methodical derivations
is provided and the foundations of the TCL theory used
are lain in view of the following Section 4, where we derive
new methods to obtain bounds for TCL aggregations sustain-
ing a given load difference (flexibility) from the baseline load.
Baseline is the load that assures the primary service quality
against varying environmental demands. The flexible
“energy-at-load-level”[59] forms the basis of further perfor-
mance criteria.

Manageable and useful closed expressions or bounds, how-
ever, can be obtained mostly for special cases. Lacking a uniform
methodology to analyze flexible energy-at-load-level, respectively,
sustained or delayed flexibility, we derive several partial models
(all probabilistic) that make different simplifying assumptions,
starting with the simplest. To aid readers in understanding
the model structure and logic, Table 1 shows the main steps
and results in Section 4.1–4.3. The table columns explain the
TCL use cases and operating conditions, the flexibility properties
and assertion types, the modeling assumptions and mathemati-
cal methods used. A short textual summary follows.

Section 4.1 describes individual load states (on/off ) are con-
trolled directly and the units selected assume and hold the target
state for a certain period (“individually dispatchable,” or ID
units). We derive the expected flexible load sustainable for that
time; the energy products are not constant. To obtain closed
expressions, we need assumptions regarding the distributions
of duty cycle durations and temperatures, which limit their prac-
tical use. We still use these results for later comparison with SSW
populations.

Section 4.2 describes stochastic control transfers switching
rates or probabilities to a set of TCL. Individual units are free
to change states while collectively approximating the overall tar-
get. We model the unit behavior as survival processes with
switching hazards that vary within duty cycles. As load differen-
ces are effected through changes (derivatives) of switching tem-
peratures, respectively, control input, we obtain indeed TB-like
energy bounds and derive the switching temperatures analyti-
cally. For this, we assume that control forces act instantly and
neglect the population dynamics (“zero-order aggregation
model” AMð0Þ).

Section 4.3 describes that by substituting the hazard func-
tions, a closed ODE system of mean population temperature
and aggregated load dynamics results (“first-order aggregation
model” AMð1Þ), which bounds the ramp rates (power up/down)
of SSW algorithms. The mean temperature equation connects
load levels to holding durations in the form of a holding duration
distribution (HDD). Its order statistics allow probabilistic guar-
antees conditioned on random TCL parameters. Power levels and
durations yield variable products of flexible energy, which are in
general smaller (tighter) than TB energy bounds and become
even stricter with guarantees.
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3.1. TCL Review

This section introduces the notation and collects facts and formu-
las about TCL populations needed in the following sections. We
use the standard TCL model due to,[26,47] which consists of a bi-
state (stochastic) heat ODE [60]

dTðtÞ ¼ αðT � T∞
s Þdtþ σW ,s ⋅ dWðtÞ, s ¼ sðtÞ ∈ f1, 0g

Tðt0Þ ¼ T ð0Þ (1)

The process has one negative drifting rate α < 0, two asymp-
totic temperatures T∞

1 ,T
∞
0 approached in the limit t ! ∞, and a

zero-mean diffusion term σW ,s ⋅ dWðtÞ with variance σ2W ,s. Units
that heat up (respectively, cool down) in the active, power-
consuming state are denoted active heating—AH (respectively,
active cooling—AC) devices. State switching follows the thermo-
stat hysteresis function, depending on the cases AH/AC

sðtÞ ¼
1, if TðtÞ

�
> T1 ACð Þ
< T1 AHð Þ

�
0, if TðtÞ

�
< T0 ACð Þ
> T0 AHð Þ

�
sðt�Þ, otherwise

8>>>><>>>>: (2)

where Ts denote the temperatures at which the TCL switch into
the according state s ¼ 1 (on) or s ¼ 0 (off ); T1 > T0 holds for AC
and T1 < T0 for AH devices. sðt�Þ is a shorthand notation
for the left-side limit of the state function. T0 and T1 border
the interval I of thermal safety of, for example, hot water
prepared in a tank, or the thermal comfort of heated or cooled
indoor air (quality-of-service). This interval I ¼ ½T�,Tþ�∶ ¼
½minfT0,T1g, maxfT0,T1g� of width D∶ ¼ jT1 � T0j is defined
by the end user (of each appliance) and constrains the thermal
flexibility. Unlike most TCL literature, we require no specific set
point to control but regard any point in I as acceptable.

Electric power uptake switches between zero and the maxi-
mum PTCL (kW), close to the nameplate or rated power (ideal-
ized[9]) and is connected to the thermal power through a factor

ηðtÞ (heat efficiency COP).[32] To simplify notation and calcula-
tions, we ignore the absolute power ratings of units and aggre-
gations and consider normalized load factors in ½0, 1�, i.e., we
average several on and off cycles and devide by PTCL. We use
the standard TCL (1), (2) as an abstract unit model for any type
of on–off-controllable HVAC device or subsystem with a thermal
constraint.[61]

By virtue of (1), (2), TCL run alternating renewal processes[62]

of on and off periods denoted duty cycles. The probability of a
unit i being in state si in the long term is approximated by
the ratio of durations τi,s of on and off periods, which yields
an approximate base load or baseline factor[54,62,63]

Pr ðsi ¼ sÞ ¼ τi,s
τi,sþτi,1�s

∈ ½0, 1�, where
τi,s ¼ 1

αi
ln Ti,1�s�T∞

i,s

T i,1�T∞
i,s
, s ∈ f0, 1g (3)

The overline notation signifies stationary values (t ! ∞); τi,s
denote time-averaged durations spent by unit ið1 ≤ i ≤ NÞ in
state s. Temperatures may vary due to ambient conditions but
stay bounded. It is also possible to average over units—separately
for AH and AC to prevent sign cancellation—and approximate
the base load factor, which is then time-varying, by interchanging
quotient and averaging (this time, overlines signify population
means, and sðtÞ the state of a random unit)

yblðtÞ∶ ¼ Pr ðsðtÞ ¼ 1Þ � τ1ðtÞ
τ0ðtÞþτ1ðtÞ , where

τsðtÞ ¼ 1
α ln

T1�sðtÞ�T∞
s ðtÞ

TsðtÞ�T∞
s ðtÞ , s ∈ f0, 1g (3a)

The times calculated in (3), (3a) are valid only for limit temper-
atures strictly outside I so that the logarithm is negative but
finite. Units i that are both upward and downward flexible
(participating[33]) satisfy T∞

i,0 < Ti,1 < Ti,0 < T∞
i,1 (AH) or

T∞
i,1 < Ti,0 < Ti,1 < T∞

i,0 (AC) and are collected in the set Mpcp.
In a heterogeneous population, some units may never reach
or leave their comfort bands. Permanently on or off units con-
tribute with a base load of one, respectively, zero.

Table 1. Overview of characterization models and results in Section 4.

Section Flexibility
criteria

Operating
conditions

Main results Result type Model
assumptions

Mathematical
methods

4.1 ID aggreg. Flex. power cap.
sustained

Coordination
varying baseline

yblðTambÞ

Equation (10)
Proposition 1

Expectation
(time-varying)

Uninterrupted unit

model UMð0Þ logn
duration PDF

uniform temp. PDF

Basic probability

4.2 SSW aggreg. TB energy cap.
recovery time
service rate

yblðTambÞ Equation (17,21)
Proposition 2

Upper bound
(necess./ suff.)

SSW Aggr.

model AMð0Þ

steady state

Steady-state approx.
(Equation (15))

Switching
temperatures

yblðTambÞ SSW
hazard, lockout

Equation (24,27)
Proposition 3

Expectation Aggr. model AMð0Þ

SSW rate ftn.

Fokker–Planck PDE
survival/hazard

Switching
temperatures

4.3 SSW aggreg. Energy at Δy
holding times
ramp rate

yblðTambÞ Equation
(29,30,33,35)

Upper bound
(necessary)

Aggr. model AMð1Þ

SSW rate ftn.

Fokker–Planck PDE

Energy cap.
Holding times

SSW hazard, lockout
local control

Equation (37,38)
Proposition 4

HDD (CDF/PDF)
confidence levels

Aggr. model AMð1Þ

continuous load steady-state

Order statistics Energy cap.
holding times

www.advancedsciencenews.com www.entechnol.de

Energy Technol. 2021, 2100251 2100251 (6 of 29) © 2021 The Authors. Energy Technology published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.entechnol.de


Following the notation in the study by Roossien,[44] we define
the aggregated power flexibility by the symbolsℱþðt, τÞ,ℱ�ðt, τÞ
with activation time t and holding duration τ. For τ ¼ 0, the defi-
nition returns instant power capacity, the greatest possible load
deviation from baseline. The symbol carries the sign of the resid-
ual load to cancel:ℱþ indicates load reduction to balance positive
residual load and ℱ� load increase to balance negative residual
load. However, ℱ� returns the difference Δy∶ ¼ y � ybl at the
consumer side, which assumes the opposite sign. A specific
TCL unit i with binary load has flexibility 1, � 1, or 0, depending
on its state

ℱþ
i ðt, 0Þ ¼

�1, if siðtÞ ¼ 1
0, else

;ℱ�
i ðt, 0Þ ¼

0, if siðtÞ ¼ 1
1, else

��
(4)

Generally, the aggregated flexibility is queried in unknown
states; the outcome ℱ�ðt, τÞ is a random variable (RV).
Instant flexibility comes from those participating units (in the
set Mpcp) that are not in the target state in (3a)

E ðℱþðt, 0ÞÞ � � jMpcpj
N ⋅ τ1ðtÞ

τ0ðtÞþτ1ðtÞ ≥ �yblðtÞ
E ðℱ�ðt, 0ÞÞ � jMpcpj

N ⋅ τ0ðtÞ
τ0ðtÞþτ1ðtÞ ≤ 1� yblðtÞ (5)

In the long term, due to the repetition of on and off periods, all
phase positions appear roughly equally likely. Excluding an initial
time interval of length τlks in state s from switching (lockout con-
straint) lets the available fraction drop to ðτs � τlks Þ=τs in the free
steady state. If all units participate, the steady-state power capac-
ity with lockout constraints becomes

E ðℱþð⋅, 0ÞÞ � �maxf0,τ1�τlk1 g
τ0þτ1

≥ �ybl

E ðℱ�ð⋅, 0ÞÞ � maxf0,τ0�τlk0 g
τ0þτ1

≤ 1� ybl
(6)

However, at some point in time t, it is still possible that all
units are inside, respectively, all are outside their locked periods.
Therefore, the instant power capacity bound (5) remains valid
and can be achieved despite lockout. More accurate bounds avail-
able from the study by Sanandaji et al.[37] account for dynamic
states but rely on simulation to infer the states.

TBs typically propose constant upper energy bounds
(Figure 2); so the flexibility ℱ�ð⋅, τÞ tends to zero as τ ! ∞.
However, TCL populations may sustain small load deviations
indefinitely and still meet their constraints by allowing a comfort
interval T� ≤ T ≤ Tþ and not imposing a strict set point. In

contrast, we will show that TB energy bounds often overestimate
the flexible energy available at large load deviations.

4. Aggregated Flexibility Model

4.1. Individually Dispatchable TCL

A query about the flexibility ℱðt, τÞ of ID units depends on two
independent binary RV: being in the right state (1 for “þ” and
0 for “�”) for instant flexibility, and meeting the thermal
constraints in the new state during the time interval ½t, tþ τ�.
Therefore, the expected sustained flexibility can be written as
a product of two terms

E ðℱ�ðt, τÞÞ ¼ E ðℱ�ðt, 0ÞÞ ⋅ Pr ðTs,½t,tþτ� ⊆ IÞ (7)

The second term decreases from one at τ ¼ 0 to zero at τ ≥ τs
and is roughly linearized in the study by Kohlhepp and
Hagenmeyer[55] (Equation (9) therein). We take a different
approach and capture the variations in duty cycle durations
(RV l) by a probability density function f l,s. The expected flexi-
bility follows by integrating over all duty cycle durations c ≥ τ

E ðℱ�ðt, τÞÞ � E ðℱ�ðt, 0ÞÞ ⋅
Z

∞

τ

c � τ

c
f l,sðcÞ dc (8)

To see why approximation (8) is valid, consider that a unit will
meet the thermal constraints in the new target state s for τ more
time if and only if it switches no later than c � τ, which applies to
a fraction ðc � τÞ=c of all cycles of duration c, if cycle positions
(phases) are uniformly distributed and heating/cooling linear in
time (“zero-order” units). These units enjoy 100% flexibility, and
the rest none. Integrating these quantities leads to the expected
overall flexibility for duration τ. With increasing holding time τ,
the integral, upper bounded by the tail of density f l,s, quickly
decreases to zero.

We further observe that load deviations could be sustained
longer than for one duty cycle: not all units must hold their
requested power state incessantly. Disjoint subgroups could
be designated and allocated in a time-relayed fashion such that
each one services a short interval δ � τ, as shown in Figure 3.
Small δ then imply a higher availability due to (8) while the total
power per subgroup shrinks to an average fraction � δ=τ. The
product therefore has a maximum between the limiting cases
of singleton groups (δ ¼ τ=N) and the entire population (δ ¼ τ).

Figure 2. Energy capacity: load deviations and holding durations.

Figure 3. Relay scheduling diagram. Each TCL subgroup is engaged once
in a service cycle, while the other groups consume baseline load (at a dif-
ferent temperature after servicing) denoted Baselinepost. Recovery starts
not until all groups have finished service.
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The maximum flexibility depends on the duty cycle distribu-
tion. Empirical densities (histograms) collected from the first
passage times of heterogeneous thermal processes are often well
approximated by inverse Gaussian or by log-normal densities.
We opt for the log-normal distribution that has been used before
to analyze transient oscillations.[64] This leads to a new closed-
form flexibility result.

Proposition 1: Assuming a population of zero-order ID TCL units
with admissible and uniformly distributed temperatures for both
load states at time t, the expected load difference sustainable for
duration τ is

E ðℱ�ðt, τÞÞ � E ðℱ�ðt, 0ÞÞ ⋅ max
0<δ≤τ

gðτ, δÞ, where
gðτ, δÞ∶ ¼ δ

τ ⋅
R
∞
δ

c�δ
c f l,sðcÞ dc

(9)

and f l,s denote the duty cycle duration pdf in states s ¼ 0 for “þ”
and s ¼ 1 for “�.” If f l,s is log-normal with shape parameters
μ and σ, the goal function g maximized in (9) for the internal
service interval δ has a closed form

g τ, δð Þ ¼ δ
2τ 1þ erf ln δð Þ�μ

σ
ffiffi
2

p
� �� �

�
δ2

2τ ⋅ e
�μþσ2=2 ⋅ 1þ erf σ2þln δð Þ�μ

σ
ffiffi
2

p
� �� � (10)

Proof: The first Equation (9) follows from (8), using the power
reduction factor δ=τ for subgroups. The second Equation (10),
goal function g in closed form, follows by substituting the log-
normal density function (see Equation (11) below) into (9) and
integrating by substitution of variables.[65]

The derivative ∂gðτ, δÞ= ∂δ with appropriate limits for τ ! 0
and σ ! 0 exists and can be zeroed uniquely to find the maxi-
mum. Other duration densities, e.g., empirical ones, are inte-
grated numerically to maximize (9). An example calculation
showing the impact of the density shape is shown in Figure 4.

The shape parameters μ and σ are related to expectation τ and
variance σ2 of the log-normal distribution as follows

f logNl ðτÞ ¼
(

1
στ
ffiffiffiffi
2π

p e�
ðμ�ln τÞ2

2σ2 , if τ > 0
0, otherwise

τ ¼ E ðτÞ ¼ eμþσ2=2, σ2 ¼ VarðτÞ ¼ e2μþσ2ðeσ2 � 1Þ
(11)

Some critical remarks are appropriate regarding the practical
implications of this analysis of ID units:

Implementing the coordination scheme in Figure 3 correctly
is not straightforward: the consumption of pausing TCL is to be
controlled to stay at their baseline power, whereas storage tem-
peratures differ but still obey the limits. Therefore, the estimated
power capacity in (9) may not fully be realizable under ID control.

Approximately, uniform temperature distributions as
required in (8) may prevail under baseline conditions, but no lon-
ger after service. Analyzing the time to recover the baseline con-
ditions requires extra effort.[64,66]

Equation (11) proposes a log-normal distribution as a general
model for the duration of duty cycles, whose parameters μ, σ
depend on unknown TCL parameters and on the ambient tem-
perature. Collecting measured durations is costly, and identify-
ing the pdf shape from other measurements is not easy.

It will turn out that SSW populations require only average
durations and no special analysis of rebound. Nevertheless,
the ID performance results from (9) are valuable for comparison
with SSW populations in Section 5.

4.2. Stochastically Controlled TCL

Stochastic switching causes TCL units to abort their duty cycles
randomly and switch states before they reach the interval end
points which act as a fallback position similar to a timed transi-
tion of a stochastic automaton (Figure 5). Stochastic switching
shortens the duty cycles similarly as deliberate changes of the
end points but in a randomized manner. The conditions that per-
mit (guard) the stochastic transitions (yellow arrows in Figure 5)
protect devices against too frequent forced switching (lockout
constraints), but do not prevent thermostat switching.
Thermal constraints are therefore obeyed as precisely as the

Figure 4. Flexible power ℱðt, τÞ (dark-blue curve) and subdivision perfor-
mance g of an ID population for different duration PDFs. The optimum
subgroup engagement δ is indicated by circles. For holding times τ > δ,ℱ
results from (9,10). Notably, power capacity slightly decreases with
increasing variance.

Figure 5. TCL automaton: τs is the time in state s ∈ f0, 1g and is reset by
each transition into s, and τlks denote the lockout. The switching predicates
SSW return random binary values: SSW0!1ðqÞ⇔x ≤ 1� e�qdτ ,
SSW1!0ðrÞ⇔x ≤ 1� e�rdτ , where x � U½0,1� is a uniform RV (Bernoulli
trial) and dτ a discrete cycle time.
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thermostat monitoring by the appliances permits; they are not
violated due to stochastic switching.

4.2.1. Stationary and Zero-Order Bounds

For the first SSW bounds, we make use of steady-state temper-
atures and load factors, which exist due to bounded magnitudes
and do not depend on initial values. Therefore, steady-state
approximations apply to any single TCL as to the aggregation.
In the steady state, the mean of all lower and all upper tempera-
ture switching points denoted TSP�, TSPþ approximates the
mean population temperature T to second order; interested read-
ers may refer to the Supporting Information for details.
Similarly, substituting the TSP for Ts into the duration in (3)
approximates the steady-state load factor y

y � TSP1 � T∞
0

TSP1 � TSP0 þ T∞
1 � T∞

0

(12)

Equation (12) informs about the variations by moving the TSP
positions inside the comfort interval I. The steady-state load is
bounded from below and from above as follows, stated here
for AH and similar for AC

T∞
0 < T� ≤ TSP0 < TSP1 ≤ Tþ < T∞

1
T� � T∞

0 þDmin

T∞
1 � T∞

0 þ D|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
½T� , T�þDmin�

< y <
Tþ � T∞

0

T∞
1 � T∞

0 þDmin|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
½Tþ�Dmin, Tþ�

(13)

where the appliances require a minimum clearing distance
0 < Dmin ≤ TSP1 � TSP0 ≤ D. The TSP intervals that obtain
the minimal and maximal loads are shown under
Equation (13). When the limit temperatures lie far outside a
rather narrow comfort band, only a few percent of load difference
are possible by shifting the TSP positions, far below the power
capacity bound (5). These deviations can be sustained indefinitely
without violating the thermal constraints and constitute a base-
line interval (Figure 2). Bound (13) applies to heterogeneous
aggregations using sample means, i.e., drawing values from dis-
tributions of T�,Tþ,T∞

0 ,T
∞
1 and evaluating (13).

Example : Assume T∞
0 ¼ 0, T∞

1 ¼ 50, I ¼ ½20, 22� (�C),
Dmin ¼ 1K. With these values, the load factor varies between
0.404 and 0.431 (by only �3%); with a double-wide band
½19, 23�(�C) between 0.370 and 0.451 (�8%, at least). For
comparison, raising the outside temperature by 3 K obtains
½0.346, 0.373�, lowering it by 3 K: ½0.462, 0.490�.

The question remains how to trigger the higher power devia-
tions promised by capacity bounds (5), (6). Indeed, not a high
switching rate itself causes peak load deviations, but its derivative
or rate of change achieves it by skewing the TSP slopes and
thereby distorting the on-to-off fractions, as shown in
Figure 6. To see this, we make the following simplifying
assumptions.

a) All upper and all lower TSPs are connected by two piecewise
linear envelope curves TSPþðtÞ, TSP�ðtÞ which instantly follow
the control trajectory (rate profile) and enclose a middle curve

TSPðtÞ∶ ¼ ðTSPþðtÞ þ TSP�ðtÞÞ=2 (14)

that approximates the mean population temperature TðtÞ (zero-
order aggregation model AMð0Þ).

TSPðtÞ � TðtÞ as t ! ∞ ðOðϵ2ÞÞ (15)

where ϵ∶ ¼ D=minfjT1 � T∞
1 j, jT0 � T∞

0 jg relates the comfort
band width to its distance from the limit temperatures that
normally lie “far outside.”

b) Unit models can be zero-order, abbreviated UMð0Þ, and have
constant heating and cooling slopes κs∶ ¼ ðT1�s � TsÞ=
τs ðs ¼ 0, 1; κ1 ⋅ κ0 < 0Þ, or be first-order (UMð1Þ) as in (1), (2).
The slopes are translated into first-order variables using the
approximation

κs � α ðTs � T∞
s Þ, s ∈ f0, 1g (16)

Using assumption (a) and geometric arguments shown in
Figure 6, we approximate the combined impact of rising and fall-
ing TSP curves on the load factor using as “derivatives” the right
derivative at the kink points.

Proposition 2: In a zero-order TCL aggregation model AMð0Þ the
load difference (flexible power) is approximately proportional to
the derivative of the mean temperature, if jṪðtÞj < minfjκ0j, jκ1jg

ΔyðtÞ∶ ¼ yðtÞ � yblðtÞ � ṪðtÞ
κ1�κ0

ðUMð0ÞÞ
ΔyðtÞ � ṪðtÞ

αðT∞
0 �T∞

1 þT1 �T0Þ . ðUMð1ÞÞ
(17)

κ1 and κ0 have opposite signs. The leverage effect of tempera-
ture on the load is greater the slower the units heat up or cool
down (unit: seconds per kelvin).

To sustain the load jΔyj for duration τ, the mean temperature

keeps changing with Ṫ by (17). Integrating (17) obtains a tempera-
ture difference that must stay belowD inmagnitude. Due to lockout
constraints, not the entire interval may bemaneuverable. If the TSP
must stay apart by a safety margin≥ Dmin estimated, e.g., from the
minimum duration τlk and/or the fraction ρlk being locked

Dmin ≥ maxfmaxfjκ0j, jκ1jg ⋅ τlk,D ⋅ ρlkg (18)

then (17) implies

Figure 6. Derivatives of switching rates and switching temperatures con-
trol the aggregated load factor (illustration for AC).
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jΔyj ⋅ τ ≤ QTCL∶ ¼ D�Dmin
jκ1�κ0j ðUMð0ÞÞ

jΔyj ⋅ τ ≤ QTCL∶ ¼ D�Dmin
jαjðjT∞

0 �T∞
1 jþDÞ ðUMð1ÞÞ (19)

The (mean) temperature prior to service defines the normal-
ized “thermal leeway” ϑ (0 ≤ ϑsðt0Þ ≤ 1, e.g., 0.5 for random acti-
vation times). The zero-order energy bound for SSW populations
follows, using QTCL from (19)

τFSs ⋅ jΔyFSj ≤ ϑsðt0Þ ⋅QTCL Flexibility service FSð Þ
τPBs ⋅ jΔyPBj ≤ ϑsðt0Þ ⋅QTCL Payback PBð Þ (20)

The flexibility sign is immaterial in (20); the same product
bound holds for flexible power ΔyFS and duration τFS, which
moves the state of charge (SoC) in one direction as it holds for
payback power ΔyPB and recovery duration τPB that goes in the
opposite direction to restore the SoC. Realizability of the necessary
upper bound under SSW control is discussed in Section 4.2.3.

Payback power that contributes to the area control error and
burdens the grid can be reduced and accordingly more time can
be allowed. The service frequencyωFS at which a load deviation of
ΔyFS can be sustained longest possible if the payback power in
the subsequent recovery phase must not exceed ΔyPB � ΔyFS is
bounded as follows, due to (20)

ωFSðΔyFS,ΔyPBÞ ≤ jΔyFSj ⋅ jΔyPBj
jΔyFSj þ jΔyPBj ⋅

jκ1 � κ0j
D� Dmin

(21)

Service frequency or service periods are further important per-
formance criteria for FS.

4.2.2. Stochastic Control as Survival Process

Stochastic switching in this work follows Tindemans’ semantics
where the AS provider, e.g., an aggregator, and the participants
share a continuous-time function which defines a switching rate
at any time. In this form, switching rates can be included as bilin-
ear control terms directly in the continuous Fokker–Planck–
PDE,[26,28,47] the basic form of which describes the evolution
of the temperature densities f 1ðT , tÞ, f 0ðT , tÞ of active, respec-
tively, passive devices under heating and cooling:[45,46]

d
dt f sðT , tÞ ¼ � ∂

∂T ½αðT � T∞
s Þf sðT , tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Drift

þ σ2W ,s

2
∂2

∂T2 f sðT , tÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Diffusion

� rs1�sðT , tÞf sðT , tÞ þ r1�s
s ðT , tÞf 1�sðT , tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Stochastic switching

(22a)

0 ¼ ðTs � T∞
1 Þ f 1ðTs, tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Active flow out atT s

þ ðTs � T∞
0 Þ f 0ðTs, tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Passive flow in atT s

s ∈ f0, 1g
(22b)

Switching rates rs1�sðr01 b¼ q, r10 b¼ rÞ normally affect TCL equally
on all temperature levels. The boundary condition of conserva-
tion (22b) models the exchange between f 1ð⋅, tÞ and f 0ð⋅, tÞ
due to thermostat switching at Ts.

In this form, stochastic switching can be regarded as a failure/
survival process that is basically described by 1) A positive hazard

function hðtÞ causing components to fail at a certain rate; 2) A
probability density function (pdf ) f hðtÞ of failure times due to
hazard h, denoted loss function;[67] 3) The related cumulative life-
time function (cdf ) FhðtÞ ¼ Prðlifetime ≤ tÞ.

The link between survival and stochastic switching rates in the
FPE (22) is discussed in Supporting Information. A constant
switching rate in the FPE (22) indeed defines a valid constant
hazard function. By specifying the switching hazard and evalu-
ating the loss pdf, the switching temperature distribution or its
moments can be determined.

Each switching event has a random exit temperature with
unknown density f tsps ðTÞ, linked to the exit time through a strictly
monotonous transformation, the duration τsðTÞ to reach
temperature T. The correspondence is f sws ðtÞ ¼ f tsps ðTðtÞÞ and
f sws ðτsðTÞÞ ¼ f tsps ðTÞ. Survivors of SSW switch thermostatically
after time τs at temperature TðτsÞ ¼ T1�s. The expected exit
temperature out of state s depends on the entrance temperature
θ, another random variable, e.g., due to the opposite switching,
and reads using the definition of conditional expectation

E ðTSPsjθÞ ¼
R T1�s
θ T ⋅ f sws ðτsðTÞÞ

dτsðTÞ
dT|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Loss PDF of temperature

dT þ

T1�sð1� Fsw
s ðτsðT1�sÞÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Survivors

, s ∈ f0, 1g
(23)

Equation (23) reflects the transition timing in Figure 5. To
evaluate the TSP, the hazard function is specified as a unit-level
switching policy which can be designed purposefully. For
instance, the hazard remains zero or very low during an initial
period, see Figure 7. In the further analysis, we consider two spe-
cial cases of hazard functions and make appropriate simplifying
assumptions of the unit models to obtain manageable closed
expressions.

4.2.3. Constant and Linear Switching Hazard

The FPE with SSW control terms in (22) is tantamount to the use
of a constant hazard function h. We consider the unit model
UMð1Þ with logarithmic mapping of temperatures onto durations
but ignore the diffusion term in Section 4.2.2. Substituting
into (23) and integration returns the conditional mean TSP

Figure 7. Switching hazard functions at unit level with initial lockout.
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for the rate rs1�s (superscript “C” for constant hazard)

E ðTSPC
s jθÞ ¼ T∞

s þ T1�s�T∞
s

eατ
lk
s ðθ�T∞

s Þ

� 	�us

T∞
s �T1�s
us�1 þ use

ατlks ðθ�T∞
s Þ

us�1 , s ∈ f0, 1g
(24)

where us∶ ¼ rs1�s=α ≤ 0 is the control signal, the SSW rate
related to the thermal drift, and τlks ð0 ≤ τlks ≤ τsÞ an initial period
in state s blocked from switching.

If the entire cycle remains locked, the expressions eατ
lk
s ðθ �

T∞
s Þ in (24) collapse into T1�s � T∞

s and result in the thermostat
switching point E ðTSPC

s jθÞ ¼ T1�s for any control us and entry
temperature θ; as well if SSW is absent (us ¼ 0). For the opposite
case of high SSW rates, in the limit, switching is expected at the
temperature reached right after expiry of the period τlks

lim
us!�∞

E ðTSPC
s jθÞ ¼ T∞

s � eατ
lk
s ðθ � T∞

s Þ (25)

An alternative is a hazard growing within the duty cycle
(Figure 7): devices should switch more likely as they approach
their regular thermostat points and has been implemented in
the priority stack control (PSC) algorithm.[33] The information
how to compute switching probabilities from rates is available
at the unit level through local measurements. A central algorithm
collecting and sorting device temperatures is not obligatory; we
outline a decentralized variant used for testing in this work in
Appendix B. The linear hazard function reads

hðτÞ ¼
0, if 0 ≤ τ < τlks

rs1�s
τ�τlks
τs�τlks

, if τlks ≤ τ ≤ τs

(
(26)

To simplify expressions and obtain a hazard function that is
linear also in device temperature, we assume UMð0Þ.
Substituting (26) into the pdf f swτ ðtÞ and integrating (23), the
expected TSP can be calculated

E ðTSP L
s jθÞ ¼ θlk þ sgn ðDlk

θ Þ
ffiffiffiffiffiffiffiffiffi
πDlk

θ

2us

s
⋅ erf

 ffiffiffiffiffiffiffiffiffiffiffi
us Dlk

θ

2

s !
(27)

where us∶ ¼ rs1�s=κs relate the SSW rate to the thermal slope in
state s (1 or 0), and θlk denotes the point between entry tempera-
ture θ and T1�s from where SSW takes effect; Dlk

θ ∶ ¼ T1�s � θlk

is the distance from T1�s and is linear in the initial blocked frac-
tion ρ∶ ¼ τlks =τs ð0 ≤ ρ ≤ 1Þ of duty cycles.

Equation (24) and (27) explains the effects of one-way switch-
ing, which is the most important case in practice, but are not yet
applicable to bidirectional switching, because expectations and
conditions mutually depend. The following general result
assures the existence and uniqueness of the expected TSP pair
as the limit of a contracting sequence.

Proposition 3: For any TCL unit that meets the assumptions
of (24) for constant hazard, or (27) for linear hazard and
UMð0Þ, and for each pair of SSW rates q ≥ 0, r ≥ 0, there exist
unique temperature values TSP1,TSP0 ∈ ½T�,Tþ� such that
1) TSPs ¼ E ðTSPs jTSP1�sÞ, s ∈ f0, 1g; 2) Either T1 < TSP0 <

TSP1 ≤ T0 (AH) or T0 ≤ TSP1 < TSP0 < T1 (AC);

3) TSPs, TSP1�s are the (unconditionally) expected switching
temperatures for ðq, rÞ in the steady state.

Numerical examples illustrating how the two antagonistic
rates r and q shape the switching temperature surfaces
TSP1ðr, qÞ and TSP0ðr, qÞ are provided as surface plots and dis-
cussed in the Supporting Information. Equation (24) and (27),
and Proposition 3 provide several insights and benefits.

They lead to a constructive proof that the bounds (4) and (17)
are reachable through (one-way) SSW. Indeed, the functions (24)
and (27) connect the SSW rates with the expected TSP, while
Equation (14), (15), and (17) provides the link to the load factor.
By requesting some load deviation Δy within the bounds (4), the
required change rate of mean population, respectively, mean
switching temperature TðtÞ, TSPðtÞ then yields a scalar nonlinear
ODE for the rate profile usðtÞ (starting with usðt0Þ ¼ 0) to achieve
that load level.[68]

ΔyðtÞ �ð17Þ dTðtÞ=dt
κ1 � κ0

�
ð14Þð24Þð27Þ
chain rule dE ðTSP�ðusÞÞ=d us

2ðκ1 � κ0Þ
⋅ u
:
sðtÞ (28)

where dE ðTSP�ðusÞÞ=d us is found by differentiating the appro-
priate Equation (24) or (27) with respect to the appropriate con-
trol input usðtÞ (rate rðtÞ or qðtÞ).

Equation (24) and (27) helps to quickly assess (analytically, in
closed form) the possible degradation of thermal comfort: we see
at a glance how far a comfort band chosen initially wide is
deformed due to SSW control effect.

They help assessing the temporary depletion of the TCL
set available for load control as the thermal windows shrink to
width TSPþ � TSP� � Dmin compared with Tþ � T� initially;
which reduces the power ramping ability (acceleration). This
insight aids in developing simplified dynamic aggregation
models.

4.3. New Gray-Box Model

4.3.1. Mean-State ODE System

A sudden step input of switching rate (Figure 8) finds units in
all phases of their current duty cycle but affects only their
remainders as predicted in the previous section. We now derive
essential but minimal model extensions to capture such delays
in the form of a coupled ODE system (first-order aggregation
model AMð1Þ, or GBM). ODE of temperature mean and variance
in homogeneous TCL populations have been derived by inte-
grating the Fokker–Planck PDE over the temperature range.[47]

We also model the aggregated load dynamics in the form of
bilinear or trilinear terms that connect state with control
variables, by substituting the switching hazard functions
from Section 4.2.3. The mean-state ODE for a SSW population
reads
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Ṫ
ẏ

� 	
¼ A T

y

� 	
þ B0ðtÞ þ BfðCÞjðLÞg

u ðT , yÞ ⋅ uðtÞ

whereA ¼ α β1 � β0
0 0


 �
,B0ðtÞ ¼ β0 þ χ2ðtÞ

ξf1j2gðtÞ
� 	

BðCÞ
u ¼ ð1� ρlkÞ 0 0

1� y �y


 � (29)

BðLÞ
u � ð1� ρlkÞ 0 0

ϑ1ð1� yÞ �ð1� ϑ1Þy

 �

(30)

denote the system and control matrices for constant ðCÞ and for

linear ðLÞ switching hazard, respectively; BðCÞ
u and BðLÞ

u have
(products of ) state variables as “coefficients.” The control input
uðtÞ∶ ¼ ðqðtÞ, rðtÞÞT contains the switching rates on and off. We
briefly explain the individual GBM elements; interested
readers are referred to the Supporting Information discussing
the connection to the governing FPE. We can write the
coefficients of system matrices A and B0 formally as device
parameter means

α∶ ¼ 1
N

XN
i¼1

αi, βs∶ ¼ � 1
N

XN
i¼1

αiT∞
s,i , s ∈ f0, 1g (31)

but should identify them independently from load measure-
ments if drift rates and limit temperatures are unknown.
The first-row equation of mean temperature is—visually not
immediately obvious—the first-order counterpart of (17)[69]

and thus informs about the thermal energy budget of the
population.

The disturbance terms ξf1j2gðtÞ and χ2ðtÞ in matrix B0 (29)
remain as “leftovers” from the FPE reduction to a mean-state
ODE and take the following forms

ξ1ðtÞ ¼ ½αðT � T∞
1 Þ ⋅ f 1ðT , tÞ�T¼Tþ

T¼T�
Pure drift ðẏÞ

ξ2ðtÞ ¼ ξ1ðtÞ þ σ2W ,1
2 ½ ∂f 1ðT , tÞ= ∂T �T¼Tþ

T¼T�
Diffusion ðẏÞ

χ2ðtÞ ¼
P

s¼0, 1

σ2W ,s
2 ½T ∂f sðT , tÞ= ∂T �T¼Tþ

T¼T�
Diffusion ðṪÞ

� P
s¼0, 1

σ2W ,s
2 ½f sðT , tÞ�T¼Tþ

T¼T�

(32)

where f 1, f 0 denote the time-varying temperature densities in the
FPE (22). The term ξ1 reflects the flow difference between active
devices entering and leaving f 1 at the points Tþ,T� and may be
actively suppressed through bidirectional switching, by adding
small offsets ϵ10, ϵ

0
1 to both rates r10, r

0
1 only one of which is essen-

tial for each flexibility direction. We neglect the offset terms ξ2
and χ2ðtÞ for diffusion in this work, lacking useful bounds of
their magnitude, but remember them as possible causes of
model mismatch.

The common factor ρlk in Bu in (30) has the physical meaning
of a mean blocked fraction of all duty. Due to Bu, the system (29)
is bilinear for constant and trilinear for linear hazard, in two state
variables (y and the thermal leeway ϑs remaining for a population
to adopt state s ¼ 1 or 0), and in the control variable u;
see Appendix Appendix B (B.2).

We emphasize the aggregated load dynamics ẏ in the second
row of (30) as a new bound on ramping speed

ẏðCÞ � ð1� ρlkÞ ½ð1� yÞ ⋅ q � y ⋅ r�
ẏðLÞ � ð1� ρlkÞ ½ϑ1 ⋅ ð1� yÞ ⋅ q � ð1� ϑ1Þ ⋅ y ⋅ r� (33)

All quantities in (33) except q and r are in ½0, 1�.

4.3.2. Holding Time Distributions

Assuming that any initial T0 ∈ I can be reached and sustained

(Ṫ ¼ 0) by applying suitable baseline load 0 < ybl < 1, the mean
population temperature dynamics under the load difference
ΔyðtÞ ¼ yðtÞ � ybl ∈ ½�ybl, 1� ybl� follows (29) (first line)

Ṫ ¼ αT þ ðβ1 � β0ÞΔy, Tðt0Þ∶ ¼ T0 ∈ I
0 ¼ αT0 þ ðβ1 � β0Þ ybl þ β0 þ χ2

(34)

Therefore, the difference Δy can be held without violating
thermal constraints at most for a duration τh which depends
on the initial mean state T0 within a “mean” band I, and on
the population parameters α, βf1j0g

τh ≤

8>>><>>>:
1
α
ln

 
DðΔyÞ þ T� � T0

DðΔyÞ

!
, if DðΔyÞ > T0 � T� > 0

1
α
ln

 
DðΔyÞ þ Tþ � T0

DðΔyÞ

!
, if DðΔyÞ < T0 � Tþ < 0

∞, else
where DðΔyÞ∶ ¼ ðβ1 � β0ÞΔy=α

(35)

In the first case, T� and in the second case Tþ will be violated.
If all units are flexible (participate), any feasible positive or nega-
tive Δy can be achieved and sustained for a—often very short—
period; see Figure 9 for a geometric illustration. The flexible
energy exploitable on a specific levelQðΔyÞ ¼ Δy ⋅ τh stays below
the zero-order energy bound (20), because the positive/negative
logarithm is strictly concave/convex, respectively. The energy
amount decreases with the load difference Δy.

The bound (35) holds regardless of how Δy is controlled.
Moreover, the ODE (34) for the mean population dynamics
equally describes any specific unit or subset if we impose on

Figure 8. Illustration of SSW control in AMð1Þ: A step rate (top) hits all
active units, shortens their remaining duty cycles, and produces a delayed
mean TSPþ curve (thick dashed line).
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it a real-valued (fractional) load level in the long term but abstract
individual binary load states and durations away. This will indeed
be the main application. The relation (35) transforms input
parameter distributions into holding duration distributions.
Using order statistics,[70] worst-case holding abilities can also
be characterized with statistical guarantees. With the following
proposition, we can determine the likelihood that a certain frac-
tion of units will exceed a given duration.

Proposition 4: Assume a population of participating TCL with
input densities f α, f β, f T0

and initial temperatures Ti � f T0

that are all achievable with loads ybli , 0 < yblmin ≤
ybli ≤ yblmax < 1 ð1 ≤ i ≤ NÞ. Then the holding durations τh for
Δy ∈ ð�yblmin, 1� yblmaxÞ have a cumulative distribution defined
by transformation (35)

FΔy
τh
ðτÞ ¼ Prðτh ðΔy, α, β,T0Þ ≤ τ j

α � f α, β � f β,T0 � f T0
Þ (36)

If the quantile value ξ ¼ ðFΔy
τh
Þ�1ðpÞ for p ∈ ð0, 1Þ exists and

FΔy
τh

is differentiable at ξ with positive derivative f τhðξÞ > 0, then
the holding duration undercut by p ⋅ N units at worst is an
asymptotically normally distributed RV for large numbers N

f Δy,pN∶N
τh

!d F
�Δy,p
τh ¼ N ξ,

pðp� 1Þ
Nf 2

τh
ðξÞ

 !
. (37)

Example 1: Figure 10 displays the empirical HDD of a small
heterogeneous population (N ¼ 900) as the parent of the
order statistics FΔy,90∶900

τh
, the holding time CDF undercut by

at most 10% ðp ¼ 0.1Þ of the population. The order statistics is
computed numerically using large (inaccurate) binomial
coefficients and compared to its Gaussian approximation from
Proposition 4.

The likelihood that Δy can be sustained for τ or longer by at

least ð1� pÞN units is 1� F
�
ðτÞ with the Gaussian CDF F

�
for f

�
.

We denote fraction p as compliance level,[71] and define the flexi-
ble energy retrievable at load Δy and compliance p using the
Gaussian approximation

Q
� ðΔy, pÞ∶ ¼ jΔyj ⋅ τ�ðΔy, pÞ
where τ

�ðΔy, pÞ∶ ¼ E ðF
�Δy,p
τh ð⋅ÞÞ ¼ ξðpÞ

(38)

The realistic (load-level-dependent) energy demand to track a
regulation signal is straightforward to estimate (in Supporting

Information) using the above Q
� ðΔy, pÞ divided by the basic

QTCL as an energy intensity factor.
A short numerical recipe summarizes how to practically apply

Proposition 4:

Input Load difference Δy

Size N > 1; Compliance level p ð0 < p < 1Þ
TCL parameters αi, βi, Ti, Ti,�, Ti,þ

Output Mean and variance of density F
�Δy
τh

Algorithm 1) Acquire the input densities f α, f β , f T0
.

2) Build an empirical HDD (histogram hΔy
τh
, CDF HΔy

τh
):

Sample input parameters using f α, f β , f T0
and

evaluate τh (35) (use M ≫ N samples).

3) Estimate the mean ξ ¼ minfτ∶HΔy
τh
ðτÞ ≥ pg.

Fit a density f, e.g., log-normal, to hΔy
τh

and assure f ðξÞ > 0.

Repeat from Step 2 with more samples if necessary.

4) Evaluate the Variance of f
�
Using (37).

The critical step in practice will be providing suitable proposal
distributions for the input parameters in Step 1. Regarding
f T0

, participants should keep the aggregator informed of their
up-to-date tolerance bounds. Initial temperatures may then
be assumed independent and uniformly distributed:
f T0

≡
Q

i U ½T�,i ,Tþ,i �, lacking more specific information. For the
remaining thermophysical parameters α and β, we see two
options.

1) Forward (generating f α and f β for a fictitious building pop-
ulation—scenario analysis): sample from key parameters that
characterize the building and HVAC stock and for which distri-
butions may be easier to obtain, and calculate αi, βi from these.
This will be discussed in Appendix A.

Figure 10. Empirical HDD example; see Example 1 in text.

Figure 9. Holding durations for different load levels Δy. The T curves all
start at T0 inside a mean band I assumed reachable.

www.advancedsciencenews.com www.entechnol.de

Energy Technol. 2021, 2100251 2100251 (13 of 29) © 2021 The Authors. Energy Technology published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.entechnol.de


2) Inverse (identifying f α and f β of an existing population—

service planning): estimate α and β as coefficients of the GBM
system matrix A in (29) from measured aggregated load under
SSW control. Distribution shapes found in (1) or through data anal-
ysis may be adopted as templates for f α, f β and be rescaled to the
identified means. Identifying also the variances from load profiles
might be possible, however, a complete PDF shape rather not.

Example 2: Figure 11 highlights the key influences on the HDD,
using the synthetic population[39] (N¼ 105 TCL in 10 random
states) and a load step up Δy ¼ 0.3. We vary the population
homogeneity by degree h: h ¼ 1 means fully homogeneous;
for h ¼ 0.9 the parameters are varied �10% about the
reference values as in the study by Ziras et al.[39] The thick
black line (h ¼ 0.7) serves as our reference. We see from
Figure 11 that the holding durations exceeded by 90% of
units in the most homogeneous (h ¼ 0.9, solid blue) more
than double those in the most heterogeneous case (h ¼ 0.5,
solid orange). Ranking the input factors, different initial
temperature concentrations in ½T�,Tþ� account for most, as
shown by the dashed-dotted HDD curves. The HDD can also
be shaped to a modest extent if the units target individual Δyi
adjusted to their holding abilities and achieve the flexibility Δy ¼
0.3 in the mean (dark-purple dotted line).

5. Numerical Results

In Section 5.1 and 5.2, we explore the criteria and bounds from
Section 4 and analyze their sensitivity to key input factors. The
criteria are evaluated numerically in closed form and without sim-
ulation. Basically, we automatically generate TCL surrogate mod-
els from more basic parameters (distributions) that describe the
built environment, HVAC equipment, and quality constraints,
and then characterize their load flexibility properties through den-
sity transformation. Details of model generation are given

in Appendix A. The further Section 5.3–5.5 address the realizabil-
ity and accuracy of bounds, using independent methods for com-
parison, mostly detailed simulation. The comparison with work in
the study by Ziras et al.[39] (Section 5.4) and the PJM case study
(Section 5.5) serve to justify our refined energy criteria.

5.1. Heat Pump Case Study

By aggregating whole-building models at a regional or city scale,
we show how to obtain DR performance figures (in particular,
holding durations of flexible power) very fast and ex ante.
These capture various HVAC operating conditions including
ambient temperature. Another goal is to compare the two inde-
pendent estimation methods derived first for ID loads and later
for SSW populations.

5.1.1. Data Description

The aggregation model is generated using the parameters in
Table A1; further parameters are shown in Table 2. This TCL
population serves as the reference for sensitivity experiments
in Section 5.2. Acceptable temperatures assumed uniformly dis-
tributed lead to an initial SoC of 50%. Regarding tolerances, the
actual comfort band is I ¼ ½T1,T1 � D��C (“þ” in this case of
heating, see Section 3.1). Comfort bands in Table 2 are random
parameters and assume building users that tolerate fairly wide
temperature ranges of 4–6 �C. In the remainder, this reference
configuration of heterogeneous building models is used in two
variants, H-ASHP (“ASHP in heating mode”) and C-ASHP
(“ASHP in cooling mode”), each with individual thermostat set
points, comfort tolerances, and outside temperatures. Even more
control over the composition of populations by appliance classes
and thermal constraints is possible through another configuration
denoted M-TCL (“mixed-devices”). Five classes, i.e., space, heat-
ing and space cooling, separate water heating, domestic fridges,
and freezer cabinets coexist in one population.[55] Each class

Figure 11. Different HDDs (CDF) for a target load Δy ¼ 0.3; see Example
2 in text.

Table 2. Parameters of the reference configuration.

Meaning/Name RV Valuea) Unit

TCL type N AH (ASHP) –

Switch on temperature T1 Y U½17,21� �C

Comfort band width D Y U½4,6� K

Initial SoC N 0.5 –

Thermal diffusion σW N 0.02 –

Lockout duration τlk N 90 s

Specific heat capacity C Y N T ð0.9, 0.2Þ kJ kg�1 K�1

Heat transfer Ua) Y ℋ½0.1,1.3� Wm�2 K�1

Air change rate rach Y ℋ½0.2,1.0� h�1

Design heat intensity Pdli Y ℋ½0.4,0.9� Wm�2

a)ℋ½0:1,1:3� for heat transfer coefficients U: Normalized counts of 12 bins of width 0.1
over the histogram domain ½0.1, 1.3� were chosen (0.011, 0.032, 0.105, 0.211, 0.263,
0.105, 0.021, 0.021, 0.105, 0.011, 0.011, 0.105). N T ð⋅, ⋅Þ: shorthand for truncated
normal distribution, conditional on range ℝ>0.
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independently provides positive and negative flexibility. A table of
all parameter values is found in the Supporting Information.

5.1.2. Experiment Description

The available flexible power fraction is visualized as contour plots
in a grid of ambient temperatures and holding durations in
Figure 12. Direct (ID—top row) and stochastic actuation (SSW—

bottom row) are compared. Using (10) for ID loads, the expected
flexibility ℱ�ð⋅, τÞ is calculated for given holding durations.

The corresponding SSW values are computed as the minima
obtained from the energy bound (20) and the holding time rela-
tion (35). Equation (18),(19) account for cycle availability (lock-
out), whereas (35) captures the decrease of retrievable energy
with the load difference.

Regarding the ID versus SSW actuation type, Figure 13 offers
a compact visual comparison of flexible power in a bounded area
of up to 40% higher, respectively, lower heat capacity values
around the reference. In the left and middle diagrams, the
sustainable power, averaging over durations τhold ≤ 400s, is

Figure 12. Flexible power capacity (normalized) of ASHP building population displayed as contour plots over a grid of holding durations and outside
temperatures. Left column: downward, right: upward flexibility. Top row: ID, bottom: SSW.

Figure 13. Regulation power in a bounded area of heat capacity, comparing ID with SSW. Downward (left) and upward (middle) power capacity sustained
for τ ¼ 400s depending on ambient temperature. Right: combined power capacity depending on holding durations.
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displayed as a function of ambient temperature, whereas in the
right image, the total power (up and down added;
ℱþðt, τÞ þℱ�ðt, τÞ ≤ 1 ∀ t, τ,Tamb) is shown for varying holding
duration, where outside temperatures have been sampled ran-
domly and uniformly in the range ½�15, 14��C.

Often, but not always, significantly (20–50%) higher
load deviations and longer holding times are observed for
SSW compared to ID control. The SSW results are also
more sensitive to the heat capacity C. Lacking a benchmark
how much flexibility is really achievable, we can only state that
the bounds for ID are stricter (more conservative) than those
for SSW.

5.1.3. Results and Discussion

To interpret the results, we note that several input factors interact
and contribute nonlinearly to the sustained flexibility. Basically,
downward capacity decreases with the baseline, i.e., is less at
milder outside temperatures under heating, whereas upward
capacity increases. Due to the dynamic COP, the power capacity
curve bends near �7 �C and assumes a maximum near �12 �C,
below which the COP settles to one. Downward capacity
decreases more steeply than upward capacity increases.
Furthermore, the SSW upward capacity does not continue rising
but assumes a maximum, unlike ID. We see a side effect of lock-
out constraints captured in the SSW but not in our ID estimate:
Under mild ambient temperatures above 10 �C, a decreasing heat
load and a synchronously increasing COP shorten the heating
cycles to the point where an absolute lockout duration of only
90 s blocks many opportunities for up regulation. The maxima
positions and the variability of output depend on further inter-
acting parameters, e.g., the thermostat band width D.

Regarding the actuation types, ID units that hold their oper-
ating states individually face a stronger constraint than SSW pop-
ulations that approximate a target load state collectively; this
indicates that more flexible energy might be extracted under
SSW. On the contrary, ID control coordinates subgroups of appli-
ances by time-relayed activation, which is not exploited for SSW
control, and our ID estimate (Proposition 1) ignores the adverse
lockout constraints.

Holding time characterizations are simpler to develop for
SSW populations than for ID: they require only mean heating
or cooling rates and no duty cycle distributions, and they treat
service and recovery alike with flexibility signs just reversed.
In contrast, ID/DLCmethods are easier to implement with smart
thermostats, whereas SSW requires randomization extensions
“deep-down” in the HVAC thermostat controls.

5.2. Sensitivity Analysis

We analyze the sensitivity of the model responseℱ�ðt, τÞ, which
depends on the ambient temperature TambðtÞ, with respect to six
input factors: a) Specific heat capacity (light to heavy construc-
tion); b) Heat transfer through the envelope (small to large);
c) Heat consumption and dissipation of stored liquid or gaseous
media (e.g., air change rate, infiltration); d) Building purpose
(residential/non-residential); e) User tolerance (narrow to wide

comfort interval); and f ) Switching constraints (lockout
duration).

5.2.1. Description

We carry out a local sensitivity analysis around the reference con-
figuration that represents a mixed building stock with the param-
eters listed in Table A.1 and Table 2. For any input factor, the
result value is strictly increasing or strictly decreasing at the ref-
erence point. Population parameters perturbed separately for
each factor about the reference and denoted as high and low,
respectively, are shown in Table 3. Modifications are carried
out one-factor-at-a-time. All scenarios share the same HVAC
technology (ASHP) and the same distribution of heating power.
Two variations regarding building insulation (b) in Figure 14a
and comfort tolerance (e) in Figure 14b, are visualized by error
bars around the reference values. Similar as in Figure 13, results
in the left diagram vary with ambient temperature and in the
right diagram with holding duration. The upper diagrams show
ID and the lower ones SSW populations.

Sensitivity indices have been estimated numerically for the
reference configuration and are shown in Table 4. The four table
rows distinguish down and up regulation as well as ID and SSW
populations. The columns refer to the six input factors (a–f ) and,
as a seventh parameter, the std σW of thermal diffusion.[72] Each
table entry is an average of 100 populations with 10 000 units
sampled from the reference, low, and high configurations.
These operate under uniform random temperatures in
½�15, 14��C. As there is no metric to compare qualitatively differ-
ent influences, we empirically choose the values for low and high
in Table 3 so to represent comparable perturbations in order to
calculate sensitivity values.

5.2.2. Results and Discussion

Lockout duration (f ) for ID units and diffusion σW in column 7
for ID and SSW can be discarded as noninfluential parameters,
because they do not causally contribute to the estimates.
Regarding prioritization of input factors, tightening or relaxing
the thermostat band (e) has the biggest influence on flexible
power and on holding duration. Heat capacity (a) and, with oppo-
site signs, heat transfer coefficients (b) and—to a lesser extent—
air change rates (c) have the next largest effects. The composition
of the building stock by residential and non-residential buildings
(d), which mainly differ in the area to volume ratios, is least influ-
ential. The impacts of heat transfer (b) and (c) vary between
downward and upward flexibility, with the actuation type ID ver-
sus SSW, and with the outside temperature. For instance, heat

Table 3. Parameter perturbation in sensitivity experiments.

Building
Scenario

Heat transfer
U

Air change
Rate rach

Specific heat
Capacity C

Comfort
Tolerance

R/NR
Fractions

Ref configuration ℋ½0.1,1.3� ℋ½0.2,0.4� N T ð0.85, 0.15Þ U½6,10� 0.75=0.25

Low configuration ℋ½0.1,0.7� ℋ½0.02,0.2� N T ð0.6, 0.1Þ U½2,5� 0.25=0.75

High configuration ℋ½0.2,1.8� ℋ½0.4,0.8� N T ð1.1, 0.2Þ U½6,10� 0.99=0.01
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transfer (b) affects downward regulation most under extreme
cold, while infiltration (c) has a more uniform effect. In general,
downward flexibility varies the more the higher the baseline load
is, and upward flexibility the more the lower the baseline.

5.3. Realizability and Accuracy Tests

In this section, we evaluate how far the reduction of complex
building units to TCL surrogates affects the aggregate level.
We focus on the baseline HVAC consumption as the reference
point of all flexibility, which depends mainly on the outside tem-
perature, and compare the TCL-derived baseline estimates with
an independent degree-day method to estimate the HVAC inten-
sity (active power factor, APF, modified after the study by
Gils[73]). Second, we compare the flexibility bounds of power,
holding times (energy), and ramp rates, that are actually achiev-
able by different TCL control algorithms in simulations, with the
theoretical bounds, Equation (20) for AMð0Þ, (35) for AMð1Þ,
and (33) for the ramping rate.

5.3.1. Description

Simulation: To achieve tolerable run times for up to N � 105

units, the Matlab simulation iterates a vectorized unit calculation
structure in a common discrete-time loop. This is possible even
though units have different constraints and control algorithms
and their duty cycle durations range from one minute to several
hours. A common time step dt always limits the overall temporal

resolution compared with discrete-event simulation as in the
study by Tindemans et al.[26] and, on the other hand, pretends
a uniformly fast unit response, which is rather not achieved
in practice by most heat pump controllers or refrigerators, for
example. Readers may refer to the architecture diagram
Figure B1 in Appendix Appendix B.

Active power factor: The independent APF method predicts an
intensity factor of HVAC activity (ASHP, in our case) as a fraction
of the total installed electricity. It requires 1) A description of a
typical heating season in a region (duration, average ambient tem-
perature, zero heating temperature, see Table 5); 2) Inventory data
of the electricity (GW) installed in, and the floor space heated by,
ASHP[74]; 3) The heating energy (GWh) consumed during a typical
heating season by ASHP. Using the COP (A.2), an average elec-
tricity intensity factor per degree-hour at any outside temperature
level is estimated. The active fraction of installed ASHP electricity
is then interpolated on a temperature scale. These values are com-
pared with the dynamic baseline estimate (3a).

We note that all methods, the TCL baseline formula, the TCL-
based simulation, and the APF share, in one form or the other,
the COP calculation method (A.2).

Figure 14. Sensitivity of flexible power capacity with regard to two dominant input factors.

Table 4. Sensitivity indices computed at the reference configuration; color
intensity signifies magnitude.

C U rach R/NR Comfort tol. Lockout dW

ℱ�
ID 0.4621 �0.2573 0.4020 �0.2303 0.6426 �0.0006 0.0066

ℱþ
ID 0.2557 �0.3257 0.0280 �0.0609 0.4979 0.0001 0.0259

ℱ�
SSW 0.4623 �0.2242 0.4906 �0.2291 0.6319 �0.2816 0.0111

ℱþ
SSW 0.5102 �0.5765 0.2945 �0.1979 0.8197 �0.4980 0.0372

Table 5. Parameters of ASHP and heating season (values for Germany) to
estimate the APF and the COP.

Symbol Meaning Unit Value

– Heating demand p.a. due to HP TWh 11.8

Pel
HP Installed electric HP power GWel 1.77

AHP Floor area heated by HP m2 8.1	 106

Heating Period:

– Average duration in days d 225

Thref Zero heating temperature °C 17

Tah Average ambient temperature °C 3.5

ηqfac Manufacturer efficiency factor 0.5

T fw ASHP supply temperature °C U½35,50�

– Minimum (design) temperature °C �15
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Formula-to-simulation comparison: The simulated baseline
curve of an uncontrolled mixed-device (M-TCL) population in
steady-state is compared with the dynamic baseline (3a) using
the root mean squared error (RMSE in%), averaging 100 runs
with random ambient temperatures. The following parametric
influences on the errors are analyzed:

1) Composition by appliance types (M-TCL); 2) Population
size N; 3) Thermal process parameters (diffusion σW , drift α);
4) Further “parasitic” influences, e.g., the time step dt.

In Table 6, the RMSE is listed for three population types run-
ning 10 000 s ð�3 hÞ of simulated time. The accumulation of
baseline errors is indicated in the rightmost column in% drift
of the rated power per minute.

Formula-to-APF comparison: The baseline curves that include
nonparticipating units in (5) with load factors of 1 (always on) or
0 (always off ) are compared with the APF estimates over the out-
side temperature range shown in Figure 15. By varying also the
parameters from Table 5, several curves result.

5.3.2. Results and Discussion

The largest baseline RMSE in Table 6 occurs in the space-cooling
case (C-ASHP). Regarding population size, RMSE values
decrease roughly proportional to

ffiffiffiffi
N

p
. The error depends weakly

on the level of thermal diffusion σW to the point where the pro-
cess noise dominates the heating or cooling increments. As the

calculated values after (3a) are biased due to small coefficient and
approximation inaccuracies, their time-integrated deviations
drift already in the short term. Drift is not an issue if the con-
sumption of an existing population is measured to calibrate
the baseline estimates. These can be adjusted to changing tem-
peratures, e.g., (12).

Regarding the comparison with APF, we rate the agreement in
Figure 15 as acceptable except below �7 �C where both methods
become questionable. APF curves are truncated at 1 (100% load),
because the ASHP no longer meet the full heat demand at
�� 10 �C with the inventory data assumed. In contrast, the
calculated TCL baseline values remain �5% too low, although
more than 95% of all units are already rated as “always on” (non-
participating, baseline of one) at these very cold temperatures.
Both the TCL and the APF formulas have adjusting screws so
to achieve closer agreement. The two APF curves assume differ-
ent zero heating and average seasonal temperatures. The TCL
baseline curves differ by their assumptions of comfort tolerances
and the total ASHP-heated floor area.

To test how far our bounds are realizable, we compare two
SSW control algorithms (constant and linear hazard) with deter-
ministic control of thermostat set points. At peak load deviations,
the control algorithms tap only 30–50% of the constant energy
bound (20) in simulations, while the mean bound (35) still
predicts 75–90%. Measured ramp rates differ in the mean by less
than 8% from the predictions, but individual samples vary
considerably. For lack of space, we have outsourced the detailed
experiment conditions and the graphical result into the
Supporting Information (Section S-3.5.1).

5.4. Comparison with Ziras’ Work

We compare our energy bounds with related parts of Ziras’
work[39] where reference load signals are tracked under condi-
tions of energy shortage. The authors’ concerns were, among
other topics, the oscillations following energy depletion.[39]

They demonstrated that a simple stochastic controller oscillates
less and dampens faster than PSC.

We focus on the points of energy depletion which indeed con-
form well to the TB bound from the study by Ziras et al.[39] and
reproduce the conditions under which we obtain a similar per-
formance. Using our locally linear SSW control algorithm with
damping (Appendix B), we successfully suppress the controller-
induced oscillations. More importantly, we explore and exacer-
bate the experiment conditions until more refined energy bounds
than TB become essential, and analyze how energy sufficiency
and tracking performance correlate.

Table 6. Baseline error [RMSE in %].

Configuration N¼25 000
σW ¼ 0.1
dt ¼ 2s

N¼1000 N¼100 000

σW ¼ 0.01 σW ¼ 0.4
dt ¼ 0.5s dt ¼ 5s

Drift [%min�1]

M-TCL 0.34 1.54 0.173 0.326 0.97 0.30 0.28 2.7

H-ASHP 0.28 1.42 0.165 0.331 1.31 0.36 0.31 5.6

C-ASHP 0.47 1.32 0.420 0.254 4.19 0.51 0.42 23.6

Figure 15. Baseline load depending on ambient temperature: APF (solid
curves) compared with TCL formula (dashed curves).
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5.4.1. Data Description

The TCL population studied by Ziras[39] (and earlier works) com-
prises synthetic devices specified by the reference values of ther-
mal resistance R0 ¼ 2 ðKkW�1Þ, capacitance C0 ¼ 2 ðkWhK�1Þ,
and energy conversion efficiency η0 ¼ 3. Thermostat band and
outside temperature are fixed to I ¼ ½T�,Tþ� ¼ ½22, 23��C,
Ta ¼ 5 �C. The parameters are converted into TCL standard form
(1) setting

T∞
0 ¼ Ta, T∞

1 ¼ Ta þ η ⋅R ⋅ Pn,α¼ � 1
3600RC

� �6.94e�5 (39)

In the study by Ziras et al.,[39] parameter R alone is varied
�10% about R0, which we tag as “homogeneous at degree
h ¼ 0.9,” while h < 1 in general implies that all three parameters
X ∈ fR,C, ηg are varied independently and uniformly about their
reference values X0: X � U ½X0ð1�hÞ,X0ð1þhÞ�.

We specify the energy capacityQTCL as the number of seconds
that the total rated power can be sustained (Wnres, normalized
rated electricity [NRE]), which corresponds to

N ⋅ Pn ⋅QTCL=3600 ðkWhÞ (40)

in absolute values, i.e., � 15.56 ⋅QTCL assuming N ¼ 10 000
units with nominal power Pn ¼ 5.6 ðkWÞ each.

5.4.2. Experiment Description

For the regulation task, we assume the piecewise constant refer-
ence signal from the study by Ziras et al.,[39] Figure 16 therein,
which demands roughly 600Wnres of flexible energy
(ybl � 0.52Wnre). The supply capacity assuming τlck ¼ 150 s lock-
out duration (smaller than the two values in:[39]

tloff ¼ 300 s, tlon ¼ 180 s) is estimated to be QTCL � 341Wnres

using (19) and is reasonably close to Ziras’ estimate of
352Wnres.[75]

By visual appearance, in Figure 17, the PSC and the stochastic
controller both follow the reference perfectly well until, after
t � 700 s, 175Wnres b¼ 50% of the capacity have been used on
the first upward load step Δy � 0.26Wnre. Then the load starts
oscillating about the baseline due to energy depletion. We can
reproduce these results, which seem to confirm TB-like energy
bounds, by assuming 1) The original population from the study
by Ziras et al.[39] (h ¼ 0.9), 2) No thermal diffusion (σW ¼ 0),
3) An initial SoC of 0.5 or 50% (T0 � U ½22,23�).

Using a constant-hazard SSW algorithm without damping, we
reproduce similar oscillation behavior in Figure 18, except that
our SSW controller slightly overshoots when the regulation sign
changes. Tracking behavior of the locally linear algorithm with
damping outlined in Appendix B is shown in Figure 19.
Oscillations and overshooting have disappeared, but energy deple-
tion obviously remains.

Prior tests with our ASHP and M-TCL populations—by
default more heterogeneous and with diffusion—had however
revealed a fundamentally different behavior when tracking the
same energy-infeasible signal: 1) Control responses to load steps
taper off quickly, 2) There are no oscillations to dampen, 3) The
energy absorbed steadily declines with σW , 4) Accurate tracking
near one or zero remains possible but requires an energy surplus
beyond TB bounds.

To corroborate these findings, we vary the energy supply
capacity of the population and the process noise σW as well as
the reference trajectory to track, and measure the tracking accu-
racy (RMSE in%) and the retrieved energy fraction.[76] The
energy supply grows by widening the thermostat band (in three
energy steps: ½22, 23�—lacking, ½21.5, 23.5�—sufficient, and
½21, 24��C—surplus energy). Moreover, we scale the power
amplitudes between 0.7 and 1.9 of their original values and
accordingly scale the time to preserve the (TB) energy demand.

Figure 17. Tracking performance and evolution of the locked on and off
loads. Reproduced with permission.[39] Copyright 2018, from the author,
Ch. Ziras, Figure 6 therein.

Figure 16. TCL population as a zero-order aggregation model AMð0Þ: the
mean temperature (middle) instantly responds to the switching rate pro-
files (top), and the aggregated load responds to mean temperature
changes (bottom, assuming AC devices).
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Acceptable RMSE values (< 1%) are obtained only with surplus
energy, low diffusion σW ≤ 0.03, and scaling factors below 1.3.

5.4.3. Results and Discussion

Our SSW control with locally linear switching hazard shows good
tracking performance, but for heterogeneous populations, it does
only when excess energy w.r.t. TB capacity bounds is provided.
Oscillations can be effectively suppressed by monitoring the
energy level in the GBM.

For the regulation signals in Figure 18, the tracking error and
the retrieved energy deteriorate with the following input factors,
in decreasing order: 1) Thermal diffusion σW 2) Load amplitude
(scaling factor) 3) Parameter heterogeneity (factor h).

We regard Ziras’ population parameters[39] to be rather atypi-
cal of mixed residential HVAC devices and consider the test ref-
erence signal as benign. In the following section, we investigate
more aggressive signals, where the holding-time-at-power level
becomes even more important.

5.5. PJM Case Study

We aim to show that a refined characterization of flexible energy
involving load levels (such as (35) and Proposition 4 in
Section 4.3) is essential and useful. We let strongly heterogeneous
TCL aggregations with thermal diffusion track the PJM dynamic
regulation signals (RegD)[7] and assess their performance by vary-
ing load amplitudes and timing dynamics. Especially, we show
that energy depletion at high power deviation levels and large
tracking errors are highly correlated. DR resources may fail even
if they provide sufficient energy by thermal-battery standards.

Reducing the load factors and increasing the rated power
improves the performance and possibly the service rewards,
but requires a higher reserve capacity to be compensated. We
propose a simple design procedure to determine the necessary
participation.

All experiments in this section are based on detailed TCL sim-
ulations, using SSW load control with constant or with locally
linear switching hazard.

Figure 19. Tracking the reference load from Figure 18 using linear switching hazard and damping.

Figure 18. Tracking a piecewise constant reference load with Ziras’ population (h ¼ 0.9, no noise), using constant switching hazard.
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5.5.1. Mapping the PJM Signals

PJM interconnection electricity markets[7]), a major USA inde-
pendent system operator, has been regularly publishing time-
series data for load balancing since 2012. An area control error
(ACE) power signal is split into two parts, a slower, energy-
intensive RegA and a faster-responding RegD signal. The latter
transmits a normalized value in ½�1, 1� every 2 s and is challeng-
ing to track, because aggressive switching between extreme levels
causes long and steep-ramped (dis-)charging cycles, and also
because the values often stay pegged at 1 or �1 for some time,
i.e., require long holding durations. In reality, the values �1 rep-
resent a certain effective power imbalance or ACE of magnitude
�PregðMWÞ. In contrast, a maximal load factor of 1 at a DR
resource uses an aggregated power of PTCLðMWÞ. The neutral
RegD value zero is mapped onto the baseline load ybl, which
varies in time but is assumed constant, at least predictable, over
a short service period of at most 2 h.

To carry out real load-balancing services, absolute power fig-
ures matter and must be related. Several options exist to adapt
the capacity of a DR asset to the needs: a) Power scaling: The DR
resource chooses a fraction L ≤ 1 of the imbalance Preg; i.e., it
tracks the same signal shape according to its own capacity.
This appears to be a necessary prior step in any case;[77–79]

b) Time scaling: The DR resource follows a RegD signal in fast
or in slow motion using a time factor b, which scales the energy
demand as well: this is applicable only in simulation experi-
ments; c) Load factor scaling: All DR units track a RegD signal
scaled down in amplitude and use a fraction ζ ≤ 1 of their own
power range. The aggregation is accordingly increased so to pre-
serve power and energy contributions to the grid. Such part-load
strategy is applicable in reality and is simulated below. While (a)
defines the overall power and energy contribution, (c) decides the
internal division of work. In Supporting Information, we docu-
ment how to exactly match demand and supply of flexible power
and energy and how to map the RegD signals using the factors L,
b, and ζ.

Load-Scaling Simulations: As we ignore the power dimension
by normalization, we must exercise caution when simulating
option (c), and illustrate three ways of doing this.

Default: Scaling down the signal amplitude by ζ proportionally
reduces the energy demand. Thus, the simulation pretends a bet-
ter tracking performance than real.

Energy invariance: Scaling down the amplitude and stretching
the time accordingly (factor b) keeps the energy demand constant
but mitigates the PJM signal dynamics in slow motion.

Time acceleration: Preserving the amplitudes and compressing
the time compensates an existing energy supply deficit and
allows to test the power limits, but exacerbates the dynamics.

Lockout: Time acceleration becomes incompatible with any
absolute duration of lockout since, eventually, all signal frequen-
cies become too fast for load control. We exclude lockout from
simulation in fast-motion.

5.5.2. Experiment Description

Illustrative example: In Figure 20, an M-TCL population
(N ¼ 25000, σW ¼ 0.08) with 60% heating and 40% cooling

appliances tracks a PJM RegD signal for 4 h starting from mid-
night December 3, 2018. The RegD energy demand of
Q reg

max � 724Wnres, mostly upward, exceeds the TCL supply
QTCL

0.5 � 170Wnres by more than four. Therefore, the PJM signal
is time-compressed beforehand with b ¼ 4. Tracking errors are
measured in two ways: as root mean-squared error (RMSE) and
by PJM precision score (see Section 4.5.6 in the operation man-
ual[7]). The panel with four diagrams, from bottom (i) to top (iv),
shows i) The TCL cannot hold load levels near 0 and 1 with
b ¼ 4, ζ ¼ 1; responses wear off toward the baseline. ii) They
track a down-scaled (to 75%) signal with the same energy
demand quite well (b ¼ 3, ζ ¼ 0.75). iii) Time compression to
cancel the realistic energy supply deficit (b ¼ 16, ζ ¼ 1)
allows levels 0 and 1 to be reached, albeit with reduced
accuracy compared with (ii). Neither power capacity limits[37,39]

nor lockout durations (not present) create a bottleneck. iv) With
only 120 s lockout duration, tracking fails despite lowered ampli-
tudes (ζ ¼ 0.6, b ¼ 2.4). The (moderately) accelerated RegD
dynamics causes a ramping speed bottleneck GW=s, whereas
power capacity (GW) and energy capacity (GWs) are sufficient.

To verify the last claim in (iv), we repeat the simulation in orig-
inal PJM time, without acceleration. To make it possible, we
boost the energy supply by artificially slowing down thermal drift
values and by relaxing the thermal comfort beyond reasonable
limits. Load factors near 0 or 1 can now be reached, but, due
to the lockout, the control dynamics is sluggish and tracking per-
formance is unacceptable (RMSE 11.6 %, precision 0.754).

Experiment series: To corroborate individual findings, we con-
duct test series and aggregate the results statistically:

RegD signals: One series is carried out using data between
July 2, 2019 and August 8, 2019 (summer) and another with data
between January 1, 2019 and February 2, 2019 (winter). Each
series comprises 50 services—2 h of continuous tracking—with
random starting times regularly distributed over 20 days.

TCL configuration: The main series uses M-TCL with diffu-
sion σW ¼ 0.05, a SoC ϑ0 ¼ 0.5 and TB energy supply
QTCL � 350Wnres. A comparison experiment is conducted using
H-ASHP, whole buildings with a heavy construction and heat
pump heating at T amb ¼ �2 �C. These supply less energy:
QTCL � 180Wnres.

The control algorithm with locally linear switching hazard and
no damping works in the main series. One comparison experi-
ment uses constant rates. Population size is N ¼ 2000 in the
main series; N ¼ 25000 and N¼100 000 for comparison.

Load factors are scaled down from ζ ¼ 1, · · · , 0.3 in steps of
0.1, and four options are applied: 1) Original time; 2) Energy-
invariant through slow motion; 3) Compensation of realistic sup-
ply deficit through time acceleration; 4) Options 2 and 3 combined:
for each value ζ ≤ 1, a signal with the same TB energy demand is
created first by stretching the time, and any remaining (realistic)
energy deficit is then eliminated by compressing the time.

Numerical results and explanation: On the summer data under
option 1, while ζ decreases from 1 to 0.3, RMSE decrease from
8.3% to 0.85%, and precision improves from 0.84 to 0.94
(Figure 21). The errors under option 2 become only slightly
higher (for medium scaling factors ζ) and the curve flatter, if
the energy demand is maintained through slow motion. The
time-accelerating option 3 blends into the option 1 curve when
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amplitudes get small enough with ζ ! 0.3 so that no (realistic)
energy deficit remains. For ζ � 1, option 3 does improve the
errors compared with options 1 and 2, but the benefit is offset
to a large part by the burden of fast dynamics (RMSE� 5%). The
combined option 4 indeed achieves the best of both worlds:
RMSE � 5% for ζ ¼ 1 and lowest RMSE 0.29% and highest pre-
cision values of 0.98 for ζ ¼ 0.3. For ζ near 1, option 4 behaves
like 3 (little or no time stretching), whereas for small ζ, it blends
into option 2: realistic energy equals TB energy, and no more

deficit remains to compensate. With the winter data, we obtain
similar results. H-ASHP (Figure 22, left) produces up to 20%
higher RMSE than M-TCL for high load amplitudes (ζ > 0.7),
because of a smaller energy supply, respectively, a higher deficit,
higher time acceleration factors are needed.

The tracking performance (RMSE, precision, energy
absorbed) does not deteriorate with thermal diffusion as much
on RegD signals as on the step signals considered in the previous
Section 5.4.

Figure 20. Tracking a RegD signal from December 3, 2018, 00:00:00 to 04:00:00 a.m. shown as a light-blue reference curve. From bottom to top (please
note the different time axes and see text for illustration): i) full load range ðζ ¼ 1, b ¼ 4Þ: RMSE 4.96%, PJM precision score sp ¼ 0.894; ii) down-scaled
ðζ ¼ 0.75, b ¼ 3): RMSE 0.95%, sp ¼ 0.981; iii) time acceleration ðζ ¼ 1, b ¼ 16Þ: RMSE 3.87%, sp ¼ 0.928; iv) lockout 120s, ðζ ¼ 0.6, b ¼ 2.4Þ:
RMSE6.43%sp ¼ 0.811.
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The control algorithms with constant (C) and with locally lin-
ear (L) switching achieve similar tracking precision, except that
(C) performs slightly better on aggressive signals with fast excur-
sions to and long stays on levels �1, and slightly worse on more
moderate signals. (L) benefits from downscaling up to ζ ¼ 0.2
and achieves precision near 0.98 or RMSE of 0.28%
(Figure 22, right).

However, performance scores alone poorly reflect the differ-
ences that become visible on a small scale (zoom-in diagram
Figure 23). Due to the harder control force exerted, (C) produces
fast and small oscillations (with periods < 1 s and amplitudes <
1% of the load range) that are barely visible under (L). More
severely, (C) needs 5–15 times more stochastic switches and,
in particular, causes more fast compressor cycles than (L) to track
the same signal; i.e., locally linear switching hazard does save
equipment life. These effects are stronger for low σW ¼ 0.01 than
for high diffusion (σW ¼ 0.08). In contrast, (L) affords fourfold-
to-fivefold delays compared with (C). Response delays are
estimated from the signal correlation as specified by PJM[7]

and can be seen only in the zoomed view. Constant rate (C) fol-
lows the reference within one control cycle.

5.5.3. Scaling Heuristic

To find an appropriate scaling factor ζ, we can predict the realistic
energy demand (RED) and compare it to the energy supply of a

DR resource. Still, choices remain how to weigh extreme load fac-
tors. We propose an easy-to-use and practical heuristic to deter-
mine ζ, tailored specifically to PJM RegD signals and illustrated
in Figure 24.

Both supply and demand of flexible energy are represented by
durations (τ) over load deviations (Δy). A demand curve for PJM
signals (Figure 24, bottom)may be predicted from the load duration
density and the service duration. The border maxima are due to the
load levels near �1 that appear quite often in many RegD signals.

On the supply side, extreme positive and negative levels can be
sustained only shortly but, with levels shrinking toward the base-
line, the holding durations rise steeply (Figure 24 top). The sup-
ply curve results from (35) or (38) and resembles in shape
Figure 2 rotated 90�.

To determine ζ, we compress the demand curve horizontally
about the baseline until the border maxima fit under the supply
curve. The durations are not accordingly increased, because it is
more aggregated power that provides the energy. Due to the RegD
shapes, the entire demand curve will fit under the supply curve
once the boundary maxima do. The scaling problem will therefore
have a unique solution for this type of regulation signals.

5.5.4. Summary of Results

The experiments show that energy-at-load-level is a strong indi-
cator of tracking ability and performance. These connections are

Figure 21. Tracking error (RMSE, left diagram) and precision (right diagram) in load scaling experiments on the summer RegD data.

Figure 22. Tracking error (RMSE) using energy option 4 from Figure 21. Left: Comparing different populations (mixed devices against H-ASHP); right:
comparing two control algorithms, linear hazard (L) against constant rate (C).
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not explained by pure power or pure energy bounds considered
in the TB literature. For PJM dynamic regulation signals with a
tendency towards peak amplitudes, the load factors can be
reduced by participating more consumers. Another trade-off
between response speed and compressor stress is made in the
SSW control algorithm, e.g., constant versus locally-linear rates.

Using the refined energy characterization for planning and
dimensioning of fast regulation services, DR designers may trade

service quality against resource economy. In a specific regulatory
framework, for example, aggregators that bid on an AS market
and get paid for performance while they remunerate consumers
through contractual incentives can roughly balance costs and rev-
enues without solving a number of complex optimal scheduling
problems.

6. Conclusions

This article addresses an urgent need and a scientific gap
between the potential analysis and the operational scheduling
of pooled flexible HVAC electricity demand. While the former
is concerned about availability, feasibility, and revenues of DR
at a large scale, the latter focuses on realizing aggregated flexi-
bility in a specific regulatory and economic framework.

TCL aggregations in this work serve as surrogate models to
characterize the flexibility performance ex ante through
closed-form bounds, functions, or tables parametrized by oper-
ating conditions such as ambient temperature and load-
switching constraints. The ability to estimate these bounds could
as well be influencing the way efficiency interventions and local
renewable energy systems (e.g., buildings with onsite genera-
tion) are planned and designed. A related outcome to be reported
is the link to and the evaluation of energy efficiency measures
planned to decarbonize the heat demand in the building stock,
which are part of the energy transition.

Our focus is on fast regulation services at time scales
between seconds and a few hours, and on dynamic performance.
We derive new bounds on flexible power and holding times,

Figure 23. Comparison of constant (C) and locally linear (L) SSW algorithms using the data from Figure 20. The detailed tracking behavior is shown for
the short time interval zoomed in (left-(L), right: (C), bottom-small, top-large σW ).

Figure 24. Matching demand and supply of flexible energy through scaling
of power amplitudes ζ ≤ 1. The demand is represented by a RegD dura-
tion histogram (bottom), and the supply by a holding time curve of a TCL
population (top).
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equivalently on payback power and recovery times, service
frequency, and ramp rates. We refine thermal-battery-like
energy bounds and obtain holding duration distributions that
yield the retrievable energy at a given load difference with
statistical guarantees. A case study using dynamic PJM
regulation signals shows that energy at peak load deviations
has a key impact on load tracking accuracy, a connection not
explained in the literature before. We show how to improve
the DR by reducing the power amplitudes and participating more
loads.

Using survival processes, we develop new closed formulas of
the expected switching temperatures in stochastically actuated
TCL aggregations. Hazard functions have proved useful in defin-
ing a minimalist ODE formulation of population temperature
and load dynamics, which is more transparent than black-box
approaches and has interpretable coefficients. The resulting
GBM allows to characterize flexible energy, power, and ramping
ability of large aggregations.

We derive coarse estimates of flexibility criteria using closed-
form transformations of input parameter densities, such as the
HDD as a function of thermal constraints in Section 4.3.2, the
(sustained) flexible power as a function of building stock param-
eters exemplified in Appendix Appendix A (Table A1) and in
Section 5.1, and finally the density of nominal powers as an inde-
pendent random input variable. This statistical aggregation
approach handles parameter heterogeneity more directly than
a clustering approach, which requires first creating and identify-
ing numerous building-level models to group those with similar
parameters into clusters.

Imminent applications of this work are seen in two fields:
1) Scenario analysis: Providing performance values of the DR
side to assess the relative merits of different flexibility technolo-
gies; creating fact sheets for FS requirements specification, pro-
curement, and trading; 2) Operational tool for aggregators:
answering the feasibility question before bidding into an FS mar-
ket and before scheduling the appliances; designing the services,
e.g., deciding how many loads to participate.

Model identification details in the context of the present and
further GBMs will be discussed in future work. There are several
avenues of future research. The errors on the aggregation level
when approximating continuously controlled units with several

goal variables by simple on–off-controlled units should be better
quantified, using higher-order unit models for comparison.[80]

Furthermore, the flexibility performance bounds should be
validated in DR field tests including large building ensembles.

Appendix A. Building Model Generation

To model individual buildings as parts of district or city-level
aggregations, we start from a simplified first-order heat ODE;
i.e., a single thermal mass lumps the building structure and
the zones. The building ODEs are transformed into the standard
TCL form (1) using the method in the study by Kohlhepp and
Hagenmeyer[55] (Supporting Information, Equation (11) and (12)
therein) which we briefly summarize. The first-order building
ODE has several external driving forces. 1) Solar and sky radia-
tion and equipment or occupancy gains are transformed into
effective temperatures using the sol–air temperature concept;[81]

2) Conductive or convective heat transfer over the building enve-
lope is proportional to the temperature difference between ther-
mal storage and ambient air; 3) Available heating or cooling
power is switched on or off depending on the storage tempera-
ture and turns the heat equation into a hybrid state description.

The resulting absolute heat flows are still unknown and are
further decomposed using normalized quantities such as specific
heat capacity, heat transfer coefficients, and design heat load
intensity. Rules for building design and HVAC dimensioning
provide the missing information and are combined with ratios
between floor areas, thermal masses, and envelope surface areas
that characterize certain building types and age classes; see the
studies by Kohlhepp and Hagenmeyer; Appelhans et al.; Arendt;
and Kemna and Acedo[55,74,82,83] and further references therein.
These parameters characterizing the built environment are
tagged “BE” in Table A1. We end up with four steering param-
eters for model generation: specific heat capacity C, heat transfer
coefficient U, design heat load intensity Pdli, and air change rate
rach. The conversions into TCL parameters are summarized in
the following equations.

α ¼ � U ⋅ rS:V
C ⋅ rMB:V

(A.1)

Table A1. Building/HVAC stock and TCL model parameters.

Parameter Meaning Type Unit Value Range

C Specific heat capacity of thermal mass TB kJ kg�1 K�1 f C ¼ N T ð0.9, 0.2Þ
U Heat transfer coefficient of envelopes TB Wm�2 K�1 f U ∈ ℋ½0.1,1.3�

rach Air change rate (ventilation and infiltration) TB h�1 f Air ∈ ℋ½0.2,1.0�

Pdli Design heat load intensity (HP, electrical) HVAC Wm�2 f Pdli ∈ ℋ½40,100�

ηASHP ASHP efficiency (COP) HVAC – Computed from Tamb

Tamb Ambient temperature EN °C Measured, TRY

ΔTgl Temperature correction for gains and losses EN K N ð2.0, 1.0Þ
rV:A Gross building volume (GBV) per floor area BE m3 m�2 2.73(R) · · · 4.33(NR)

rS:V Envelope surface area per volume (GBV) BE m2 m�3 0.51(R) · · · 0.32(NR)

rMB:V Thermal mass per volume (GBV) BE kgm�3 528(R) · · · 400(NR)
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T∞
0 ¼ Tamb þ ΔTgl (A.2)

T∞
1 ¼ T∞

0 þ P
ðU ⋅ rS:V þ 0.34rachÞrV:A

(A.3)

P ¼ ηASHP ðTambÞ ⋅
Pel
HP

AHP
⋅
Pdli

μf Pdli
(A.4)

where U � f U ,C � f C in (A1), rach � f Air (A3), and
Pdli � f Pdli (A4) are sampled from distributions listed in
Table A1.

Meaning of parameter types in column 3: TB—
Thermophysical building parameters, HVAC—parameters
describing the HVAC stock, EN—Environmental parameters
(weather and occupancy), BE—structural parameters of the built
environment. Values in column 5 are sampled from specific dis-
tributions (e.g., N T ð⋅, ⋅Þ: normal distribution truncated to posi-
tive values with given mean and standard deviation) or from a
family of densities, e.g.,ℋð⋅, ⋅Þ: histogram partitions on the given
domain interval. For BE, only two class means are specified (R:
residential, and NR: nonresidential buildings). Ambient temper-
atures are measured time series data (TRY: test reference year).
Overlines symbolize normalized or specific quantities.
Parameter values for specific experiments and thermal comfort
bounds are defined separately in Section 5.1, e.g., Table A1.

For example, the thermal power P in the numerator counter-
acting the heat gains or losses in the denominator of (A3)
together define the temperature span jT∞

1 � T∞
0 j between active

and passive states. Transmission losses stated per unit area of
building envelope and ventilation losses per unit air volume
are translated into the joint unit of floor area by exploiting the
morphological relations rS:V, rV:A. The conversion factor
ρairCair=3600 � 0.34Wm�3 K�1 is due to the specific heat and
density of room air.

We consider air-source heat-pumps (ASHPs) for heating and
cooling, which can operate during much of the year and con-
sume rather much electricity available for DR in compressors
and pumps.[84–86] ηASHP in (A.4) connects the available thermal
power P to the installed ASHP electricity per m2, which is
expressed as a distribution of design load intensities f Pdli and
covers many building types. Its mean is scaled using the totally
installed HP electricity Pel

HP and the HP-heated floor are AHP in a
given region (see the study by Appelhans et al.[74] for Germany).
The ASHP efficiency is composed of the ideal ηcarnot > 1 of a
reversible Carnot process and a manufacturer quality factor
ηqfac ≤ 1 and varies with the outside temperature Tamb

ηASHP ðTambÞ ¼ ηqfac ⋅ ηcarnot ¼ ηqfac ⋅
Tw þ 273.15
Tw � T c

(A.5)

where Tw > T c denote the warm and cool sides of heat exchange,
respectively. In heating mode, T c ¼ Tamb and Tw equals T fw, the
supply temperature of the heat distribution circuit. In cooling
mode, Tw ¼ Tamb and T c ¼ T fw, the supply point of cooled air.

The exact figures obtained using (A.5) depend on the defini-
tion of the reference temperatures, i.e., the ASHP system bound-
aries. We place them outermost while some texts determine Tw

and T c further inside, for instance as the mean heat exchanger

temperatures between compressor and warm side, respectively,
between evaporator and cool side. Narrowing in the system
boundaries however lowers the Carnot efficiency. This is already
accounted for in the quality factor ηqfac ≤ 1 in (A.5), which mod-
els further efficiency losses due to auxiliary pumps and fans, heat
exchangers, or pressure drops. We use (A.5) to model fictitious
ASHP populations; therefore, evaporator and condenser temper-
atures are unknown.

Equation (A.5) models the COP above a threshold temperature
near �7 �C reasonably well; below that, the COP keeps decreas-
ing toward one, near �14 �C, blending into pure electric heating
as an emergency operation state.[84]

Appendix B. Control Algorithm

A simple algorithm for testing the flexibility bounds and for
actual reference tracking, based on the GBM in Section 4.3.1,
is briefly outlined. Figure B1 shows the communication and con-
trol architecture envisaged for SSW. To follow a reference load
signal yref , the aggregated load yagg is measured and switching
rates q, r are calculated that attempt to cancel the error eðtÞ∶ ¼
yref ðtÞ � yaggðtÞ in one time step. We solve the derivative
yaggðtÞ (27) for the control variables that effect the desired load
changes for small dt

e½k� ¼ yref ½k� � yagg½k� � yagg½kþ 1� � yagg½k�
� yaggðq, rÞ½k� ⋅ dt (B.1)

As both switching rates are positive, they take care of different
signs of the tracking error

r½k� > 0 ⇔
Load#

e½k� < 0, q½k� > 0 ⇔
Load"

e½k� > 0 (B.2)

We adopt a simple split-range controller with slight actuator
redundancy; both rates can be nonzero. If q½k� 1� > 0 but e½k� <

Figure B1. Control architecture for SSW with rate profiles broadcast and
processed independently. Two options at unit level are outlined: integrated
into a thermostat controller (right) or realized separately (left, e.g., through
a programmable logic controller). The latter can respond to emergency
events from the grid and implement local switching control but requires
a shared access with the appliance thermostat controller.
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0 and likewise, if q½k� 1� < 0 but e½k� > 0, our algorithm may
either decrease q or increase r to reduce the error. It reduces
the nonzero before building up the zero rate.

TCL units adapt the broadcast rates q, r to their own needs
(e.g., lockout, phase- or temperature-dependent switching haz-
ard) based on local measurements. The appropriate control sig-
nals at aggregation level depend on the thermal leeway of the
population, which is closely related to its state-of-charge as a
TB. We define the normalized leeway-on ϑ1 as

ϑ1∶ ¼ pH
TH
0 � TH

DH þ ð1� pHÞT
C � TC

0

DC ∈ ½0, 1� (B.3)

where TfHjCg denote the mean temperatures separately of AH,

respectively, AC appliances; TfHjCg
0 the mean thermostat points

where these must switch off and the leeway to switch on there-
fore vanishes, and DfHjCg are normalization widths. Taking sep-
arate means of AH and AC devices assures positive signs for all
terms and no cancellation. If the fraction 0 ≤ pH ≤ 1 of AH devi-
ces in the population is known—as contractual information or
through dynamic log-in for service—both substates TH,TC are
observable from the measured load yagg[87]

T̂
: H

T̂
: C

ŷ
:

0B@
1CA ¼ A

T̂H

T̂C

ŷ

0@ 1Aþ B0ðξ1ðtÞÞþ

BðLÞ
u ðT̂H, T̂C , ŷÞ q

r

� 	
þ L33ðŷ � yaggÞ

(B.4)

L33 denotes the observer gain from a 3	 3 diagonal observer
matrix L. The mean temperatures TH ,TC are separately observ-
able for AH and AC devices due to the nonzero coefficients
A13,A23.

To prevent oscillation and overshooting in case of energy
depletion while tracking an infeasible reference signal,[39] the
control algorithm has an optional modulation factor wctrl

Q ∈
½0, 1� downstream in the control section, which lowers the rates
q, r when running short of energy.[88]

The factor wctrl
Q is designed to approach zero if either one con-

dition is satisfied: a) QðtÞ approaches the upper energy limit

QTCL and ybl ≤ yagg < yref ðq > 0,Q
:
≥ 0Þ, or b) QðtÞ approaches

the lower limit 0 and ybl ≥ yagg > yref ðr > 0,Q
:
≤ 0Þ.

The damping factor wctrl
Q swings back (using a low-pass filter)

to its default value 1, otherwise.

wctrl
Q ∶ ¼

(
1þ ðQðtÞ � 1Þ ⋅ wðtÞ, if yaggðtÞ > yref ðtÞ

1� QðtÞ ⋅ wðtÞ, if yaggðtÞ < yref ðtÞ
wherewðtÞ∶ ¼ max

n
0, min

n
1, yblðtÞ�yref ðtÞ

yaggðtÞ�yref ðtÞ

oo
∈ ½0, 1�,

andwhere QðtÞ∶ ¼ max
n
0, min

n
1, QðtÞ

QTCL

oo (B.5)

The damping option is used for comparative testing in
Section 5.4.

We neither model nor measure temperature distributions to
estimate the mean thermal leeway, nor do we maintain a central

list sorted by urgency of switching such as in the PSC algo-
rithm.[33] Unlike the study by Tindemans et al.,[26] our algorithm
controls the load directly from the thermal leeway and not
through the mean heating or cooling rates.
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