753 research outputs found

    Fiber Optics

    Get PDF
    Optical fibers in metrology, telecommunications, sensors, manufacturing, and health science have gained massive research interest. The number of applications is increasing at a fast pace. This book aims to present a collection of recent advances in fiber optics, addressing both fundamental and industrial applications. It covers the current progress and latest breakthroughs in emergent applications of fiber optics. The book includes five chapters on recent developments in optical fiber communications and fiber sensors, as well as the design, simulation, and fabrication of novel fiber concepts

    Mach-Zehnder fiber interferometer test of the anisotropy of the speed of light

    Full text link
    Two optical fiber Mach-Zehnder interferometers were constructed in an environment with a temperature stabilization of better than 1 mK per day. One interferometer with a length of 12 m optical fiber in each arm with the main direction of the arms perpendicular to each other. Another with a length of 2 m optical fiber in each arm where the main direction of the arms are parallel as a control. In each arm 1 m of fiber was wound around a ring made of piezo material enabling the control of the length of the arms by means of a voltage. The influence of the temperature on the optical phase difference between the interferometer arms was measured. It is attributed to the temperature change induced variation of the interaction region of the optical fiber couplers. Further, the influence of rotation of the interferometers at the Earth surface on the observed phase differences was determined. For one interferometer (with the long and perpendicular arms) it was found that the phase difference depends on the azimuth of the interferometer. For the other one (with the short and parallel arms) no relevant dependence on the azimuth has been measured.Comment: Errata: data of interferometers were interchange

    Optical angular momentum in air core fibers

    Get PDF
    As data consumption continues to grow, the backbone of the internet, comprising single mode fiber (SMF)-based infrastructure, is fundamentally limited by nonlinear optical effects. One strategy to address this bottleneck, space division multiplexing (SDM), utilizes multiple modes in a single fiber as independent data channels. Orbital Angular Momentum (OAM) carrying modes, which have twisting phase fronts tracing out helices as the beams propagate, have recently received tremendous attention as a means of achieving low-crosstalk, digital signal processing (DSP)-free transmission with enhanced capacity. Terabit-scale transmission using 4 OAM modes over 1.1km has been demonstrated, but questions remain – how many OAM modes can fibers support, and how stable is propagation over longer lengths? In this thesis, we investigate angular momentum carrying modes in a novel class of fibers featuring an air core. We find that high-order OAM states, although arising in degenerate pairs, counterintuitively resist mode coupling due to OAM conservation, pointing to a unique stability inherent to OAM modes in fibers. We achieve OAM propagation up to 13.4km lengths, and achieve mode purities greater than 15dB at data-center length-scales. We use these fibers to transmit wavelength-division multiplexed data with 25 GHz channel spacing, 10 GBaud rates and quadrature-phase-shift keyed modulation formats in 12 modes simultaneously, over 1.2km, and over a large number of wavelengths across the C-band (1530-1565nm). However, transmission over every mode in every channel of the C-band was prevented by the accidental degeneracy of OAM states with undesired modes. To achieve a larger ensemble of stable modes over a larger wavelength range, we study new fiber designs that avoid this accidental degeneracy problem. We find that the most scalable modal eigenbasis is a set of states that carry non-integer amounts of average OAM, also called spin-orbit coupled modes in analogy with similar effects observed in atomic physics. We demonstrate excitation and transmission of 24 such modes over device lengths (10m). The achievement of a record number of uncoupled modes in fibers confirms the viability of angular momentum states as data carriers, and potential applications include links in data centers, high capacity optical amplifiers, and quantum communications links.2017-09-09T00:00:00

    Optical Fiber Interferometric Sensors

    Get PDF
    The contributions presented in this book series portray the advances of the research in the field of interferometric photonic technology and its novel applications. The wide scope explored by the range of different contributions intends to provide a synopsis of the current research trends and the state of the art in this field, covering recent technological improvements, new production methodologies and emerging applications, for researchers coming from different fields of science and industry. The manuscripts published in the Special issue, and re-printed in this book series, report on topics that range from interferometric sensors for thickness and dynamic displacement measurement, up to pulse wave and spirometry applications

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Stimulated emission depletion microscopy with optical fibers

    Get PDF
    Imaging at the nanoscale and/or at remote locations holds great promise for studies in fields as disparate as the life sciences and materials sciences. One such microscopy technique, stimulated emission depletion (STED) microscopy, is one of several fluorescence based imaging techniques that offers resolution beyond the diffraction-limit. All current implementations of STED microscopy, however, involve the use of free-space beam shaping devices to achieve the Gaussian- and donut-shaped Orbital Angular Momentum (OAM) carrying beams at the desired colors –-- a challenging prospect from the standpoint of device assembly and mechanical stability during operation. A fiber-based solution could address these engineering challenges, and perhaps more interestingly, it may facilitate endoscopic implementation of in vivo STED imaging, a prospect that has thus far not been realized because optical fibers were previously considered to be incapable of transmitting the OAM beams that are necessary for STED. In this thesis, we investigate fiber-based STED systems to enable endoscopic nanoscale imaging. We discuss the design and characteristics of a novel class of fibers supporting and stably propagating Gaussian and OAM modes. Optimization of the design parameters leads to stable excitation and depletion beams propagating in the same fiber in the visible spectral range, for the first time, with high efficiency (>99%) and mode purity (>98%). Using the fabricated vortex fiber, we demonstrate an all-fiber STED system with modes that are tolerant to perturbations, and we obtain naturally self-aligned PSFs for the excitation and depletion beams. Initial experiments of STED imaging using our device yields a 4-fold improvement in lateral resolution compared to confocal imaging. In an experiment in parallel, we show the means of using q-plates as free-space mode converters that yield alignment tolerant STED microscopy systems at wavelengths covering the entire visible spectrum, and hence dyes of interest in such imaging schematics. Our study indicates that the vortex fiber is capable of providing an all-fiber platform for STED systems, and for other imaging systems where the exploitation of spatio-spectral beam shaping is required

    Aspects of fracture processes in paper

    Get PDF
    The strength properties and fracture processes are studied in paper. This thesis deals with the fundamental structure and physical phenomenon of fracture. The methods employed are Monte Carlo simulations with a finite element model and experiments in fractography and acoustic emission. It is still unclear how the mechanical properties of paper, particularly strength depend on the disordered geometry of the fiber network. The shrinkage during manufacturing process induces internal stresses, which are crucial to macroscopic properties. The limiting strength in paper depends on crack pinning effects and obeys extremal statistics. The local stress variations introduce crack pinning and affect the fracture line topography. In the thesis geometrical effects of fiber network shrinkage are simulated and observed to follow a simple analytic expression. The shrinkage of fiber segments agrees qualitatively with microscopic measurements in literature. Extensive tensile strength distributions are obtained and compared with theoretical strength models. The strength of paper is found to be close to the Weibull and Duxbury distributions. Crack localization in tensile mode I loading is studied with initially notched strips. The resulting pinning probability agree with simple simulations and demonstrates that paper tolerates short order of fiber length notches. The fractal nature of paper crack line is analyzed in large samples. The geometry in fast crack propagation is found to be self-affine with a roughness exponent close to 0.6. The value is not in agreement with any fracture models. In addition systematic deviations from pure power law dependence is observed in the length-scale 5-20 mm. Acoustic emission spectroscopy is employed to study paper fracture in tensile and peel tests. By acoustic emission the energy released in micro fracturing is measured. The energy statistics are observed to obey power law analogously to Gutenberg-Richter's law for eartchquakes. In the tensile test the exponent characterizing the energy distribution is 1.2 and in the peel test 2.0. In the tensile tests the inter-arrival time between events obey a power law (Omori's law) with an exponent close to 1.0. In the peel tests deviations from Omori's power law are found. These observations suggest that the two often simultaneously witnessed power laws do no have a common origin. The acoustic emission results give new insight to fracture processes in the presence of disorder.reviewe

    Feasibility study of an integrated optic switching center

    Get PDF
    The design of a high data rate switching center for a satellite tracking station is discussed. The feasibility of a switching network using an integrated switching matrix is assessed. The preferred integrated optical switching scheme was found to be an electro-optic Bragg diffraction switch. To ascertain the advantages of the integrated optics switching center, its properties are compared to those of opto-electronic and to electronics switching networks

    Optics in Our Time

    Get PDF
    Optics, Lasers, Photonics, Optical Devices; Quantum Optics; Popular Science in Physics; History and Philosophical Foundations of Physic
    • …
    corecore