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ABSTRACT

As data consumption continues to grow, the backbone of the internet, comprising

single mode fiber (SMF)-based infrastructure, is fundamentally limited by nonlinear

optical effects. One strategy to address this bottleneck, space division multiplexing

(SDM), utilizes multiple modes in a single fiber as independent data channels. Orbital

Angular Momentum (OAM) carrying modes, which have twisting phase fronts tracing

out helices as the beams propagate, have recently received tremendous attention as

a means of achieving low-crosstalk digital signal processing (DSP)-free transmission

with enhanced capacity. Terabit-scale transmission using 4 OAM modes over 1.1km

has been demonstrated, but questions remain - how many OAM modes can fibers

support, and how stable is propagation over longer lengths?

In this thesis, we investigate angular momentum carrying modes in a novel class of

fibers featuring an air core. We find that high-order OAM states, although arising in

degenerate pairs, counter-intuitively resist mode coupling due to OAM conservation,

pointing to a unique stability inherent to OAM modes in fibers. We achieve OAM

propagation up to 13.4km lengths, and achieve mode purities greater than 15dB at
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data-center length scales. We use these fibers to transmit wavelength-division multi-

plexed data with 25GHz channel spacing, 10 GBaud rates and quadrature-phase-shift

keyed modulation formats in 12 modes simultaneously, over 1.2km, and over a large

number of wavelengths across the C-band (1530-1565nm). However, transmission

over every mode in every channel of the C-band was prevented by the accidental

degeneracy of OAM states with undesired modes.

To achieve a larger ensemble of stables modes over a larger wavelength range, we

study new fiber designs that avoid this accidental degeneracy problem. We find that

the most scalable modal eigenbasis is a set of states that carry non-integer amounts

of average OAM, also called spin-orbit coupled modes, in analogy to similar effects

observed in atomic physics. We demonstrate excitation and transmission of 24 such

modes over device lengths (10m).

The achievement of a record number of uncoupled modes in fibers confirms the via-

bility of angular momentum states as data carriers, and potential applications include

links in data centers, high capacity optical amplifiers, and quantum communication

links.
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Chapter 1

Introduction

Fools ignore complexity. Pragmatists suffer it. Some can avoid it. Geniuses remove it.

Alan Perlis, Epigrams on Programming, 1982.

One of the most common conflicts in engineering and software design is that of

simplicity versus complexity. The drive to add more features, more functionality and

versatility is often intrinsically competitive with operational simplicity. Moreover, the

more moving parts a machine has, the more things that can go wrong. This transcends

science into music, arts, and athletics. An example is a service in badminton. On the

surface, and at an amateur level, the low serve is one of the simplest shots in sports.

However, mastery of the serve at an advanced level is incredibly difficult, and at its

core, involves the simplification and near-exact repetition of a single motion to high

precision. Typically, the more complicated the server’s motion is, the more likely he

or she is to fault the serve, but if the serve is too simple, it is predictable and leaves

the server open to attack.

In fiber optics, simplicity has proven to be a powerful force. In a circular ge-

ometry, standard single mode fiber (SMF) is the simplest waveguide imaginable 1.

Since that advent of low-loss fiber proposed by Kao (Kao and Hockham, 1966) and

initially demonstrated by Kapron and collaborators (Kapron et al., 1970), tremen-

dous amounts of SMF have been fabricated. It has been used to send data across

1By SMF, we mean a piece-wise constant refractive index optical fiber with one guiding region
and one cladding region, not fibers which are single mode, but with more complicated refractive
index profiles, such as DCF
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thousands of kilometers, underground, under water, from nation to nation (Keiser,

2011). It has been used to build high power lasers for machining (Baumeister et al.,

2006), in construction of gyroscopes (Burns, 1993), and in temperature and pressure

sensors (Hocker, 1979) as well as countless others.

SMF is not without its drawbacks. Its monomode nature implies that it is rela-

tively inefficient at collecting light. As the coupling efficiency is determined by the

overlap of an incident light field with the guided mode(s) of a waveguide, SMF is

inefficient as a probe for low-light imaging or light collecting applications. Its dis-

persion is limited by that of the waveguide material, which provides limitations for

signal correction in telecommunications, and for nonlinear processes such as four wave

mixing (Stolen et al., 1974). Finally, SMF generally requires illumination with a laser

diode, as opposed to a less expensive light-emitting diode (LED), because the fiber’s

size and light-capturing ability is small (Keiser, 2011). To surpass these limitations

additional complexity was needed - the complexity of multiple modes.

1.1 Higher order fiber modes and their uses

The word ”mode” is used to denote a traveling electromagnetic field with the property

that after some propagation distance, the field exactly repeats itself (Snyder and Love,

1983). Mathematically, a mode is a solution to the eigenvalue equations for electric

and magnetic fields in a dielectric cylinder, with eigenvalue β, related to the mode’s

phase velocity by vp = ω/β, for an optical wave of frequency ω.

Typically modes of optical fibers are denoted with a pair of mode indices {l,m}.

l specifies the mode’s azimuthal mode number, and denotes the number of times the

mode’s complex phase circulates around the fiber’s transverse plane. m relates the

mode’s radial mode number and corresponds to the number of zero-crossings along a

line in the radial direction between the mode’s geometric center and outer edge, plus



3

one. The first guided mode, often called the ”fundamental mode,” is conventionally

denoted by indices {0, 1}, when the indices are with respect to Cartesian coordinates

in the fiber’s transverse plane. Any mode with l > 0 or m > 1 is denoted a higher

order mode (HOM). 2

Apart from mode order and propagation vector, modes are classified by a set of

properties which may make a specific mode or set of modes attractive for different

applications. These include:

• Cutoff wavelength - wavelength below which said mode is guided

• Transverse field distribution. Although specified by {l,m}, modes of the same

modal indices but of different fibers can clearly have significantly different field

distributions. For instance, the fundamental mode of single mode fiber is sub-

stantially different from the fundamental mode of a ring core fiber due to fiber

design (Oh et al., 2005).

• Group velocity vg = dω
dβ

, which determines the mode’s speed of travel through

the fiber

• Group velocity dispersion, D = −2πc
λ2

d2β
dω2 , where λ is the optical wavelength and c

the speed of light, which determines the relative speeds of different wavelengths

through the fiber, and causes pulse broadening. It also plays a critical role

in several fiber nonlinear processes, such as four wave mixing (Stolen et al.,

1974). Group velocity dispersion is related both to material dispersion and to

waveguide dispersion, which is due to the evolution of a mode’s field distribution

with changing λ.

2Depending on whether the modal representations are scalar or vector in nature, the indices are
assigned either in cylindrical coordinates or with respect to Cartesian coordinates. Thus, l = 0 in
the scalar picture actually refers to l = 1 in the vector picture, while l = 1 in the scalar picture
encompasses both l = 0 and l = 2 in the vector picture.
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• Effective area (Aeff ), a second-moment calculation of mode size, which con-

tributes to the efficiency of nonlinear processes in fibers (Agrawal, 2008).

Making use of the above properties, HOMs have found a bevy of applications.

Due to varying waveguide dispersion, HOMs can have dispersion which varies signif-

icantly from that of Silica, suggesting use for dispersion compensation and spectral

shaping of broadband pulses (Poole et al., 1994; Ramachandran et al., 2001), manip-

ulation of group index and dispersion for fiber grating devices such as dispersionless

bandpass filters (Ramachandran, 2005), as well as nonlinear frequency conversion

(Demas et al., 2015b). Modes of appropriate transverse fields have been adapted for

advanced microscopy techniques (Yan et al., 2013). The large mode area of certain

kinds of HOMs has been utilized for creating more powerful fiber lasers (Nicholson

et al., 2010). Phase matched mode conversion has been utilized to enable high quality

spectral filtering of atmospheric emission lines, of great significance to terrestrial as-

tronomy (Bland-Hawthorn et al., 2011). It is fair to say that the parameter tunability

offered by HOMs has become a rich area of scientific research.

However, one of the key issues for multimode fibers is mode stability. Most of

the applications listed above rely on the ability to selectively excite one, or a small

number of, HOMs. The possibility of light leaking from one mode to another due to

the influence of external perturbations must be accounted for. In the case of SMF

power is either transmitted in the fundamental mode, or lost. For many multimoded

fibers, intermodal crosstalk is not only possible, but in many cases difficult to avoid.

Mode coupling is driven by two quantities - the wave vector mismatch between two

modes, and a perturbation with the appropriate symmetry to couple them, as we

will see in Chap. 3. HOMs can potentially be stable even in commonly available

commercial fibers due to the unlikelihood of perturbations with the correct symmetry

to couple neighboring modes, or equivalently, a large wave vector mismatch between
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modes likely to be coupled by common perturbations (Ramachandran et al., 2006),

but the modal density of states is often such that many authors consider the set of

β values to be a continuum (Gloge, 1972; Olshansky, 1975). In a region with many

nearly degenerate states, mode coupling at some level is to be expected.

The most common fibers supporting HOMs embrace this mode coupling. Conven-

tional multimode fiber (MMF), which may be considered the complement to SMF,

supports hundreds or thousands of modes. With a significantly larger area than SMF,

MMF can act as a sort of light bucket, accepting a large percentage of light of nearly

any spatial distribution, due to the massive number of spatial modes it supports.

Thus, MMFs have found numerous applications in which power capture is desired

but spatial mode purity is not essential, such as low-light imaging or light collec-

tion for astronomy, where the fiber’s light-capturing power is essential (Noordegraaf

et al., 2009). In addition, research has shown that mode coupling in MMF can be ex-

perimentally determined and, using appropriate wavefront manipulation at the fiber

input/output, inverted. This process utilizes mode orthogonality and, in some lim-

ited instances (Čižmár and Dholakia, 2011; Čižmár and Dholakia, 2012), it has been

shown that MMF can transmit images. However, measurement and computation

must be repeated when the fiber is displaced.

MMF comes in two types - step-index MMF, which is simply a larger SMF, and

graded index (GRIN) MMF, in which the refractive index profile is tailored to a

parabola in order to minimize differential group delay (DGD). Minimization of DGD

is necessary in order to use MMF for telecommunications - mode coupling readily

occurs within the fiber, but if all the modes travel at the same speed and all of the

optical power is recovered, data can be sent in a pseudo-single-mode manner (Freund

et al., 2010). This methodology partially utilizes HOMs by employing the greater

light-capturing ability of MMF but does not address possibly the most interesting use
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of HOMs: their potential use as orthogonal information channels for communications

applications where the transmission distance is on the order of 100s of meters to 1000s

of kilometers.

1.2 Telecommunications and Datacom

Glass fibers are known to have existed as far back as Egyptian times, but were used

exclusively for aesthetic purposes. It was not until the 1950s when bundles of glass

were considered for imaging purposes that the idea of adding a non-metallic cladding

was introduced by Brian O’Brien and Bram Van Heel, among others (Hecht, 2004).

Even until the 1960s, optical fibers had propagation losses on the order of 1000dB/km,

limiting their practical applications (Keiser, 2011). Since then, the groundbreaking

work by Kao, the invention of the erbium doped fiber amplifier (EDFA) (Mears et al.,

1987), and the ensuing implementation of wavelength division multiplexing (WDM)

have seen research efforts in fiber optics skyrocket, and fiber usage for data transmis-

sion has become near-ubiquitous. Transmission rates have seen a similar meteoric rise,

from 10Gbps (Giga bits per second (bps)) in the early 1980s to 10Tbps in the mid-

2000s (see Fig. 1·1) Recent hero experiments have demonstrated 101.7 Tbps through

a single optical fiber (Qian et al., 2012).

As advanced as current telecommunication systems are, it is projected that even

with the use of WDM and advanced modulation formats, which have driven spectral

efficiency growth since 2000, there is a fundamental limit to the spectral efficiency

achievable within an SMF, limited by instantaneous Kerr Nonlinearities, amplified

spontaneous emission (ASE), and chromatic dispersion. In 2010, it was reported

that demand for bandwidth was growing at approximately 60% per year (Essiambre

et al., 2010). The associated energy consumption for a smaller first-world market

(Japan), from which this growth can be understood, is shown in Fig. 1·2. Initial
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(a) (b)

Figure 1·1: (a) Fiber optic system capacity and spectral efficiency
by year. (b) Spectral efficiency within a single fiber. Star indicates a
theoretical nonlinear single-mode limit. Figures with permission from
(Essiambre and Tkach, 2012; Essiambre et al., 2010), c© IEEE

growth (2000 ∼ 2007) was driven by an increasing number of users, followed by a

plateau region in which the number of users had saturated. In recent years traffic has

again increased, this time driven by an increase in traffic volume per user, due to users

with multiple devices, and higher-bandwidth uses of single devices such as standard

and high definition video streaming, peer-to-peer file sharing, etc (Ishii et al., 2015).

With demand for bandwidth predicted to increase exponentially, eventually network

designers will be forced to deploy new fibers or redesign existing networks.

Similarly, in recent years, the advent of cloud computing has given rise to mam-

moth data centers for storage of personal and corporate data. Advances in compu-

tational density have resulted in a higher demand for chip-to-chip communication

requirements, and modern data centers may have hundreds of thousands of cables

connecting different racks (Zhang et al., 2012). Data centers of the future are pre-

dicted to have link lengths of up to 1-2km for connecting different buildings within
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Figure 1·2: Estimated energy consumption of broadband internet in
Japan. With permission from (Ishii et al., 2015), c© IEEE

a data center campus (Lam et al., 2014), although the majority of links are still ex-

pected to be on the order of a few meters to a hundred meters. Thus, end-to-end

schemes which could reduce the cable count and thus improve interconnectivity would

be extremely beneficial, provided that it is cost effective. Current technology already

employs the dimensions of polarization, wavelength, time, and phase (advanced signal

processing techniques such as quadrature phase shift keying (QPSK)). Thus usage of

another dimension could scale the spectral efficiency of optical fibers, much the same

as the introduction of WDM. The clearest remaining dimension is that of space - the

utilization of a fiber’s spatial modes.

1.3 Use of ”space” in telecom

Conventional long-haul telecommunications is done with single-mode fiber, wherein

mode coupling exists only between the twofold-degenerate polarization modes. Such

coupling can either be disentangled with multiple-input multiple-output (MIMO)

processing, or largely prevented with the use of polarization maintaining (PM) fibers.
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Whereas single mode fiber supports only a single mode with the intent of pre-

venting signal corruption due to intermodal crosstalk, systems using MMF for data

transmission assume that crosstalk will occur. Transmission systems utilizing MMF

typically employ inexpensive vertical cavity surface-emitting laser (VCSEL)s at the

transmitter (Tx) end, and large-area photodiodes at the receiver (Rx) end, and func-

tion well so long as the difference in group velocity (DGD) among the modes does not

lead to significant distortion. Data transmission rates are limited by the product of

fiber length and intermodal dispersion; thus, extremely low differential group velocity

dispersion fibers are designed, and have been employed over links of lengths up to a

few 100s of meters, at speeds of 10Gbps and 40Gbps (Freund et al., 2010). Recent

research efforts have demonstrated 47 Gbps over OM-4 GRIN MMF (Lu et al., 2015).

The possibility of using the spatial modes of a fiber for data transmission, known

as space division multiplexing (SDM), has attracted recent attention to a new class

of fibers. Dubbed few mode fibers (FMFs), such fibers typically possess anywhere

from 2 to 20 or 30 modes (Saridis et al., 2015), and seek to hybridize the advantages

of SMF and MMF - that is, to take advantages of properties of HOMs in a controlled

fashion. Typically such fibers feature a carefully tailored index profile, either designed

to minimize DGD differences among all guided modes, or sculpted to ensure that only

modes of a certain type, or with specific desired properties, exist.

An overview of such fibers is presented in Fig. 1·3. Multicore fibers consist of an

array of single-mode fiber cores (Saridis et al., 2015). Although both coupled-core and

uncoupled-core versions exist, most are designed such that the inter-fiber distance is

large enough to prevent evanescent coupling, and each fiber represents an independent

spatial channel. Recent results have shown 305 Tbps multiplexed transmission over a

19core fiber (Sakaguchi et al., 2013) and a transmission system including a multicore

fiber amplifier (Sakaguchi et al., 2014). Few-mode MMFs are graded index fibers
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Figure 1·3: Overview of classes fibers used for telecommunications.
Orange shading: SMF and MMF do not use multiple spatial modes
as orthogonal channels; Green shading: Several types of fiber which
support and aim to use multiple spatial modes, including multicore
fibers, GRIN few-moded MMFs, and sculpted core fibers. Based on a
similar figure from (Essiambre and Tkach, 2012)

which support 6 ∼ 30 modes, which typically exist in degenerate groups for which

2m + l is equal to the same integer, and for which the group indices (ng) of all

modes supported by the fiber are nearly identical. MIMO processing is required

to disentangle fiber mode coupling and recover data. First iterations of such fibers

were designed for 6 modes, with recent fibers supporting up to 15 modes (Grüner-

Nielsen et al., 2012; Grüner-Nielsen et al., 2015). Data transmission using 15 spatial

modes, requiring 30x30 MIMO was emulated over ∼23km using photonic lanterns

for multiplexing (MUX) and demultiplexing (DEMUX) (Fontaine et al., 2015). The

large-scale MIMO processing used for this experiment required 1800 taps. Given

that the computational complexity of MIMO scales super-linearly with the number

of channels, this approach will likely see scalability issues in the near future.

Finally, a distinct category of FMFs aims to design fiber in which modes with

symmetries likely to couple under common perturbations such as bends are separated

from each other in wave vector due to careful sculpting of the refractive index profile,

resulting in a potentially large set of modes which are free from intermodal coupling.

Such fibers have been used for dispersion compensation (Ramachandran et al., 2001),
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large effective area (AEff) fibers for high-power fiber lasers (Ramachandran et al.,

2006), and propagation of optical polarization vortices (Ramachandran et al., 2009).

One example is the ring fiber shown in Fig. 1·3. Ring fibers, if well designed, can

support many modes with {l,m} = {L, 1} and no modes with m > 1, and which are

well separated in effective index (Ramachandran and Kristensen, 2013). Such fibers

are the focal point of this thesis, and as we will show, they support orbital angular

momentum (OAM) carrying states of light.

1.4 Orbital Angular Momentum of light

Light is known to possess three kinds of longitudinal angular momentum (AM)

(Bliokh et al., 2015):

• spin angular momentum (SAM) associated with the rotation of electric and

magnetic fields in a circularly polarized beam. Spin takes values of ±~, where a

positive helicity denotes left circular polarization (LCP) and a negative helicity

right circular polarization (RCP) from the point of view of the source in the

ansatz of wave propagation as kz − ωt (note that negating the wave ansatz

or changing the point of view to the receiver flips LCP and RCP). The vector

direction of SAM is typically parallel to the direction of propagation.

• An intrinsic orbital angular momentum, carried by beams with helical phase

fronts which rotate around the beam center. These beams propagate forward

along helical trajectories and contain phase singularities at the beam center.

The number of times the beam’s phase wraps around the optical axis in one

period is referred to as the topological charge, and can take any integer value,

positive or negative. The vector direction of this AM is parallel to the direction

of propagation. Hereafter this type of AM will be referred to as Orbital Angular

Momentum (OAM)
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• An extrinsic orbital angular momentum, which arises from beams propagating

at a distance from the origin. This kind of AM is not discussed further here.

Each of the different angular momenta are separately observable in a paraxial opti-

cal beam. SAM and OAM may be distinguished in the effect each has on a microscopic

particle. Spin will cause a charged particle to rotate about the particle’s center, while

Figure 1·4: Intensity (left) and
phase (right) distributions for a
sample of Laguerre Gauss beams

OAM will cause the particle to rotate about the

beam axis due to the spatial variation of the elec-

tric field (Yao and Padgett, 2011). It was dis-

covered in 1992 that higher-order laguerre gaus-

sian (LG) beams of azimuthal order L carry OAM

of L~ per photon (Allen et al., 1992). A selection

of LG modes is shown in Fig. 1·4 (Siegman, 1986).

L = 0 corresponds to the well-known Gaussian

mode, while modes with L > 0 contain a singu-

larity due to an undefined beam phase on axis.

We will show in Chap. 2 that l > 0 modes in

many optical fibers are also OAM states. There

has also been recent research on a class of beams

which have angular momentum transverse to the

direction of propagation, the so-called Photonic

Wheel (Aiello et al., 2015). We do not discuss

this in detail here.

Due to the countable infinity of theoretically possible states and the fact that

all LG beams are orthogonal, OAM states have received tremendous attention as

orthogonal information channels in free space for classical communications (Gibson

et al., 2004; Huang et al., 2014) and quantum key distribution (Mair et al., 2001; Vaziri
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et al., 2002). Free space data transmission has been demonstrated at Tbps rates over

laboratory lengths (Wang et al., 2012), at 400 Gbps over a more practical building-

to-building 120m link (Ren et al., 2015), and at a few bps with post-processing

required over a city link of 3km across part of Vienna (Krenn et al., 2014). OAM

communication in free space has two practical problems: turbulence and diffraction.

Turbulence results in beam-wander across the receiver aperture, leading directly to

crosstalk between OAM states, whose detection relies on a precise alignment to the

optical axis of the receiver (Rodenburg et al., 2012; Malik et al., 2012). Diffraction

results in rapid beam expansion, much as with a Gaussian beam, except that the

beam waist of a higher order LG beam scales as
√

2m+ l + 1, where m is the LG

beam’s radial index (Siegman, 1986). In experiments described by Vallone et al, the

authors used an l = 1 OAM beam with initial waist ∼ 1cm such that the beam

expanded minimally over 210m. The use of higher-order states would require larger

receiver apertures for similar distances.

Optical fiber addresses both of these issues - turbulence and diffraction do not exist

within a fiber by default. OAM states do exist in optical fibers; however, difficulties

arise regarding propagation of OAM states. In most fibers, OAM states come in quasi-

degenerate mode groups which couple significantly over short propagation distances

due to bends and twists, leading to the observation of so-called linearly polarized (LP)

modes (Ghatak and Thyagarajan, 1998). Specialty fibers (Ramachandran et al.,

2009) have been proposed which break this near-degeneracy; specifically, the l = ±1

OAM modes have been sent over fiber of roughly 1km in length (Bozinovic et al.,

2011; Bozinovic et al., 2012) and WDM-compatible data transmission performed at

1.6Tbps over 1.1km of so-called Vortex fiber (Bozinovic et al., 2013).

However, questions remain about the scalability of OAM modes in optical fiber.

Specifically, it is not clear that a fiber can be designed which supports a multitude
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(more than 2) OAM modes, in which all the modes are low-crosstalk and low-loss.

The problem of input and output coupling multiple modes must be studied, both to

determine optimal MUX and DEMUX configurations and to study fiber performance.

The intrinsic properties and mode coupling behavior of OAM states must be studied

in detail in order to predict system performance. These questions are the focal point

of this thesis.

1.5 Thesis Contents and Organization

In this thesis, we study one specific class of FMF - fibers which support OAM carrying

states of light. We design and experimentally study a class of air-core optical fiber

which supports ensembles of OAM states, examining in detail specifics of fiber design,

mode excitation schemes, characterization methods, and intermodal coupling. We

show that such fibers have advantages in both shaping of modal density of states and

resilience to mode coupling, suggesting applications in datacom, fiber devices, and

nonlinear optics.

This document is organized as follows:

Chapters 2 and 3 constitute the theoretical background for this thesis. In Chap. 2,

we study the mathematical foundations of fiber vector modes, including comparison

of the weak and strong guidance regimes. We also consider the problem of angular

momentum in fibers, and show that while fibers carry an integral total angular mo-

mentum per photon, they do not necessarily carry an integer OAM. In Chap. 3, we

study the problem of fiber mode coupling, and the effects common fiber perturbations

may be expected to have on OAM states.

Chap. 4 and Chap. 5 describe the experimental techniques used for the generation

and classification of OAM modes, and describe experiments used to test each method.

These techniques are then used in the experiments in Chap. 6 through Chap. 8. We
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briefly summarize other possible methods not presented in this document.

Chap. 6 discusses in detail the theory behind fibers which support OAM states,

and the experimental characterization of 4 generations of air core fiber, fabricated to

support OAM states.

Chap. 7 describes experiments performed on high-l states in air core fibers, which

show that even though the states are degenerate and in the presence of perturbations,

they do not couple over lengths of ∼ 10m or more. We attribute this remarkable

stability to the angular momentum needed to cause a transition, and the fact that

this becomes increasingly unlikely as l increases.

Chap. 8 describes the study of intermodal coupling between near-degenerate OAM

states, and the propagation of OAM states over long lengths. We demonstrate OAM

propagation over 13.4km, an order of magnitude greater than previous in-fiber demon-

strations of digital signal processing-free OAM transmission.

Chap. 9 describes data transmission experiments using 12 OAM modes simulta-

neously over a km-length air core fiber at multiple wavelengths. We demonstrate

a communications system with a order of magnitude increase in capacity compared

with previous OAM efforts.

Chap. 10 describes excitation and projection experiments on spin-orbit coupled

angular momentum modes in thin ring fibers. We demonstrate a fiber capable of

stably supporting (appx. -20dB of mode purity with respect to in-fiber nearest neigh-

bors and spin-orbit coupled angular momentum pairs) 24 modes over 10m, a length

sufficient for fiber devices. We discuss the outlook for fibers capable of supporting a

larger ensemble of modes.

Chap. 11 Summarizes the document, and indicates possible directions for future

research.

App. A and App. B provide a more thorough derivation for some parts of Chap. 2.
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App. C details a splicer program used to splice air core fibers together without col-

lapsing the air hole, by splicing at relatively low current. App. D lists publications

resulting from the work related to this project.
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Chapter 2

Modes of Optical Fibers and Orbital

Angular Momentum

In this chapter, we study the mathematical formulations behind modes in optical

fibers. In Sec. 2.1, we begin with Maxwell’s equations and proceed to the fiber eigen-

value equation in electric field, E, and magnetic field, H. We pay special attention

to the process of separation of variables and the ensuing relationships between vector

field components. In Sec. 2.2, we study the solutions of the guided electromagnetic

fields in regimes of differing refractive index contrast. In Sec. 2.3 we introduce the

concept of angular momentum in optical fibers and its quantization, as well as its

behavior under differing index contrasts. In no way is this chapter intended to be

a complete derivation of the mathematics of fiber modes, as many excellent sources

such as (Snyder and Love, 1983) and (Tsao, 1992) already exist. Rather, we aim to

highlight the most salient points.

2.1 Maxwell’s Equations and fiber Eigenvalue equations

Light propagation in an optical fiber is described by solving Maxwell’s equations for

a propagating electromagnetic field in a dielectric cylinder. For all discussions, the

fiber’s longitudinal directions is denoted as the ẑ-axis, while the transverse coordinates

are given by (r,φ), as indicated in Figure Fig. 2·1. n(r) denotes the fiber’s refractive

index profile as a function of transverse coordinates, where ε = n2 is the waveguide’s

local dielectric constant.
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Figure 2·1: (a) Schematic illustration of a cross section of a an optical
fiber with a ring structure and (b) refractive index profile as a function
of the radial coordinate

Maxwell’s equations in matter (Jackson, 1999) are given by:

∇ ·D = ρf (2.1a)

∇ ·B = 0 (2.1b)

∇× E = −∂B

∂t
(2.1c)

∇×H = Jf +
∂D

∂t
(2.1d)

Here, E and H are the electric and magnetic fields, respectively, D is the displacement

field and B is the magnetic flux density. ρf is the free charge density, and Jf is the

free current density. A vector quantity is denoted with bold typeface, although unit

vectors are specified with conventional ”hats”.

The term mode is used to designate a propagating electromagnetic field distribu-

tion which, after a certain displacement in the z direction, repeats itself. Thus, we
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seek solutions of the form

E = (et + ezẑ)ei(βz−ωt) (2.2a)

H = (ht + hzẑ)ei(βz−ωt) (2.2b)

Here, the vector fields et and ht denote the transverse components of the electric and

magnetic fields, while ez and hz denote the longitudinal components. The optical

frequency is given by ω, while β is called the mode’s propagation constant or wave

vector, and is also written as β = 2πneff/λ where neff is the effective refractive

index of the mode. The effective refractive index may be viewed as an average of the

refractive indices of the waveguide, weighted by the mode’s electric field envelope.

n2
eff ≈

〈E |n2(r)|E〉
〈E|E〉

(2.3)

where 〈a|b〉 =
∫ ∫

dAa∗ · b. An electromagnetic field must possess a single, although

not necessarily unique, neff , to be called a mode.

Using the constitutive relations D = εE and H = 1
µ0

B, and under the approxi-

mations ρf = Jf = 0 and µ(r) = µ0, Maxwell’s equations may be rewritten into the

vector wave equations (Snyder and Love, 1983):

{
∇2

t + n2k2 − β2
}
{et + ezẑ} = −(∇t + iβẑ)et · ∇tln(n2) (2.4a){

∇2
t + n2k2 − β2

}
{ht + hzẑ} = {(∇t + iβẑ)× (ht + hzẑ)} × ∇tln(n2) (2.4b)

Here ∇2
t is the transverse vector Laplacian, ∇t the transverse gradient, and k = 2π/λ

is light’s wave vector in free space. The vector wave equations are valid for any non-

magnetic waveguide geometry. For the case of optical fiber, solution in cylindrical

coordinates is most appropriate. Denoting et = er(r, φ)r̂ + eφ(r, φ)φ̂, Eq. (2.4a) can
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be rewritten as:

∇2
t er −

2

r2

∂eφ
∂φ

+
∂

∂r

{
er
d ln(n2)

dr

}
− er
r2

+
{
n2k2 − β2

}
er = 0 (2.5a)

∇2
t eφ +

1

r

{
d ln(n2)

dr
+

2

r

}
∂er
∂φ
− eφ
r2

+
{
n2k2 − β2

}
eφ = 0 (2.5b)

∇2
t ez + iβ

d ln(n2)

dr
er +

{
n2k2 − β2

}
ez = 0 (2.5c)

Here ∇2
t indicates a transverse scalar Laplacian. The equations for the H field com-

ponents are similar and can be obtained from Eq. (2.4b), but are unnecessary for the

following discussion, as the comments to follow refer equally to E and H. Generally,

all three field components of both E and H will be nonzero. In regions of constant

n the longitudinal component of the electric field, ez, is analytically solvable, as is

hz, and their full form and relative strengths can be determined by enforcing electro-

magnetic boundary conditions between different constant-index regions. The rest of

the field components can be found by their relations to ez and hz through Maxwell’s

equations. Alternatively, the above set of equations is numerically solvable for a fixed

refractive index profile n(r, φ), although potentially with some difficulty as equations

Eq. (2.5a) and Eq. (2.5b) are coupled at all points in space. However; more insight

can be gained through a series of operations and approximations.

2.1.1 Separation of Variables - Azimuthal Function

If the refractive index profile is circularly symmetric, n(r, φ) = n(r), separation of vari-

ables can be successfully applied to Eq. (2.5a) - Eq. (2.5c), which results in an index

to specify azimuthal mode order (quantum number), hereafter denoted j (Haberman,

2004). The azimuthal functions can be chosen as either cosines and sines (Snyder

and Love, 1983), or complex exponentials (Tsao, 1992). Due to rotational symmetry,

there are two sets of azimuthal functions corresponding to the same eigenvalue, β. If

cosines and sines are chosen, these two sets are referred to as ”odd” and ”even”. If
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complex exponentials are chosen, the choice is delineated by a positive or negative j.

Thus, the electric field in (r̂, φ̂, ẑ)T can be written as:

ee
j =

iψr(r) cos(jφ)
iψφ(r) sin(jφ)
ψz(r) cos(jφ)

 eo
j =

−iψr(r) sin(jφ)
iψφ(r) cos(jφ)
−ψz(r) sin(jφ)

 j ∈ (0, 1, 2, ...,∞) (2.6)

Or

e±j =

 ψr(r) e
±ijφ

±iψφ(r) e±ijφ

iψz(r) e
±ijφ

 j ∈ (0, 1, 2, ...,∞) (2.7)

ψk are purely real functions of only the radial coordinate. Solutions of the type in

Eq. (2.6) were commonly used in microwave waveguide theory and were carried over

into fiber from that community (Marcuse, 1974), and are more commonly used than

equations of type Eq. (2.7). However, both are valid descriptions of the same set

of orthonormal modes. As we will shortly show in Sec. 2.3, solutions of the type

Eq. (2.7) carry total AM of j~ per photon while solutions of the type Eq. (2.6) have

exactly zero angular momentum per photon on average.

2.1.2 Separation of Variables - Radial Function

The solutions of Eq. (2.5c) wherever the refractive index profile is constant are Bessel

functions of order j, either Bessel functions of the first and second kind, Jj(ρ) and

Yj(ρ), where n(r) > neff , or Modified Bessel functions, Ij(ρ) and Kj(ρ), where n(r) <

neff , with ρ =
√
|k2n2 − β2|r. hz similarly is an identical combination of these

functions, but potentially with a different constant prefactor. The entirety of the

mode’s electromagnetic field can be found by imposing continuity on ψz and n2ψr at

refractive index gradients and then by solving the resulting transcendental equation

for β, which determines the relative weights of each Bessel function in a region of

constant refractive index, and the relative weights of hz and ez (Tsao, 1992).
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For the special case of j = 0, either ez or hz can be chosen to be zero, resulting

in the so called transverse electric (TE) and transverse magnetic (TM) modes, which

have purely azimuthally or purely radially polarized electric fields, respectively. TE

and TM modes are non-degenerate. For |j| > 1, both ez and hz are non-zero. These

modes are typically called hybrid modes and designated as either HE or EH modes,

but the classification is historically inconsistent. Some authors (Snitzer, 1961) denote

a mode as EHj,m if ez > hz at some fixed reference point and wavelength, and HEj,m

if hz > ez. Other authors (Alam and Albert, 2013) use the sign of the root of the

characteristic equation for β. In most fibers, the notations will be consistent, but in

some strongly confining fibers, the notations do not agree (Thomas et al., 2011). We

use the former for convenience, comparing at the position of their peak electric field.

The HE and EH modes may be viewed as a sum of TE and TM modes, with the EH

(HE) modes being more TM (TE)-like. For a fixed {j,m}, there exist two degenerate

HE modes, and two degenerate EH modes, with the two sets being non-degenerate.

Each azimuthal mode order, j, can support multiple radial mode orders, denoted

by the radial index, m, where m− 1 is the number zero-crossings in the ẑ-component

of the Poynting vector. The functional form of E and H does not change with m, but

rather β changes, giving an apparent change in the mode’s radial spatial frequency.

It is useful to consider the shape of the transverse electric field in terms of spatially

invariant polarizations, i.e., x̂ and ŷ. Using the relations:

r̂ =
1

2

(
σ̂+e−iφ + σ̂−eiφ

)
(2.8a)

φ̂ =
1

2i

(
σ̂+e−iφ − σ̂−eiφ

)
(2.8b)

with σ̂± ≡ x̂± iŷ, one can show that

e±t =
1

2
σ̂+ei(±j−1)φ (ψr ± ψφ) +

1

2
σ̂−ei(±j+1)φ (ψr ∓ ψφ) (2.9)
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Note that the helical phase functions have either increased or decreased in order by

1 in the switch from cylindrical polar to cartesian vector coordinates.

The transverse E field can be obtained from Eq. (2.4a) once the longitudinal

field is known. However, it is more useful to gain some insight from an analytical

simplification. Using the transformation:

ψ± = er ± ieφ = ψr ∓ ψφ (2.10)

One finds that the differential equations for ψ± are separable (Endean and Allen,

1970). The solutions are Bessel functions of order j + 1 for ψ+ and j − 1 for ψ−.

Thus, both the radial and azimuthal parts of the electric field of a given mode order

{j,m} are composed of Bessel functions of order j − 1 and j + 1, the relative weights

of which are determined by boundary conditions, and are thus tied to the relative

weights of ez and hz.

ψr =
αBj+1(r) + γBj−1(r)

2
(2.11a)

ψφ = ±−αBj+1(r) + γBj−1(r)

2
(2.11b)

where Bk is a Bessel function, or linear combination of Bessel functions of the same

kind (J and Y, for instance), of order k. Critically, these Bessel functions and pref-

actors occurring in ψr and ψφ are the same. Thus, Eq. (2.9) can be simplified to:

e±t =
1

2
e±ijφ

[
δ±
(
γσ̂+e−iφBj−1(r) + ασ̂−eiφBj+1(r)

)
+ δ∓

(
ασ̂+e−iφBj+1(r) + γσ̂−eiφBj−1(r)

)]
(2.12)

for δ± equal to 1 in the + case and 0 in the − case. The two transverse electric fields

in Eq. (2.12) are for degenerate fields of a particular {j,m}; HE and EH modes of
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the same {j,m} will have different α and γ, with mode orthogonality requiring:

αHEj,mα
EH
j,m + γHEj,m γ

EH
j,m = 0 (2.13)

(note that since ψr and ψφ are real, α and γ are as well) This expression for the

transverse electric field has been arrived at with no assumptions other than the prop-

agating mode formalism, a non-magnetic fiber, and the choice of the modal basis of

Eq. (2.7). The implications of this decomposition will be discussed further in Sec. 2.2

and Sec. 2.3.

2.2 Weak and strong guidance regimes

For simplicity, consider a fiber with a piecewise-constant refractive index profile, as

in Fig. 2·1. Fiber modes of this structure can be understood in one of three regimes:

1. The maximum refractive index contrast, ∆n, is small enough that it can be

completely ignored for the sake of boundary conditions. The solutions in this

case are the so-called LP modes.

2. The maximum ∆n is large enough that it must be accounted for, but small

enough to be accounted for by first-order perturbation theory

3. The maximum ∆n is large enough that first order perturbation theory is insuf-

ficient to accurately describe the fields.

The modes in case 1 are four-fold degenerate in β due to two-fold degeneracy in

rotation and two-fold degeneracy in polarization, with the polarization basis typically

chosen as x̂ and ŷ (Ghatak and Thyagarajan, 1998):

ELP
l,m = {x̂/ŷ} {cos(lφ)/sin(lφ)}Fl,m(r) (2.14)
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These fields can be found from the scalar Helmholtz equation. From the point of

view of boundary conditions, this is equivalent to enforcing continuity of ψr under

the assumption that the refractive index is constant, which is never completely true,

although it is potentially a reasonable approximation for some applications. The

d ln(n2)/dr term in Eq. (2.4a) is also ignored. This case is not further discussed here,

except as a stepping stone to case 2.

2.2.1 Weak Guidance

Case 2 is generally referred to as the weak guidance approximation (WGA). It is

obtained by taking the solutions of case 1 and accounting for the d ln(n2)/dr term

in Eq. (2.4a) by first order degenerate perturbation theory (Snyder and Love, 1983).

The solutions in this case are two-fold degenerate due to rotational symmetry, but the

two-fold polarization degeneracy from case 1 is lifted, although the two sets of modes

remain close in neff . The transverse field descriptions of these modes may be written

with either spatially varying linear polarization, or circular polarization, depending

on the basis of choice, paralleling the choice of basis in Eq. (2.6) and Eq. (2.7). We

choose to work in the circularly polarized basis. The two nearly degenerate sets of

modes for |l| > 1 are given by (Ramachandran and Kristensen, 2013)

V ±l,m = σ̂±e±ilφFl,m(r)eiβ
V
l,mz (2.15)

W∓
l,m = σ̂∓e±ilφFl,m(r)eiβ

W
l,mz (2.16)

As we will show in Sec. 2.3, the helical phase and uniform polarization implies that

these modes carry OAM. The modes of Eq. (2.15) have polarization and azimuthal

phase of the same handedness, and are referred to as spin-orbit aligned (SOa) OAM

modes, while those of Eq. (2.16) are denoted spin-orbit anti-aligned (SOaa) (Ra-

machandran et al., 2015). We use a lower case ‘a’ for the acronym in hope of avoiding
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confusion with Semiconductor Optical Amplifiers. The modes from Eq. (2.15) may be

mathematically written as linear combinations of the conventional HEl+1,m even and

odd modes, while the modes from Eq. (2.16) may be written as linear combinations

of EHl−1,m even and odd modes.

The solutions here are a reduction of Eq. (2.7) in the special case of ψr ≈ ψφ

for spin-orbit aligned modes and ψr ≈ −ψφ for spin-orbit anti-aligned modes, i.e.,

αHEj,m = γEHj,m = 0. Additionally, note that the azimuthal mode order correspondence is

different; HEj,m corresponds to Vj−1,1 while EHj,m corresponds to Wj+1,m. Thus, even

though these two mode sets are relatively close in β, they actually refer to different

mode orders if the modes are labeled in cylindrical coordinates, as the ”conventional”

HE and EH modes are, reiterating that the mode features in this approximation are

described by their transverse fields in a Cartesian coordinate system (as opposed

to a cylindrical coordinate system, which is the native coordinate system for the

electromagnetic boundary conditions).

For the case of l = 0, only two degenerate polarization modes exist for a given m.

For l=1, the spin-orbit anti-aligned modes do not exist as fiber modes. Rather, their

degenerate combination exists as TE and TM modes:

TE0,m =
F0,m(r)

2

{
σ̂−eiφ + σ̂+e−iφ

}
eiβ

TE
0,m (2.17a)

TM0,m =
−iF0,m(r)

2

{
σ̂−eiφ − σ̂+e−iφ

}
eiβ

TM
0,m (2.17b)

2.2.2 Polarization-induced degenearcy breaking

The splitting in β, or equivalently in neff between Eq. (2.15) and Eq. (2.16) can be

found from the scalar field profiles. For |l| > 1, the splitting is given by (Snyder and

Love, 1983):

∆β = βVl,m − βWl,m = l
∆

2π

λ

nco

∫
drF 2

l,m(r)f ′(r) (2.18)
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Here f(r) is the shape function of the waveguide, that is, the index profile normal-

ized to the highest refractive index, and ∆ is the profile height parameter; thus,

n2(r) = n2
co (1− 2∆f(r)), with nco being the highest refractive index in the guiding

region. This equation assumes that
∫
rdrF 2

l,m = 1 [unitless] to be dimensionally

correct.

For the case of |l| = 1, the expression is more complicated, but can be written in

terms of the same quantities and their derivatives. Investigation of Eq. (2.18) shows

that the splitting in wave vector between the two kinds of modes of a given {l,m}

is controlled by the amount of field, F (r), at index gradients within the fiber, and

also generally increases with l. Thus, the extent to which the SOa and SOaa modes

are ”nearly degenerate” is controllable with fiber design (Ramachandran et al., 2009)

and will be investigated in Chap. 6.

2.2.3 Strong Guidance

In the regime of strong guidance, the refractive index contrast of the fiber is significant

enough that it cannot be approximated by first order perturbation theory. The fields

are no longer circularly polarized, and instead take a more complicated form in the

transverse plane (Ramachandran et al., 2015). This is the case for which Eq. (2.12)

is not reducible; that is, ψr 6= ±ψφ, or αHEj,m 6= γHEj,m 6= 0.

As we will show in Sec. 2.3, these modes do not possess a well-defined orbital

angular momentum, although they have a fixed total angular momentum per photon.

As such, they are referred to as spin-orbit coupled (SOC) modes (Golowich, 2014).

From the point of view of the weakly guided modes, the SOC modes can be approxi-

mated using second order perturbation theory, and can be written as a combination

of varying amounts of V ±l,m and W∓
l−2,m (see App. A).
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2.3 Angular Momentum of Fiber Modes

The fact that light carries angular momentum was known as long ago as 1909, when

Poynting demonstrated that a circularly polarized beam of light could cause a piece

of birefringent material suspended on a thin wire to rotate about its center (Poynting,

1909). It was not until 1992 that Allen and collaborators proved that an optical beam

with a sole φ dependence of eilφ carried orbital angular momentum of l~ per photon.

For paraxial beams in free space, the two quantities are separable (Andrews, 2013).

However, there are many cases where the two angular momenta are not separable

(Van Enk and Nienhuis, 1994), such as tightly focused (high-NA) free space beams

(Bliokh et al., 2010), or interface effects which cause an interaction between spin and

orbital angular momenta (Bliokh et al., 2015). The question remains - what does

electromagnetic angular momentum look like in optical fibers?

There are two pictures for discussing electromagnetic momentum, the Abraham

picture (Abraham, 1909) in which the electromagnetic linear momentum density is

written as p = (E×H) /c2 and the Minkowski picture (Minkowski, 1908), in which

p = (D×B) /c2. Recent work (Barnett, 2010) has shown that there is no disagree-

ment between the two pictures, but rather that the Abraham picture corresponds to

kinetic momentum and the Minkowski picture to canonical momentum. We use Abra-

ham notation here. The angular momentum density is given by the cross product of

position and linear momentum, as in classical mechanics:

J = r× (E×H) /c2 (2.19)

The total angular momentum flux is the integral of Eq. (2.19) across the cross-section

of the fiber. Since E and H are time-variant quantities, we consider the time average
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of the angular momentum flux:

〈ΦAM〉 =
1

2c2

∫ ∫
dA r ×Re (E×H∗) (2.20)

Similarly, the time-averaged linear momentum flux is:

〈Φp〉 =
1

2c2

∫ ∫
dA Re (E×H∗) (2.21)

It is tedious but straightforward to show (see App. B) that the only non-vanishing

component of 〈ΦAM〉 is the ẑ component (due to integration of r̂ and φ̂ over dA),

which has the form:

〈ΦAM〉z = − 1

2c2

∫ ∫
dA rRe (ErH

∗
z − EzH∗r ) (2.22)

The longitudinal field component of H can be related to the transverse components

of E as (Tsao, 1992):

Hz =
1

iωµr

[
∂ (rEφ)

∂r
− ∂Er

∂φ

]
(2.23)

Further, the radial component of H can be removed using:

iωµHt = [∇t × (ẑEz) + iβẑ× Et] (2.24)

leaving

〈ΦAM〉z = − 1

2c2

∫ ∫
dA rRe

[
iEr
ωµr

(
∂(rE∗φ)

∂r
− i(±j)E∗r

)
+

Ez
iωµ

(
iβE∗φ −

i(±j)
r

Ez

)]
(2.25)

Since |Ez| << |Et| for nearly any reasonable fiber, we drop terms which contain E2
z .

To simplify the remaining term containing Ez we substitute using:

Ez =
i

β

[
∇t · Et + (Et · ∇t) ln(n2)

]
(2.26)



30

Eq. (2.25) can now be simplified as:

〈ΦAM〉z = − 1

2c2

∫ ∫
dA Re

[
−(±j)
ωµ

(
ErE

∗
r + EφE

∗
φ

)
+

i

ωµ

(
Er
∂(rE∗φ)

∂r
+ E∗φ

∂(rEr)

∂r

)
+

ir

ωµ
E∗φ (Et · ∇t) ln(n2)

]
(2.27)

It can be shown by integration by parts (see App. B) that the summation of the middle

term and the last term in the integral in Eq. (2.27) is exactly zero. Substituting the

modal electric field given by Eq. (2.7), we find that the angular momentum flux is

given by:

〈ΦAM〉z =
1

2c2ωµ

∫ ∫
dA (±j)

(
ψ2
r + ψ2

φ

)
(2.28)

Similar to the angular momentum flux, we can integrate the linear momentum density

to find the linear momentum flux. Again, ẑ is the only component with a non-zero

integration:

〈Φp〉z =
1

2c2

∫ ∫
dA Re

(
ErH

∗
φ − EφH∗r

)
(2.29)

It can be shown using using Green’s theorem (App. B), and dropping terms which

scale as E2
z that the above can be simplified to:

〈Φp〉z =
β

2c2ωµ

∫ ∫
dA ψ2

r + ψ2
φ (2.30)

The linear momentum flux in the ẑ direction, multiplied by the speed of travel of

photons in the waveguide (c/neff ) yields the energy flow. If we consider the ratio of

angular momentum flux to energy flux (that is, the ratio of angular momentum to

energy), we find that:

〈ΦAM〉z
〈Φp〉z · c/neff

=
1

β · c/neff

∫ ∫
dA (±j)

(
ψ2
r + ψ2

φ

)∫ ∫
dA ψ2

r + ψ2
φ

=
±j
ω

(2.31)
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The fiber modes in the basis we have chosen (Eq. (2.7)) evidently carry j~ angular

momentum per photon, with the direction of the angular momentum parallel to the

direction of propagation. However, this derivation does not specify what kind of

angular momentum is carried by the mode: OAM or spin. To determine this, we

calculate the spin flux density (Kien et al., 2006)

JS = ε0E×A (2.32)

where A is the vector potential. Working in the Coulomb gauge (Jackson, 1999) we

can calculate the spin flux as:

〈ΦS〉 =
ε0
ω

∫ ∫
dA Im [E∗rEφ] (2.33)

Again taking the ratio with the energy flow, we find:

〈ΦS〉z
〈Φp〉z

=
±
∫ ∫

dA ψrψφ
ω
2

∫ ∫
dA ψ2

r + ψ2
φ

(2.34)

It is evident from Eq. (2.34) that the upper bound for the spin flux is ±~ per photon.

However, depending on the structure of the waveguide, if ψr and ψφ are sufficiently

different, spin can take any value between −1 and 1.

In the weakly guiding region, ψr ∼ ψφ for the SOa OAM modes. Evidently these

modes carry angular momentum of ±j~ per photon, with spin of ±~ per photon,

leaving the remaining ±(j−1)~ per photon for orbital angular momentum, consistent

with Eq. (2.15) and the ensuing discussion. Similarly, the SOaa modes carry angular

momentum of ±j~ per photon, but with spin of ∓~ per photon, implying that they

carry OAM of±(j+1)~ per photon. Thus, the index l used in Eq. (2.15) and Eq. (2.16)

can be readily identified as a true orbital angular momentum in the weakly guiding

picture. If instead of using the modes as defined in Eq. (2.7), one used the modes

defined in Eq. (2.6), or the LP modes in the scalar picture, one would find that the
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modes carried zero angular momentum per photon. By investigation of Eq. (2.23) and

Eq. (2.22), one notes that the integral in Eq. (2.22) is zero by parity. Alternatively,

the angular momentum operators in this system are linear due to parity in φ, and

the modal basis of Eq. (2.6) is evidently an equal-weight composition of the basis of

Eq. (2.7), implying that the ensemble average of OAM would be zero.

We end this section with a table of mode shapes and designations from the LP,

HE/EH, and OAM modes in the hope of avoiding confusion in further chapters.

Figure 2·2: Schematic representation of the first few guided modes in
a few mode fiber, in order of increasing neff Mode labels for each mode
in the scalar picture are on the left, while the labels for each mode in the
weakly guiding picture are on the right; both OAM and conventional
HE/EH mode labels are listed for clarity. Note that each scalar mode
order (blue line) is quadruply degenerate, while each vector mode order
(red line) is doubly degenerate

2.4 Summary

We have discussed the functional forms of the electromagnetic fields in optical fibers.

It has been shown that fiber modes with azimuthal mode order j, where j is assigned

in a cylindrical coordinate frame, carry angular momentum of j~ per photon. For
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weakly guiding waveguides, the modes are readily identifiable as pure OAM states,

with SAM either aligned or anti-aligned to the OAM. Conventional HE and EH

modes in weakly guiding fibers can be written as linear combinations of degenerate

OAM states, but carry 0 angular momentum per photon on average. The separation

in β between SOa and SOaa OAM modes is determined by index contrast and electric

field overlap with index gradients. The importance of this separation will be discussed

in detail in Chap. 3.

For strongly confining waveguides, no such identification is possible, as the modes

are not OAM eigenstates, with a non-integer expected value of OAM. This is evident

from the mode field structure in the case where the radial and azimuthal components

of the electric field become dissimilar, that is, for modes which strongly feel confine-

ment effects in high-contrast fibers. This will provide a design criterion in the coming

chapters, when fibers supporting OAM states are discussed.
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Chapter 3

Fiber Mode Coupling

The fiber modes discussed in previous section exist in theoretically perfect fibers.

Such fibers do not exist in the real world. In practice, there will always be some

form of imperfection which affects fiber performance at some level. These imperfec-

tions can be separated into two categories: those which are intrinsic to a fiber once

it is fabricated such as slight eccentricity, frozen-in birefringence, voids, and longitu-

dinal composition fluctuations, and those which are extrinsic to the fiber, including

macroscopic and microscopic bends, twists, and external stress and strain (Marcuse,

1974). Such imperfections can result in loss in single mode fibers (Marcuse, 1982;

Petermann, 1976; Bjarklev, 1986), mode-coupling in multimode fibers (Gloge, 1972;

Marcuse, 1972; Marcuse, 1975; Olshansky, 1975), and distortion of the guided modes

which can compromise large Aeff designs for fiber lasers (Fini, 2006).

In addition to parasitic imperfections, controlled perturbations can be induced,

typically to excite a specific HOM or set of HOMs. These include long-period gratings,

both photoinduced (Vengsarkar et al., 1996) and microbend-induced (Blake et al.,

1986), evanescent field couplers (Sorin et al., 1986), and fused fiber couplers (Lai

et al., 2007). Fused SMF couplers which rely on perturbative evanescent field coupling

are now ubiquitous in research and commercial fiber systems (Sheem and Giallorenzi,

1979). Perturbation-induced mode coupling can be used for sensing applications as

well (Burns, 1993).

In this chapter, we briefly review the Coupled Mode and Coupled Power theories.
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These theories are well-expounded in other sources(Snyder and Love, 1983; Marcuse,

1974; Chuang, 2009) and we only summarize the main results. We then review two

parasitic effects due to mode coupling in coherent communications systems: crosstalk

and multi-path interference (MPI), before considering the effects of common fiber

perturbations, such as bends, induced birefringence, and twists. Finally, we consider

the possible effects of fiber perturbations on OAM carrying fiber modes.

3.1 Coupled Mode Theory and Coupled Power Theory

Coupled mode theory and coupled power theory describe the evolution of an optical

field in a waveguide in which the guided modes couple to each other as the fields

propagate. Coupled mode theory considers a complex optical field, and accounts for

the evolution of the total field (amplitude and phase) while coupled power theory

assumes that coupling is incoherent, predicting only the average response of the field

amplitude in the coherent case, but at the benefit of a much simplified mathematical

form (Marcuse, 1974; Poole, 1988). For the following discussions, we use Marcuse’s

notation. To formulate coupled mode theory, one can either use ideal modes of a fiber

and study their complex amplitude distribution as a function of distance, or use local

normal modes, the exact solutions of local waveguides, and study coupling between

these modes from segment to segment. We review the former here (Marcuse, 1974).

Suppose that one excites several modes in a fiber,and all propagate in the forward

direction with no loss. We write the total optical field as:

Etotal =
N∑
µ=1

cµ(z)Eµe
iβµz (3.1)

Here µ is a mode index, encompassing both radial and azimuthal quantum numbers,

N is the total number of modes supported by the fiber, and cµ is the complex weight

of the mode µ. The waveguide is perturbed. A perturbation should be classified by a
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deformation function, which contains information on its longitudinal behavior, f(z),

and a coupling coefficient which describes possible coupling from mode ν to mode µ:

κµν =
ωε0
4i

∫ ∫
dA E∗µ ·∆ε(r) · Eν (3.2)

Here ∆ε = ∆n2 is the local change in dielectric constant provided by the perturbation

(i.e. if a hole is cut in the center of the fiber, ∆ε would be a circ function with a

negative amplitude and the radius of the hole). ∆ε could be a scalar (for a bend) or

a tensor (for induced birefringence).

Coupled mode theory prescribes a series of coupled amplitude equations to deter-

mine the evolution of the mode weights cµ:

dcµ
dz

=
N∑
ν=1

κµνf(z)cν(z)ei(βµ−βν)z (3.3)

and similarly ∀µ. This results in a set of N coupled differential equations, each of

which is dependent on the shape function of the perturbation, f(z).

In the case of very simple shapes such as a grating, in which f(z) is exactly

periodic, the equations can be solved directly. Explicitly, for a long period grating:

∆n = σ(z)

[
1 +mcos(

2π

Λ
z)

]
(3.4)

where σ(z) describes the spatial envelope of the grating, m is the modulation depth,

and Λ is the grating period (Erdogan, 2000). Note that in Eq. (3.3), f is defined with

respect to ε, but for small deformations ∆ε = 2∆n, so Eq. (3.4) is directly usable. As-

suming that σ(z) is uniform and m = 1, f(z) can be directly factored into the complex

exponential in Eq. (3.3). If the grating is well designed, ∆β = βµ − βν − 2π/Λ ≈ 0

for only one mode, ν = s. Coherent transfer of energy from mode s to mode µ

occurs, while the other modes do not see appreciable power due to phase mismatch.

If only mode s is excited at the front facet of the waveguide, the power ratio between
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modes µ and s is given by (Chuang, 2009):

|cµ|2

|cs|2
=

|κµs|2

|∆β|2 + |κµs|2
sin2

(
z
√

∆β2 + κµs2
)

(3.5)

If ∆β = 0, total transfer of power can occur, provided that the coupling coefficient

is not zero. For a typical photo-induced grating, this means that one can convert

between modes of the same azimuthal mode order. For example, Fig. 3·1 shows a

fabricated grating converting from the fundamental mode into the LP0,19 mode, in

this case with conversion of more than 99.99%. For a mirobend grating, this means

that the strongest coupling will be between modes with ∆l = 1.

Figure 3·1: (a) Schematic illustration of a photo-induced fiber grating
with period (b) measured transmission spectrum of fiber grating, period
Λ ≈ 69µm in Hi980 fiber with intent to excite the LP0,19 mode (c)
Imaged grating output at resonance

However, in the general case, Eq. (3.3) is intractable, or at least computationally

intensive to solve. It is more convenient to directly calculate the power in mode µ as
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a function of distance (Marcuse, 1974)

dPµ
dz

=
N∑
ν=1

κµν
〈
cνc
∗
µf(z)

〉
ei(βµ−βν)z + cc. (3.6)

where 〈〉 denotes an ensemble average, and Pµ is the power carried by mode µ. If

the mode amplitudes do not appreciably change over the correlation length of the

perturbation, that is, if f is a stationary random function with some correlation

length Lc over which cµ(z−Lc) ≈ cµ(z), then the coupled power equations, combined

with the relationship:

dPµ
dz

=

〈
dcµ
dz

c∗µ

〉
(3.7)

can be simplified to:

dPµ
dz

=
N∑
ν=1

hµν (Pν − Pµ) (3.8)

for mode coupling rate

hµν =|κµν |2
〈
|F (βµ − βν)|2

〉
(3.9)

=|κµν |2
∞∫

−∞

R(u)e−i(βµ−βν)udu (3.10)

where R(u) = 〈f(z)f(z − u)〉, and R(0) = σ2, that is, R is the autocorrelation of f

and its value at u = 0 is the standard deviation. Since h has no spatial dependence

Eq. (3.8) is a series of algebraic equations which can be directly solved. In the case of

only two modes, where all power is initially launched into mode s, the power transfer

between mode s and mode µ is given by (Marcuse, 1974; Kawakami and Ikeda, 1978):

Pµ
Ps

(z) = tanh(hµsz) (3.11)

The difference between Eq. (3.5) and Eq. (3.9) is coherence. Since the assumptions

leading to Eq. (3.9) imply that the mode amplitudes do not change appreciably over
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the correlation length of the perturbation, power grows incoherently and tends to-

wards an equilibrium. In the coherent case, return-coupling is permitted. In the case

of a grating, for instance, Eq. (3.11) is wildly inappropriate, since the perturbation’s

correlation length is the length of the grating, over which the modal weights appre-

ciably change. For random perturbations, however, Eq. (3.11) is often appropriate to

describe transfer of power.

Figure 3·2: (a) Power transfer predicted by coupled mode theory for
different ratios of ∆β to κ (b) Power transfer predicted by coupled
power theory

Both coupled mode theory and coupled power theory, however, underscore the

importance of two intuitive fundamental quantities:

1. Phase matching, that is, the likelihood of a perturbation containing the mo-

mentum component ∆β = βµ − βν , which, for random perturbations, tends to

increase as ∆β → 0.

2. Perturbation symmetry, manifest in the coupling coefficient, κµν . Even if cou-

pling is phase matched, no coupling is possible if κµν = 0. Thus, consideration

of Eq. (3.2) is critical in determining potential sources of and paths for mode

coupling.
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With these results in hand, we next investigate some random perturbations commonly

encountered in optical fibers.

3.2 Common Fiber Perturbations

Unless a perturbation is perfectly periodic, or has some long-range symmetry, the

correlation function R(u) will have a maximum value for u = 0, and will decay for

larger values since a random series of perturbation should, after some distance, lose

all correlation with the previous perturbation shape (See Section 4.6 in (Marcuse,

1974)). Eq. (3.9) thus implies that modes which are proximal in β, or equivalently

∆neff , will couple more readily under random perturbations.

In this section, several common types of random perturbations are considered.

Their shape functions, ∆ε (or ∆n), are briefly reviewed from literature.

3.2.1 Fiber Bends and Shape Deformations - Phase Perturbations

Bends are likely the most common shape perturbation imaginable. To first order, a

bent fiber can be treated as a straight fiber with a phase perturbation (Taylor, 1984),

and which can deform lower-order modes in a fiber (Fini, 2006; Fini and Ramachan-

dran, 2007). To second order, bends introduce birefringence (Ulrich et al., 1980),

which will be discussed in the next section, as well as elliptical shape deformations.

If a bend is weak enough that birefringence can be ignored, the shape function of

the perturbation can be written as (Blake et al., 1987):

∆ε = ei
2πn
λ

(1−χ)rθcosφ (3.12)

where θ is the local bending angle, n is the refractive index of the core and approx-

imately that of the cladding, χ ≈ 0.22 is a factor to account for a stress-induced

refractive index change, and (r, φ) are transverse coordinates as in Chap. 2. It is
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obvious from modeling the bend as a perturbation which is odd in phase, that bends

should be able to couple between l = 0 and l = 1 modes of fibers, and indeed mi-

crobend gratings function in such a fashion (Blake et al., 1986)

Eq. (3.12) can be converted into a more useful formula by use of the Jacoby-Anger

expansion (Abramowitz and Stegun, 1972):

eizcosφ =
∞∑

k=−∞

ikαk (z) eikφ (3.13)

for z = 2πn
λ

(1− χ) rθ and αk = Jk (z) for the bessel function of the first kind of order

k, Jk.

The above is evidently an expansion of ∆ε into OAM orders. Similar formalisms

are useful in free-space to predict diffraction from objects with discrete rotational

symmetries (Jack et al., 2008). Any general shape deformation can be expressed

thus, albeit with different αk. For instance, an elliptical deformation of the fiber

cross-section is a perturbation with predominantly α2 components (Golowich and

Ramachandran, 2005).

3.2.2 Linear Birefringence

Due to the existence of two polarization modes within SMF, the problem of polar-

ization conversion in fibers was widely studied beginning in the late 1980s, since

appreciable polarization mode dispersion (PMD) could compromise communications

link intensity (Poole, 1988; Kawakami and Ikeda, 1978; Poole et al., 1991).

A single mode optical fiber can be treated as a waveplate, or stack of waveplates

(Tsao, 1992). Both intrinsic (added intentionally or unintentionally in fabrication)

and extrinsic sources of birefringence exist. The most common extrinsic source is

bends, which can induce linear birefringence between the plane of the bend and the

plane’s normal vector which scales as the curvature of the bend squared (Ulrich et al.,
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1980; Smith, 1980). PM fibers are created by adding a significant fabrication birefrin-

gence, typically by adding stress rods around the core or by making the fiber elliptical

(Rashleigh, 1983). For many PM fibers, the target birefringence Bxy =
(
nxeff − n

y
eff

)
was on the order of 10−4, with fibers whose birefringence was about 4× 10−4 showing

crosstalk after 1km on the order of −20 to −30dB, although the exact implementa-

tion of the birefringence via stress rods, air holes, etc also partially determines the

mode coupling strength (Noda et al., 1986; Kaminow, 1981).

Conventional SMF typically has intrinsic birefringence on the order of 10−5 ∼ 10−6,

which is still enough to feature PMD over longer fiber links. The solution was to use

spun fiber (Barlow et al., 1981), in which the fiber preform is spun as it is drawn.

The rotation of the preform results in the local undesired birefringence rotating such

that after a few rotations the birefringence is effectively averaged out. Such rotation

does not leave torsional stress, unlike a fiber which is drawn and then twisted, to be

discussed in Sec. 3.2.3.

One can view linear birefringence as either forcing preferential axes of polariza-

tion on the fundamental modes of an SMF, and thus changing the normal modes of

the fiber, or as creating a effective waveplate which couples two pre-labeled polar-

ization modes, potentially two circularly polarized modes if the angular momentum

basis set for fiber modes is used. Laboratory fiber polarization controllers (polcons)

which utilize this effect are readily available (for instance, see Thorlabs catalog item

FPC030).

3.2.3 Twist

Extrinsic twist should be considered in two separate regimes: weak and strong twist.

Weak twist implies only a rotation of Cartesian coordinates; referring to those rotating

axes, it appears that that electric field does not change. Strong twist in SMF results

in a circular birefringence Bc =
(
nRCPeff − nLCPeff

)
. The perturbation can be written as
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(Ulrich and Simon, 1979):

∆ε = n4
0p44τr

 0 0 sin(φ)
0 0 −cos(φ)

sin(φ) −cos(φ) 0

 (3.14)

where the matrix is in the basis of (x̂, ŷ, ẑ), n0 is the average refractive index of the

fiber, p44 is an element of the electrooptic tensor, and τ = 2π
Λ

is the local rotation

rate of the fiber over a twist pitch of Λ, and can be positive or negative. In view of

circular polarizations, Eq. (3.14) converts:

σ̂± → ∓ie±iφẑ (3.15)

Thus the longitudinal and transverse fields are coupled.

The circular birefringence induced in SMF is a special case; in general, twist

induces a change in neff according to the total angular momentum, j, carried by a

fiber mode (Alexeyev et al., 2008):

∆βl,m = −τp44n
2
0

2
j (3.16)

This splitting breaks the degeneracy between the previously 2-fold degenerate vector

modes, and has lead to speculation about strongly twisted fibers supporting optical

vortices (Alexeyev et al., 2004; Alekseev and Yavorskii, 2005). In a fiber where

waveguide design has already broken the degenerace between SOa and SOaa OAM

modes, the application of twist implies that there is no degeneracy among the 4

modes of a given |l|. The splitting is directly proportional to both twist rate and total

angular momentum, meaning that a particular mode’s neff can be either increased or

decreased with the correct handedness of twist, and that if the distribution of twist

is random, the expected value of the change is zero.
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3.3 Fiber Perturbations and OAM

With the behavior of common perturbations understood, we consider the possible

effects of such perturbations on OAM modes of fibers, under the assumption that the

weakly guiding approximation is valid. A schematic of the effective index distribution

of set of OAM modes and the perturbations of appropriate symmetry to couple among

them is shown in Fig. 3·3. l = 5, 6, 7 because the fibers to be discussed support these

higher order OAM modes. Coupling between adjacent |l| states is enabled by bends.

Figure 3·3: Schematic illustration of effective index distribution of
OAM modes and the perturbations necessary to couple among them.
Inspired by a similar figure in notes presented by Dr. S. Golowich.

Within a family of a given |l|, there are several coupling routes of interest. Coupling

between l = 6 σ̂− and l = 6 σ̂+, for instance, requires a birefringent perturbation to

couple spins, the same kind of perturbations under consideration for mode stability in

conventional PM fibers. Thus, when designing OAM fibers Chap. 6 we aim to design

waveguides where ∆neff between the SOa and SOaa modes of the same family is of

the order of 10−4.

Twist, on the other hand, directly modulates the effective index spectrum of the

OAM modes, as illustrated in Fig. 3·4. Depending on the handedness of the twist, ei-
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ther positive or negative total angular momentum modes will be increased in effective

index. It is evident from the schematic that for some critical twist, the l = 6 σ̂+ and

l = −6 σ̂+ states will actually become degenerate. This is experimentally observable,

and will be discussed in Chap. 7.

Figure 3·4: Illustration of effective index modulation by applied twist
for a sample (|l| = 6) OAM family. Splitting increases linearly with
twist, but at different rates for SOa and SOaa modes due to differing
total angular momentum; here exaggerated for illustration purposes.

We next briefly consider the effect of perturbations on a communications system.

3.4 Crosstalk and Multipath Interference

The quality of a telecommunications system is determined by its data rate and bit

error rate (BER), or the probability of transmitting an erroneous bit. Traditionally,

high speed optical communications transmitting at 1Gbps required BERs on the order

of 10−12, and even lower for higher data rates (Keiser, 2011), although recent advances

in coding using forward error correction (FEC) has allowed data transmission with

bit error rates as low as 10−3 (Sab and Lemaire, 2000; Essiambre et al., 2010).

Mode coupling can be seen to impact the BER in two significant but completely
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distinct ways: crosstalk and MPI (Ramachandran et al., 2003; Ramachandran et al.,

2005a). Crosstalk is simple to understand as the fraction of power that leaks from one

channel or a set of channels into another. If two channels, A and B simultaneously

transmit data at the same power and data rate, and 10% of the power from A leaks

into B after 1km, the crosstalk is −10dB. For cases of distributed incoherent mode

coupling, crosstalk in dB is given by the logarithm of Eq. (3.11).

MPI denotes interference between a desired signal and a weak, possibly delayed,

version of the same signal. In the above example, suppose that two identical 1km

segments of fiber are spliced together, causing another 10dB of crosstalk in the second

fiber. Thus, a signal at the −20dB level has transitioned from A to B and back again

as a weak replica, and will interfere with the original signal. MPI can be coherent or

incoherent, depending on source bandwidth and path length difference between the

signal and replica (Ramachandran et al., 2003).

Both crosstalk and MPI require a projection to accurately measure (in the above

example, the powers of A and B must be independently measurable). In most cases,

this projective combining may be unintentional, and can degrade system performance.

In Fig. 3·5, an SMF is spliced to a fiber which supports the LP0,2 for dispersion

compensation. At the splice point, some amount of LP0,1 and LP0,2 are excited and

propagate through the High -D fiber. At the second splice point, both LP0,1 and

LP0,2 are projected back into the guided mode of the SMF but with different phases,

given that they have different propagation constants in the High -D fiber. When the

total power is measured as a function of wavelength, as oscillation is evident due to

MPI and the difference in effective index between LP0,1 and LP0,2.

Alternatively, MPI can be created by a projective measurement, and used for

diagnostic purposes. Two modes (TE0,1 and TM0,1)are excited in a vortex fiber (to

be discussed in Chap. 6) with roughly equal power, the fiber output is filtered into σ̂+
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Figure 3·5: (a) Experimental schematic: an SMF is spliced to a High-
D fiber supporting the LP0,2, which can be excited at the splice point.
When the High-D fiber is spliced back to SMF, both LP0,1 and LP0,2

are projected back onto the fundamental mode of SMF, causing MPI
(b) Power detected as a function of wavelength. Data courtesy of Boyin
Tai.

and σ̂− and imaged on a camera, and the source wavelength is swept. The intensity

value in grey levels at a single pixel is measured as a function of wavelength, and

shown in Fig. 3·6. Although each mode is strictly orthogonal and the total power

conserved as a function of wavelength, at a single spot interference between the two

modes is observed. This empowers interferometric mode purity techniques such as S2

and C2, to be discussed in Chap. 4

3.5 Summary

We have reviewed coupled mode theory and coupled power theory, which underscore

the importance of both the spatial symmetry of a perturbation and the difference
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Figure 3·6: (a) Experimental image of fiber output. (b) Power de-
tected in gray levels as a function of wavelength for a single pixel

in effective index (equivalently, β) for mode stability. Birefringent perturbations can

couple OAM modes which are nearly-degenerate, underscoring the need for a fiber

design in which this near-degeneracy is lifted as much as possible, at least on the

order of 10−4 in neff . Bends can couple adjacent OAM mode orders, but as we will

see in Chap. 6, these are typically well separated in neff and resist this coupling.

This concludes the purely theoretical portion of this document. We will next

begin to discuss how OAM states can be excited and transmitted over fiber. In

Chap. 6 we will discuss fiber design in great detail and in Chap. 5 we will discuss

attractive options for state excitation and multiplexing. However, in order to test the

fibers we design and fabricate and the excitation mechanisms we propose, methods

of determining mode purity must be introduced.
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Chapter 4

Mode Characterization

The study of OAM mode characterization, qualitative and quantitative comparisons

of fibers supporting OAM modes, and OAM mode excitation are all coupled. To

compare different fibers, we need the ability to excite modes in said fibers. To compare

different excitation mechanisms, characterization mechanisms are needed. And to test

characterization mechanisms, it is of course necessary to have a mode or set of modes

in the first place. In order to provide more context for the fibers designed in Chap. 6,

in this chapter we describe the theoretical design and experimental results for different

mode characterization schemes. Details on how modes are excited are postponed until

Chap. 5, but it is assumed for this chapter that methods to selectively excite OAM

states exist.

Many modal techniques for determining the modal content emitted by a fiber un-

der test (FUT) exist, and they typically fall into three categories. The first is a com-

putationally intensive modal decomposition via computationally intense algorithms

(Brüning et al., 2013). These require the calculation of the guided modes of a fiber,

and typically require the measurement of the fiber output in the near field and in the

far field. An algorithm then tries to reconstruct the optical near and far fields by vary-

ing the complex modal weights and seeking to reduce some cost function such as the

mean squared difference between the measured and reconstructed images, or to max-

imize a correlation function (Shapira et al., 2005). Alternatively a gerchberg-saxton

algorithm (GSA) can be used to calculate the full complex amplitude distribution



50

in the near field, at which point a dot product can be used to calculate the modal

weights (Fienup, 1982). These algorithms tend to be slow, and fare poorly when the

number of modes is more than 10 or 20 (Brüning et al., 2013). The second category

is based on the temporal or frequency response of the fiber under test. As each mode

(typically) possesses a unique effective index, sweeping wavelength varies the phases

of the modes at the fiber output in a periodic fashion and the wavelength-dependent

fluctuations convey information about excited fiber modes. This can be done with-

out a reference beam and is conventionally called spatially and spectrally resolved

imaging (S2) (Nicholson et al., 2008), or with an external reference where it is called

cross-correlated imaging (C2) (Ma et al., 2009). C2 can be achieved by scanning a

delay stage (Tkach and Chraplyvy, 1986) or by scanning a laser’s frequency (Poole,

1989; Gisin et al., 1991), for which a measurement can take on the order of a second

(Demas and Ramachandran, 2014). The third category is output projection, where

the weight of each mode is (typically sequentially) determined by projection onto

SMF via a hologram (Carpenter et al., 2012; Schulze et al., 2013). This method is

brute force, generally slow, and requires precise alignment.

In this chapter we describe several methods used to characterize the output of

OAM carrying fibers. It is assumed that the modes of interest are weakly guided OAM

modes. It is worth noting that several of the methods we discuss are not exclusive, and

many can be used in concert. Polarization binning and symmetry arguments (leading

to the so-called Ring technique) are outlined, as are swept wavelength techniques such

as S2 imaging. Particular attention is paid to time of flight measurements, which are

used throughout the rest of this document to describe discrete and distributed mode

coupling. Output projection measurements are performed. Output coupling into an

OAM-specific mode sorter is briefly described. We start first with a special, and

OAM-specific mode purity metric which has become nearly ubiquitous with OAM
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states. It is visually appealing, intuitive, qualitatively deceptive, and quantitatively

completely useless.

4.1 Spiral Interference Patterns

A simple method to identify the topological charge of an OAM state is to interfere

the phase vortex (eilφ) with an expanded plane wave of the same polarization (Yao

and Padgett, 2011). If the vortex beam and an isotropic (no φ-dependence) reference

wave are spatially centered but tilted with respect to each other, the result is a ‘fork’

interference pattern, as in Fig. 4·1 (a). The topological charge, l, can be determined

by counting the number of ‘tines’ on the fork corresponding to a single stem, in this

case, 8. The fork points up if the topological charge and the tilt (chosen as along x,

φtilt = kx for some k) are opposite in sign, and points down if they are of the same

sign. If the OAM state and reference beam are coaligned both in space and angle,

a spiral pattern instead results. The content of the spiral pattern depends on the

relative defocus as the equiphase curves yielding maxima in the inferference pattern

are given by lφ+Rr2 = 0, where R is the difference in defocus (spherical wavefront

curvature) between the OAM state and the reference beam. Thus, if both beams are

collimated the interference fringes are lines pointing radially outward from the beam

center and which do not curve Fig. 4·1 (b). If some defocus is introduced to either

beam, the interference fringes curve Fig. 4·1 (c-d). The absolute value of the OAM is

given by the number of spiral arms, also called parastiches, while the direction of arm

curvature depends on the sign of l. Note however that if the OAM state in free space

is created by collimating or imaging the output of a fiber, the spiral arm direction

can be flipped by physically moving the fiber through the focal plane of the lens, thus

changing the sign of the defocus. If two OAM states are added in equal amounts

and then interfered with a reference, as in an LP mode, the resulting pattern is star



52

Figure 4·1: Experimentally measured interference between an OAM
state and a Gaussian reference beam under different experimental con-
ditions. (a) l = 8 OAM state interfered with tilted Gaussian (b) l = 8
state interfered with Gaussian with no defocus (c) l = 8 OAM state
slightly defocused before interference (d) l = 8 state massively defo-
cused (e) l = 8 state and reference powers balanced to remove center
spot (f) l = −8 state and reference (g) l = 9 state and reference (h)
approximately equal parts l = 5 and l = −5 and reference

shaped and will have no curvature under any defocus, as in Fig. 4·1 (h). Note that

Fig. 4·1 (a-e) could readily be achieved with exactly the same input OAM state while

only changing the reference beam.

Spiral interference patterns are intuitive and aesthetically pleasing, and as such are

typically included in almost any experimental publication on OAM. However, some

authors (Courtial et al., 1997; Martinelli et al., 2004; Dashti et al., 2006; Chimento

et al., 2012; Brunet et al., 2014b) (among many, many others) use spirals or fork

patterns as proof for excitation or existence of pure OAM states. With additional

information, this is not an invalid statement, however, spirals yield no quantitative

information on mode purity and can be qualitatively deceptive. For instance, consider

Fig. 4·2. If the OAM state is predominantly of OAM l with even a slight amount of

−l, corruption of the spiral pattern is evident as the arms become beady. However, if
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the OAM state is predominantly of OAM l and contains a reasonably large amount

of OAM l − 1, the spiral pattern becomes slightly asymmetric but the arms are still

clearly visible. Even in the case of equal power in l and l − 1 as in Fig. 4·2 (g), one

can still count 8 arms and could conclude, incorrectly that one had an l = 8 OAM

state. Note that such asymmetric distortions as Fig. 4·2 (f) could also be obtained by

Figure 4·2: Simulated spiral inteference patterns. (a) Pure l = 8
OAM state interfered with a Gaussian beam (b-d) Interference between
a reference beam and an l = 8 OAM state with X crosstalk into l = −8,
with X printed above each figure (e-g) Interference between a reference
beam and an l = 8 OAM state with X crosstalk into l = 7, with X
printed above each figure

off-centering the Gaussian reference beam, or having a slightly anisotropic reference

beam.

Thus we conclude that while obtaining a spiral pattern is indicative of an OAM

state, it is not a robust enough metric to be used for determining mode purity in any

sense. If one can be reasonably confident that crosstalk is relatively low, there are

cases where performing a spiral interference can yield useful information, such as the

Ring method (Sec. 4.3).
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4.2 Polarization Binning

Recalling the definition of OAM modes from Chap. 2 (Ramachandran and Kristensen,

2013):

V ±l,m = σ̂±e±ilφFl,m(r)eiβ
V
l,mz (4.1)

W∓
l,m = σ̂∓e±ilφFl,m(r)eiβ

W
l,mz (4.2)

it is clear that the spatial distributions of the SOa and SOaa OAM modes of the

same l within one circular polarization, σ̂±, are complex conjugates of each other.

Within the σ̂+ projection, for instance, if an OAM mode occurs with an observed

l > 0 it must by definition be SOa, while l < 0 implies SOaa. Critically, this implies

that if the fiber supports only radial order m = 1, there is only one mode which

corresponds to a particular l within σ̂± (with the exception of l = 1, see Eq. (2.17a)

and Eq. (2.17b)). For the rest of this chapter we assume that m = 1 in all cases.

Let the output field of an optical fiber be written as:

Ψ =
lmax∑
l=0

α±l V
±
l +

lmax∑
l=0

γ∓l W
∓
l (4.3)

where lmax is the highest OAM state guided in the fiber under consideration, and αl

and γl are complex modal weights. The right and left circularly polarized components

of Ψ can be split spatially with a combination of a zero-order quarter-wave plate

(QWP) and a polarizing beam splitter (PBS), as in Fig. 4·3. For all experiments

in this document, a polarization beam displacing prism is used in lieu of a typical

90-degree polarization splitter such that both polarizations are co-propagating and

can be imaged easily. Unless otherwise indicated, PBS refers to this kind of beam

splitter. The QWP is set at 45-degrees with respect to the fast and slow axes of

the PBS in the following way. Without the QWP in place, put a linear polarizer

between the fiber and PBS, and rotate the polarizer axis to minimize intensity in



55

Figure 4·3: Schematic of experimental system for separating circular
polarizations

one bin (polarization projection). Then insert the QWP between the linear polarizer

and PBS and rotate the QWP until equal power is achieved in each projection. The

linear polarizer is then removed. The rotation angle of the PBS is irrelevant so long

as the QWP’s angle is appropriately selected, but it is typically chosen such that the

two beams are horizontally displaced. For such experiments, a high-NA lens, either a

short focal length aspheric lens or a microscope objective is needed to reliably capture

high-order OAM modes, which diffract rapidly in free space. The fiber facet is imaged

onto an InGaAs camera (Allied Vision ‘Goldeye’ series, 30µm pixel pitch, 320× 256

pixels, 12 bit)

For some cases of interest, comparison of optical powers within each circular po-

larization bin directly yields information about fiber mode content. For instance, for

short fibers (fiber length, L < 10m), which are laid on an optical table in reasonable

large coils (radius ≈ 10cm), and for which the effective index separation between SOa

and SOaa states of the same |l| is of the order of 10−4, we can reasonably assume

that the coupling between SOa and SOaa states is negligible, at the −20dB level or
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lower. With good input coupling, the presence of other |l| states can be similarly

suppressed (see Chap. 5). In this instance, the mode coupling most readily observ-

able is between degenerate states. This can be experimentally confirmed by spiral

interference - if power appears in both circular polarization bins, and the observed

spirals have the same number of parastiches but with the opposite handedness and

reasonably clean quality, we can assume that the dominant mode in each bin is one

of the two degenerate states, that is:

Ψσ̂+

= α+
l V

+
l = α+

l Fl(r)e
ilφ (4.4a)

Ψσ̂−
= γ−l W

−
l = γ−l Fl(r)e

−ilφ (4.4b)

The intensity of the polarization-sorted fiber output is measured by the camera:

I σ̂
+ ∝

∣∣α+
l

∣∣2 F 2
l (r) (4.5a)

I σ̂
− ∝

∣∣γ−l ∣∣2 F 2
l (r) (4.5b)

The mode purity of the fiber output is given by
∣∣α+

l

∣∣2 / ∣∣γ−l ∣∣2. This can be calculated

experimentally by spatial integration over the two polarization bins, since the radial

distributions of the intensity are identical:

∣∣α+
l

∣∣2∣∣γ−l ∣∣2 =

∫
dAI σ̂

+∫
dAI σ̂− ≈

∑
(x=j,y=k)

I σ̂
+

∑
(x=j,y=k)

I σ̂− (4.6)

where (j, k) indicates a single pixel on the camera, and the sum is taken over a

rectangular region containing each separate polarization component. This polariza-

tion binning measurement can be used to study mode coupling between degenerate

states in fiber (Chap. 7) or to study mode excitation with q-plate s, which can excite

arbitrary combinations of a pair of two degenerate fiber OAM states (Chap. 5)
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4.3 Symmetry Arguments and Introduction to Ring Method

Much additional information can be obtained from polarization-sorted camera images

of the fiber output. Consider the electric field distribution in one of the polarization

projections after a fiber of length L:

Ψσ̂+

=

llmax∑
l=0

αlFl(r)e
ilφeiβ

V
l L +

llmax∑
l=0

γlFl(r)e
−ilφeiβ

W
l L (4.7)

We drop ‘±’ superscripts for brevity, since a single polarization is assumed. The

camera will observe the modulus squared of Eq. (4.7), which could in general have

many terms. It is useful to group these for classification. There will be a term of the

form:

ΨDC =

llmax∑
l=0

|αl|2 F 2
l (r) + |γl|2 F 2

l (r) (4.8)

which has no φ dependence. Consequently, we will call this the ‘DC’ term. The rest

will be terms with fixed azimuthal dependences, for instance, Ψ∆l for ∆l = 1 is given

by:

Ψ1 =
lmax∑
l=1

2 |αlαl−1|FlFl−1cos
[
φ+ arg(αlα

∗
l−1) + (βVl − βVl−1)L

]
+

lmax∑
l=1

2 |γlγl−1|FlFl−1cos
[
φ+ arg(γlγ

∗
l−1) + (βWl − βWl−1)L

]
(4.9)

Corresponding terms can be written for ∆l = 2, 3, ..., 2lmax, and higher order terms

will include cross terms between SOa and SOaa states. l = 1 SOaa is included above

as shorthand for a combination of TE and TM. The above suggests a Fourier series

in terms of the azimuthal coordinate (Bozinovic et al., 2012).

Ψ = ΨDC +
2lmax∑
∆l=1

a∆lcos(∆lφ) + b∆lsin(∆lφ) (4.10)
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with a∆l and b∆l to be determined. Note that even though Ψ is by definition positive,

two Fourier series coefficients are needed to account for both magnitudes and relative

phases. For the case of a total of 6 vector modes (lmax = 1), this problem has been

solved using a linear regression and measured radial mode field distributions, and

modal powers and phases can be estimated (Golowich et al., 2013). In the general

case for a large lmax the problem is less tractable.

The difficulties are twofold. First, multiple modes can contribute to the same ∆l

terms. For instance, an interference between l = 6 and l = 5 will contribute a ∆l = 1

term, but interferences between l = 5 and l = 4, and l = 6 and l = 7 will as well.

The only term which can be written in terms of only two modes is the ∆l = 2lmax

term, which necessary contains interference between lmax and −lmax. Assume that

only these two modes, the SOa and SOaa states of lmax, exist. There will then be two

Fourier series components.:

ΨDC =
(
|γlmax|2 + |αlmax|2

)
F 2
lmax(r) (4.11a)

Ψ2lmax =2 |γlmaxαlmax| cos
[
2lmaxφ+ arg(αlmaxγ

∗
lmax) + (βVlmax − βWlmax)L

]
(4.11b)

Eq. (4.11a) and Eq. (4.11b) are invariant to the permutation αlmax ↔ γ∗lmax, meaning

that without either additional polarization projections or a priori information about

the system, the set of equations is not uniquely solvable.

There are, however, two ways in which an azimuthal Fourier series expansion,

and the intuition garnered from that picture, are immensely useful. The first is for

in situ alignment of a mode excitation scheme. As indicated in Fig. 4·4a, when an

input coupling is slightly misaligned the output of the fiber takes on a characteristic

crescent moon shape, which is indicated of an interference with a strong ∆l = 1. This

is typically a result of slight misalignments in the input coupling system (Chap. 5),

and better alignment can be obtained by minimizing the anisotropy by eye. This
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Figure 4·4: (a) Crescent moon-shaped interference pattern indicative
of ∆l = 1 interference pattern, typically due to slight input coupling
misalignments. (b) 2l bead pattern typical of strong mode coupling in
the FUT.

provides a useful feedback look for alignment, which can obtain mode purities around

−15dB or better. Similarly, if one tries to excite a mode with OAM l and a strong 2l

component is evident in the fiber output, the cause is typically in-fiber mode coupling,

as is the case for l = 5 in Fig. 4·4b for one generation of air core fiber. Alternatively,

it could be due to poor polarization control following a q-plate used as a free-space

OAM generator (Sec. 5.4).

The second useful case is when we can assume that a dominant mode exists, that is,

|αl| >> |αk|, |γk| ∀k if the SOa mode of OAM l is dominant. For the air core fibers un-

der consideration in this document, we may also assume Fj(r) ≈ Fk(r) ≡ F (r) ∀(j, k)

because of an annular guiding region constraining all modes, including l = 0, to have
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nearly the same shape, discussed in more detail in Chap. 6. Then:

ΨDC ≈ |αl|2F 2(r) (4.12a)

Ψ∆l=1 ≈ 2 |αlαl−1|F 2(r)cos
[
φ+ arg(αlα

∗
l−1) + (βVl − βVl−1)L

]
+

2 |αlαl+1|F 2(r)cos
[
φ+ arg(αlα

∗
l+1) + (βVl − βVl+1)L

] (4.12b)

...

Ψ∆l=2l ≈ 2 |αlγl|F 2(r)cos
[
2lφ+ arg(αlγ

∗
l ) + (βVl − βWl )L

]
(4.12c)

...

All terms which do not include the dominant mode are assumed small. Eq. (4.12c) is

written explicitly because it is often a series component of interest, and is a special

case because it can be solved explicitly. Using trigonometric identities, it is clear that:

a2l = 2 |αlγl|F 2(r)cos
[
arg(αlγ

∗
l ) + (βVl − βWl )L

]
(4.13a)

b2l = −2 |αlγl|F 2(r)sin
[
arg(αlγ

∗
l ) + (βVl − βWl )L

]
(4.13b)

The product of the modal weights is given by g2l =
√
a2

2l + b2
2l = 2 |αlγl|F 2(r). The

relative mode powers as a function of easily experimentally measurable quantities can

then be found by algebraic substitution:

|γl|2

|αl|2
= (

g2l

2ΨDC

)2 (4.14)

For other ∆l, the Fourier series components still include contributions from 2

parasitic modes, leaving four unknowns (two amplitudes and two phases). Taking
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∆l = 1 as an example:

a1 = 2F 2(r) |αl| [|αl−1| cos(θ1) + |αl+1| cos(θ2)] (4.15a)

b1 = −2F 2(r) |αl| [|αl−1| sin(θ1) + |αl+1| sin(θ2)] (4.15b)

for θ1 = arg(αlα
∗
l−1) + (βVl − βVl−1)L and θ2 = arg(αlα

∗
l+1) + (βVl − βVl+1)L. Note that

both θ1 and θ2 are dependent on the relative phases among three modes. Squaring and

summing Eq. (4.15a) and Eq. (4.15b) as earlier will not yield direct information on the

relative modal powers involved, due to these relative phases, which could yield falsely

high or low mode purity values. To resolve this dilemma, we gain more information

by using images at multiple wavelengths, which varies the phase relationship among

the modes of interest.

4.4 Swept Wavelength Imaging: Ring Method and S2

Studying fiber modal content by varying the phase relationship among multiple modes

has been studied, and has typically been done by sweeping a narrow-band laser or

measuring a wide bandwidth of wavelengths at the same time (Nicholson et al., 2008),

or by physically scanning a delay stage (Schimpf et al., 2011). We sweep wavelengths

using a narrow-band (Bandwidth < 1pm) external cavity laser (ECL) (HP8168F or

New Focus 6528−LN). The wavelength sweep size, ∆λ, is determined by the length

of fiber under consideration; for lengths of a few meters the ECL is swept over a few

nm of bandwidth, but for longer lengths the sweep size can be reduced to 1nm or

less. For our case of interest, note that the dependence of the relative modal phases is

given by θ1 and θ2, and is broken into two terms, one which depends on fiber length

and difference in propagation constant, and one which depends on the relative phase

of the modes when they are launched. We assume that the latter is a weak function
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of wavelength. Thus:

dθ1

dλ
= L

d

dλ
∆β (4.16)

for ∆β ≡ βVl − βVl−1. Taylor expansion of θ1 to first order yields:

θ1(λ) ≈ θ0 + (λ− λc)
dθ1

dλ
= θ0 − (λ− λc)∆ng

2πL

λ2
c

(4.17)

where ∆ng is the difference in group index between the two modes interfering, λc is

the center wavelength of the sweep, and θ0 is a wavelength-independent phase term.

For a ∆l = 1 interference pattern such as the one in Fig. 4·4, this varying phase will

cause the crescent moon to rotate as a function of wavelength (see Fig. 4·5 (a)). It

will undergo a full rotation when:

(λ− λc) =
λ2
c

∆ngL
(4.18)

The Fourier series coefficients can be calculated as a function of wavelength. For mode

purity measurements, power in l+ 1 and l− 1 are equally parasitic, so the coefficient

g1 =
√
a2

1 + b2
1 is used to estimate the mode purity of the OAM state of topological

charge l into any modes with ∆l = 1 by an equation analogous to Eq. (4.14).

Consider an example data set in Fig. 4·5 where an l = 8 mode is launched into a

first generation air core fiber of length 2m and subsequently binned in σ̂± components

(only one bin is shown as the other polarization bin is near-zero in total intensity).

The source wavelength is swept over ∆λ = 4nm with a step size (resolution) of

δλ = 0.01nm, and an image is captured at each wavelength. Each image is imported

into matlab with the two polarization bins analyzed separately. The center point of

each image is first coarsely found by center-of-mass averaging. It is then updated

by independently finding 4 points on the bright ring in cardinal directions from the

center point, and moving the center point to the geometric center of those four points.

This iterates until convergence. The intensity on the ring as a function of angle is
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Figure 4·5: (a) Mode images at different wavelengths showing rota-
tion of interference pattern (b) Azimuthal Fourier series components of
interest (c) Mode purity as a function of wavelength

then retrieved, and a Fourier series constructed of the ring intensity is calculated

(thus the name of ‘Ring’ method) (Bozinovic et al., 2012). A subset of Fourier series

coefficients is plotted as a function of wavelength in Fig. 4·5 (b). Oscillation in a1

and b1 corresponds to beating between the l = 8 mode and the corresponding l = 7

and l = 9 modes of the same spin and sign of OAM. According to simulation and

confirmed by later time domain measurements, the group index separation between

l = 9 and l = 8 is approximately 3.5×10−3, which is nearly identical to the separation

in group index between l = 8 and l = 7, so only one beat frequency is evident. The

mode purity is estimated and shown in Fig. 4·5(c) where the mode purity is about

-15dB with the strongest parasitic modes being those with ∆l = 1. One could also

perform a discrete Fourier transform between wavelength and ∆ng space, analogous

to S2, in order to back out different oscillation frequencies which contribute to each
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term. The resolution available in group index is:

δ(∆ng) =
λ2
c

LNδλ
(4.19)

for number of wavelengths, N , and δX denoting the resolution of quantity X. This

implies that the resolution in the example measurement described above is 3× 10−4,

with a maximum measurable ∆ng of Nδ∆ng/2 = 6× 10−2. Resolution of the two

different beat frequencies would require δ∆ng ≈ 10−5, which would necessitate more

than 100,000 measurements at this resolution. At longer fiber lengths, for which the

beat frequencies will be effectively larger, this distinction is more useful (Demas and

Ramachandran, 2014).

The ring method has several limitations. First, it is dependent on a source or

system configuration in which multiple wavelengths can be measured separately or

sequentially with the assumption that mode content does not appreciably change.

For instance, when using an spatial light modulator (SLM) for input coupling, it is

typically advantageous to place a blazed phase grating on the SLM, which imparts an

wavelength-sensitive tilt. This can rapidly lead to degradation as a function of wave-

length (see Chap. 5). Alternatively, if the in-fiber coupling is strongly wavelength

sensitive, for example due to resonant effects as in a grating, the method is inap-

plicable. Second, it is dependent on a good quality imaging system, as anisotropic

aberrations such as astigmatism or coma can artifically degrade the mode purity. For

the example above, a high quality 0.4 NA Mitutoyo objective was used for imaging,

and care was taken to ensure that the fiber was on-axis while being imaged. However,

some corruption is still evident; the images in Fig. 4·5 are slightly egg-shaped, and

the b1 coefficient is not zero mean, implying some constant ∆l = 1 effect. Pixellation

could also be a source of error, especially with an InGaAs camera of pixel pitch 30µm,

although it would predominantly lead to errors in calculation of higher ∆l terms. For
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fibers which do not have a ring guiding structure it may not be applicable due to

the assumption of identical electric field distributions in the radial direction, and it

would need modification for strongly guiding fibers, where the polarizations are not

circular.

4.5 Time Domain

In this section, we discuss mode purity measurements made by observing the time of

flight spectrum leaving a few-moded fiber. This section is broken into subsections on

theory, measurable quantities, experimental realization, and limitations.

4.5.1 Theory

When a pulse of light is incident on a fiber, the spatial distribution of its electric field

determines what ensemble of modes is excited at the fiber’s input facet (Snyder and

Love, 1983). Imagining the pulse as a flux of light particles, this overlap, or explicitly,

its absolute value squared, determines the probabilities of the particles being funneled

into a given mode. If there is no mode coupling, particles coupled into a mode a will

take time τ = nagL/c, where L is the fiber length and c the speed of light in free

space, to traverse the fiber. Clearly particles launched into modes with different ng

will arrive at different times, determined by the difference in group index and the fiber

length. If all of the times of arrival are separately resolvable, observing the particles

arriving as a function of time directly yields information about the input coupling

condition.

Similarly, suppose that the light particles are launched into one mode of a fiber

containing two modes with different group indices. If particles couple from mode one

into mode two somewhere in the fiber, their arrival time will be bound between the

arrival times, τ1 and τ2, of light particles launched into either mode and retained

there. If there are discrete coupling instances, such as a kink or a grating, the arrival
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Figure 4·6: (a) Two-mode fiber in which two modes are both launched
and no mode coupling occurs (b) Two-mode fiber in which one mode is
launched and a discrete coupling incident occurs at the midpoint of the
fiber. Mode coupling is evident with strength, XT, and a delay time
corresponding to the position of the perturbation (c) Two mode fiber
with weak distributed coupling between modes

time of the coupled photons will be localized to a single time, and the ratio of the

time differences between that localized time and the arrival times of either mode will

correspond to the ratio of the distance between perturbation and fiber end, and fiber

beginning and the perturbation. The strength of the coupling can be measured as a

ratio between the number of photons in mode 2 and those in mode 1, if only mode

1 is launched. If alternatively there is distributed coupling along the entire length

of the fiber, with a small coupling probability h over length dz, then a shoulder will

extent between the arrival times of the two modes. h in this instance is exactly the h

from coupled power theory discussed in Sec. 3.1 (Kawakami and Ikeda, 1978). These

cases are sketched in Fig. 4·6. If hL >> 1 then the time domain response will begin

to aggregate around the mean arrival time. These almost mundanely simple ideas

can prove incredibly powerful, both in diagnosing input coupling mode purity, and
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studying in-fiber mode coupling.

4.5.2 Measurable Quantities and Practical Limitations

Time domain measurements are useful for measuring multiple fiber parameters if a

fiber is in a weak coupling regime, and for aligning fiber optic coupling systems in the

case where modes are separately resolvable. Consider the case shown in Fig. 4·7(a),

in which we excite every mode within an OD110 vortex fiber (Chap. 6) support-

ing 7 mode families: HE1,1, TE0,1, HE2,1, TM0,1, HE1,2, HE3,1, EH1,1, with the

HE1,2, HE3,1, and EH1,1 families being nearly degenerate and close to cutoff. The

modes are all excited simultaneously by offset coupling an l = 1 optical vortex linear

polarization. The time domain trace is taken after 300m of fiber propagation (Gregg

et al., 2015b). Each peak is clearly defined except for the LP2,1 and LP0,2 peaks

(HE1,2, HE3,1, and EH1,1) which overlap with each other. The differences in group

index can be calculated if the fiber length is known. Fig. 4·7(b) shows a time domain

trace on log scale of the same fiber but where we attempt to excite only the TM0,1

mode with a q-plate (Chap. 5), to which the trace is normalized. The discrete peak

around 0.5ns is due to discrete coupling to the fundamental HE1,1 modes at the input

of the fiber, due to offset coupling, or imperfect mode conversion by the q-plate . The

continuous coupling shoulder between the time of flight of a pure TM0,1 mode and

the time of flight of a pure HE2,1 is due to in-fiber coupling, likely due to fiber bend

perturbations. Crosstalk between the two modes is given by the integration of the

shoulder (on a linear scale) divided by the integration of the peak - in this case, the

crosstalk between TM0,1 and HE2,1 is -15.2dB. Since in-fiber distributed coupling is

on the order of a few percent, and the modal dispersions of HE1,1 and TE0,1will not

result in significant differential pulse broadening over 300m, we recognize the ratio

of the peak powers of the time domain responses at the times of flight of TM0,1 and

HE1,1 as the purity of the input coupling, in this case -20dB. This allows time-of-
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Figure 4·7: (a) Time domain trace on linear scale where several modes
intentionally excited simultaneously. Differential group velocities can
be determined if the fiber length is known. Ability to independently
resolve peaks for each mode reveals stable mode propagation (b) Time
domain trace on log scale when only TM01 is launched. Peak around
0.5ns from start of trace corresponds to discrete coupling into HE11

at fiber input, while shoulder between TM01 and arrival time of HE21

reveals in-fiber mode coupling

flight to be used as a real time, quantitative alignment technique without the use of

complicated components.

In addition to crosstalk, differential group indices, and alignment purity, one could

in theory measure dispersion by time of flight by tracking the change in time of arrival,

τ , as a function of wavelength.

D =
∆τ

∆λ
=

1

c

dng
dλ

(4.20)

In practice, the implementation of this is difficult due to electronic trigger signal drift
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and environmental effects, which can also vary the time of arrival, especially with the

long fiber lengths necessary for a change in time of flight to be visible.

Also evident in Fig. 4·7(a) is electronic ringing due to the upper frequency limit

of the fast detector and oscilloscope (details on the equipment used are presented

in Sec. 4.5.3). The detected waveform is the convolution of the optical signal and

the frequency response of the optoelectronic detector and oscilloscope used. This is

responsible for the high frequency temporal content immediately after strong pulses,

which takes ∼1ns to decay below the -30dB level, as shown in Fig. 4·7(b). This is also

responsible for the high frequency burst approximately 1.5ns after the HE1,1 pulse in

Fig. 4·7(a). These artifacts are visible after pulse propagation in a few meters of SMF,

in which case no mode coupling is possible. This restricts the time span in which mode

coupling effects can be interrogated, as there must be some measurement dead time

after a strong pulse. However, the impulse response is causal, and will not impact time

spans preceding a pulse. In this case, if TM0,1 is launched, mode coupling to HE2,1

can be directly observed. We assume that if HE2,1 is launched, mode coupling into

TM0,1 will happen at the same strength due to reciprocity; however, this is not directly

measurable without introducing uncertainty by modeling the impulse response of the

detector electronics, inverting the convolution and obtaining an impulse response

function in a known single mode case, and de-convolving the HE2,1 trace, all while

assuming that the detector apparatus is linear (Goodman, 2005).

By integrating over the distributed mode coupling shoulder between the times

of arrival of pure modes and comparing with the integration of a main pulse for

crosstalk measurement, we implicitly assume that mode coupling within the fiber is

a rare phenomenon. Returning to the particle flux view of a pulse in the case of

two modes with arrival times τ1 and τ2, any light particles which undergo multiple

coupling instances will be bound in arrival time to be within τ1 and τ2, regardless of
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which mode they are in when they exit the fiber. Strictly speaking, the measurement

can only tell how much power has left the desired mode and become a parasitic signal,

either as crosstalk or as MPI. The probabilities of particles launched into mode i and

arriving in mode j, πi,j are known from theory (Kawakami and Ikeda, 1978), and an

example is plotted in Fig. 4·8(a) for the case of hz = 1. The concavity in π1,2 is

due to multiple instances of mode coupling, driving the photons towards an arrival

time which is the average of τ1 and τ2. As a function of mode coupling rate times

length, hz, the difference between theoretical crosstalk, as defined by power in mode

1 versus power in mode 2 when mode 2 only is launched, and crosstalk that would be

measured by integrating a time domain trace over the shoulder can be calculated and

the approximate difference determined (Fig. 4·8(a) and(b)). In Fig. 4·8(c) below a

Figure 4·8: (a)Theoretical power densities as a function of normal-
ized arrival time for particles launched into mode 1 and arriving in
mode 1, and particles launched into mode 1 and arriving in mode 2
(b) Theoretical crosstalk, and the crosstalk that would be measured
by shoulder integration versus peak integration as a function of mode
coupling strength, hz (c) Difference between ‘measured’ and theoretical
crosstalk
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crosstalk of -9.8dB, shoulder integration underestimates the crosstalk by up to 0.2dB

due to the portion of the distributed shoulder which is occluded by the finite width of

the pure-moded pulse, here assumed a Gaussian for simplicity. For larger measured

crosstalk values, the crosstalk is overestimated due to the presence of particles which

have experienced intermodal coupling multiple times. This overestimation increases

super-linearly with measured crosstalk. Experimentally, one source of uncertainty

is the determination of τ2, that is the exact point at which the impulse response is

dominated by light which has remained in mode 2 versus light which has made an

intermodal transition, and can cause measured crosstalk values to vary by ±0.5dB.

Time of flight by definition cannot resolve between modes with the same time of

flight, such as the degenerate SOa or SOaa OAM states of a given l. It also cannot

distinguish between temporal broadening due to severe mode coupling and temporal

broadening due to dispersion. To resolve the mode coupling between two modes, we

require that temporal broadening due to mode coupling be much larger than that due

to dispersion:

∆ng
L

c
>> D∆λL (4.21)

where ∆λ is the wavelength bandwidth of the optical pulse and D is the larger of the

two modes’ group velocity dispersion (GVD). For some low-order mode families in

the air core fibers, Eq. (4.21) does not hold, meaning that time domain is inapplicable.

4.5.3 Experimental Realization

Time domain measurements are experimentally realized using a passively modelocked

Pritel picosecond pulsed laser, with tunable wavelength between 1530nm and 1560nm,

repetition rate 20MHz, measured optical bandwidth of 0.55nm (70GHz at 1550nm),

and, assuming a hyperbolic secant pulse envelope with a transform limited pulse, an

optical pulse duration ≈5ps. For some measurements, an in-fiber EDFA (Pritel) is
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used, but only in the low-gain regime to avoid self-phase modulation (SPM).

Two detectors are used: a New Focus 1611 InGaAs PIN High-speed photoreceiver

with specified 3dB bandwidth 30kHz - 1GHz, and a New Focus 1444-50 InGaAs fast

detector with ∼ 20ps rise time, hereafter the ‘picosecond’ detector for brevity. The

1GHz detector has an FC-PC ferrule-adapted front window ∼0.5mm away from a

100 µm diameter photodiode, while the picosecond detector is FC-PC connectorized

to a short (∼10cm) internal link of 50 µm diameter GRIN MMF, which is then

epoxy bonded onto a photodiode. Both are electrically connected via SMA cable to

the electrical 40GHz detection port of an Agilent 86109A module within an 86100A

Agilent Infiniium wide bandwidth oscilloscope, which is triggered from the RF output

of the picosecond laser.

When the picosecond detector is used, light must be coupled from the OAM-

carrying fiber into a 50µm MMF. For high-order OAM states (l > 5), the speed

of diffraction in free space makes butt-coupling challenging, since the fibers need to

be extremely close together to avoid differential loss between high-order and low-

order OAM modes. We free-space couple light between the OAM-carrying fibers and

the MMF using short-focal length aspheric lenses (typically f ≤ 8mm for output

coupling from the OAM fiber, and f ∼ 11mm for input coupling into the MMF).

Coupling is first optimized by observing output power at the end of the MMF and

using two alignment mirrors. Afterwards, the signal is relayed to the picosecond

detector and observed on an oscilloscope. Mode coupling within the MMF can lead

to slight aperturing at the detector, so the input coupling mirrors are slightly aligned

to optimize received power into the fast detector. Assuming an optimized-power

calibration, this slight adjustment does not appear to introduce or remove artificial

crosstalk above the 0.4dB level. If the MMF used to relay the light to the detector

module is not GRIN but rather is a step index MMF, mode coupling within the MMF
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can be observed in the time of flight spectrum, necessitating the use of GRIN fiber.

When using the 1GHz detector, the OAM carrying fiber is inserted into a bare fiber

adapter, and pushed into the chamber of the detector until the received signal is

maximized.

Time of flight measurements using the two detectors on the same sample of air

core fiber are shown in Fig. 4·9, where (a) shows the time of flight spectrum for

l = 7 SOa after 3.1km of fiber, measured with the picosecond detector and (b) the

trace measured with the 1GHz detector. The impulse response function of the 1GHz

detector is obviously slower, resulting in a temporally wider response around the main

peak, and an apparently higher mode coupling shoulder, since the crosstalk should

not change between measurements and is related to a ratio of integrals, not a point-

by-point ratio. Finer features are clearly resolvable with the picosecond detector,

and the nanosecond detector obfuscates a larger fraction of the distributed coupling

shoulder. However, approximating that the slower detector blocks off a fraction of

the shoulder given half its width, divided by the total time between SOa and SOaa

modes, we can introduce a multiplicative factor to correct this obfuscation. When

this is performed, the picosecond detector’s trace shows -11.7dB crosstalk, while the

1GHz detector shows -11.6dB, in excellent agreement.

Although the picosecond detector clearly has better resolution, the 1GHz detector

is more sensitive to signals with low input powers. When time of flight measurements

are made on lossy systems, especially the fiber loop system discussed in Chap. 8, the

slower has the advantage of being able to measure smaller features, like locally weak

distributed coupling in long-length fibers, while not suffering from a wider impulse

response.
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Figure 4·9: (a)Time of flight spectrum of l = 7 SOa mode after 3.1km
of air core fiber measured with picosecond detector (b) Time of flight
spectrum, same conditions, measured with the 1GHz detector

4.6 Output Projection

Another possible measurement for the modal content is to iteratively take mode

projections to build up a set of modal weights. With OAM states, this can be done

by using an SLM to convert from OAM l to OAM 0 by displaying spiral hologram of

tolopogical charge −l, and then free space coupling to SMF which acts as a spatial

filter passing only l = 0 if the fiber is well aligned (Vaziri et al., 2001; Vaziri et al.,

2002; Bozinovic et al., 2013). The SLM can then be swept through all values of

positive and negative l of interest, and powers measured. For a large set of l free

space diffraction and mode conversion will impact measured mode weights, but for

a small set of modes like the OAM spectra typically seen from input coupling which

contain predominantly l − 1, l, l + 1 when l is launched, differential diffraction is a

small effect (Siegman, 1986).

Output projection using SLMs and polarizing beam splitters can select one mode
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among all fiber modes. Output coupling with q-plates , which convert a linear com-

bination of σ̂± to a linear combination of degenerate fiber OAM modes, is useful for

directly measuring in-fiber mode conversion between SOa and SOaa states, and will

be described in detail with q-plates in Chap. 5. Tolerances on output conversion

system alignment parallel those of most of the OAM input coupling systems, and

will also be discussed in detail in Chap. 5, but generally both the mode conversion

component and the SMF must be aligned at the 10s of nm level to probe states with

better than -15dB error, since an offset in the mode converter at fiber output will

project OAM l into not only OAM 0, but also into OAM ±1; equivalently it will

incorrectly project an OAM l+ 1 state leaving the fiber into OAM 0 at the -15dB or

higher level. Contrarily, it is quite difficult to project OAM l and OAM −l into OAM

0 with the same phase plate regardless of the topological charge of the phase plate,

misalignment, etc, meaning that detector-induced crosstalk between SOa and SOaa

is unlikely so long as separation into σ̂+ and σ̂− can be achieved; experimentally we

observe that this can be done to the -25dB level with off-the-shelf components.

Output projection is generally much more difficult to enact experimentally than

time of flight or ring measurements, but carries the advantages of very high preci-

sion, so long as good alignment is achieved, and simple datapoints, as typically only

powers are measured. Output projection can be coupled with time of flight to study

distributed mode coupling in fibers; this will be discussed in Chap. 6 and Chap. 8.

4.7 OAM Mode Sorter

Using optical geometric transformations, phase elements can perform coordinate

transformations for optical beams (Bryngdahl, 1974). Using a log-polar transfor-

mation, the circulating azimuthal phase of an OAM beam can be transformed into

a linear phase gradient, that is, a tilt: lφ → lx. This is the principle behind the
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OAM Mode Sorter proposed by Berkhout and collaborators (Berkhout et al., 2010;

Berkhout et al., 2011). The transformation is enacted by two phase elements sep-

arated by a wavelength-dependent distance. After the second phase element, the

different OAM states have been translated into beams with different tilts and can

be separated spatially by using a cylindrical lens. As a consequence of the log-polar

transformation, the ring shape is warped into a rectangle which is larger in the x

direction, and for which the length in y is determined by the input OAM ring width.

The fields in the Fourier plane of the cylindrical lens are then cat’s-eye like spots

elongated in the y direction.

An OAM beam of equal parts l = 7 and l = −7 is launched into an air core

fiber and transmitted ∼2m before being expanded and coupled into the mode sorter,

enacted here by two fabricated phase plates, courtesy of Dr. M.P.J. Lavery and

Dr. Miles Padgett (Lavery et al., 2012a). The first element acts as optical scissors,

cutting the OAM’s ring shape along the vertical direction, causing the ring to split

upon propagation. The second element halts this unwrapping at a fixed distance

away. Images of the sorter input, output, and field though a cylindrical lens is given

in Fig. 4·10. The two OAM modes are clearly resolvable as spatially separated spindle

patterns.

Figure 4·10: (a) Equal parts l = 7 and l = −7 launched into mode
sorter from air core fiber (b) Transformed beam leaving sorter (c) Trans-
formed beam focused by cylindrical lens, yielding spindle-like patterns,
one for each l

Additional features in the Fig. 4·10(c) are visible based on sorter misalignment and
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limitations. Since the rings become slightly larger for each l, the unwrapped beam in

the plane of the second element become longer and longer in the x direction, eventually

clipping the finite aperture and leading to unwanted high-frequency components in

the image. Further, the overlap between adjacent l states is large, with neighboring

l states having an intensity overlap of about 20%.

Recent improvements have shown a mode sorter capable of sorting more than

50 l states (Lavery et al., 2013), the ability to sort in both radial and azimuthal

coordinates (Dudley et al., 2013), and the addition of a fan-out element capable of

further separating the spindle patterns, reducing the intensity overlap to about 5%

(O’Sullivan et al., 2012), although with a reduction in operating bandwidth to about

4nm at a central wavelength of 749nm (data courtesy of Dr. Mohammad Mirhosseini).

The mode sorter appears to be a promising technology for OAM characterization,

as well as potentially loss-less MUXing and DEMUXing for optical communications

(Lavery et al., 2012b)

4.8 Other Characterization Methods

This discussion is by no means extensive and other means of characterizing the out-

put of OAM fibers exist. Chip-based demultiplexers which function based on the

principles of phased array antennas could detect and route different OAM state to

different single-moded waveguides (Su et al., 2012). It is well-known in free space

that optical vortices with topological charge N > 1 are unstable in free space under

even weak anisotropic perturbations, and break into N first order (l = 1) vortices

(Soskin et al., 1997; Freund, 1999; Ricci et al., 2012). This can be exploited by intro-

ducing a large astigmatism, through a tilted lens or tilted prism, etc, which breaks up

the OAM mode’s singularity into multiple, spatially distinct, first order singularities

(Vaity et al., 2013),as shown in Fig. 4·11. |l| can then be observed by the number of
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Figure 4·11: l=7 lens passed through a tilted Wollaston prism, break-
ing higher order singularity into 7 first order singularities. Credit to
Gautam Prabhakar for experimental image

vortices, while the sign can be inferred from their spatial distribution. A multiplane

light converter (Labroille et al., 2014; Genevaux et al., 2015) could losslessly spatially

separate the fiber output, assuming that the mode shapes were known a priori.

A device leveraging the advantages of waveguides for input/output coupling or

characterization of OAM modes, for instance, a photonic lantern (Leon-Saval et al.,

2005) or tree of fused couplers (Lai et al., 2007) could utilize phase matching to sep-

arate OAM modes of interest. Such research would be of immediate and incalculable

use.

4.9 Summary

In this chapter, we have discussed multiple methods for characterizing OAM modes of

fibers, predominantly time of flight and ring techniques. Time of flight measurements

are generally useful and relatively simple to employ, although there are a range of

scenarios in which they do not apply, including very short fibers, and fiber with many

modes of similar group index. However, it has the advantage of being agnostic to

the spatial shape of the mode in question, able to measure discrete and distributed

coupling, and usable in situ for alignment for input coupling or fiber splicing. The
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problems of OAM characterization and OAM demultiplexing are entangled, and the

latter will be discussed more thoroughly in Chap. 11. But, with OAM characterization

methods introduced, we may proceed to discussions of launch mechanisms for OAM

modes in fibers.
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Chapter 5

Mode Excitation

In this chapter, techniques for exciting OAM modes with high purity are discussed.

We begin with a brief discussion of in-fiber mechanisms such as tilted long-period

gratings (LPGs) and microbend gratings, which are useful for some kinds of OAM-

supporting fiber. Most of this chapter is dedicated to two free space techniques - mode

excitation with SLMs and q-plates . As we will demonstrate, SLMs have the advantage

of being tunable generators of OAM, while q-plates have the advantage of being

able to excite arbitrary combinations of degenerate OAM fiber modes of the same l.

Both devices have the same disadvantages of demanding precise alignment, and being

unable to losslessly combine multiple (non-degenerate) OAM states simultaneously.

5.1 In-Fiber Excitation Techniques

In-fiber OAM excitation techniques typically rely on a phase-matched mode conver-

sion process to go from a fundamental or lower order mode to the desired OAM mode.

As in Chap. 3, the perturbation needs to have the appropriate symmetry to excite

the OAM mode of choice. Two such controller perturbations are tilted gratings and

microbend gratings.

Tilted gratings operate under the same principle as standard fiber LPGs except

that the period is written at an angle with respect to the fiber’s ẑ axis (Erdogan, 1997;

Ivanov et al., 2006; Yan et al., 2015). This tilt while writing induces an asymmetric

perturbation from the point of view of light travelling down the fiber, and can result
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in cross-l mode coupling, which is maximized when the grating pitch, Λ is given by:

Λ = λ
∆neff

where ∆neff is the separation in effective index between the input mode

and the desired output mode (Vengsarkar et al., 1996).

A second asymmetric grating is the microbend grating, in which a fiber is com-

pressed in a series of bends with well defined pitch, Λ (Blake et al., 1987). These

bends are typically induced by either pressing a mechanical plate with a fixed groove

pitch onto the fiber (Blake et al., 1986; Ramachandran et al., 2009) or by periodically

inducing lateral stress along the fiber and ‘freezing’ it in with the application of a high

current, deforming the fiber (Hwang et al., 1999). Although these gratings are known

to induce polarization-dependent resonance splitting (Golowich and Ramachandran,

2005), they have the advantage of being period-tunable, as the mechanical plates

can be placed on a rotation stage, which can decrease the period seen by the fiber

(Bozinovic et al., 2012).

However, both methods rely on the presence and ability to excite at least one

mode in the fiber under test. Traditionally, this is the fundamental HE1,1 mode,

since it can typically be excited by splicing or butt coupling an SMF to the FUT

with additional mode stripping using a fiber taper, if necessary. However, in some

of the OAM fibers under consideration in this thesis, the fundamental mode is either

difficult to excite purely due to its spatial shape and the presence of HE1,2 modes,

or unstable due to a small ∆neff with respect to adjacent modes, notably TE0,1. In

principle gratings could be used to convert among HOMs, but this requires stable

excitation of another mode from free space.

5.2 Free Space Excitation

Free space excitation of fiber modes requires the sculpting of an optical field in free

space. The weight of mode ν = (l,m) with spatial and polarization distribution Ψν
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excited by a free space optical field Φ incident on the fiber facet is given by:

αν = 〈Φ|Ψν〉 ≡
∫ ∫

dA Φ∗ ·Ψν (5.1)

Assuming that mode ν is an OAM mode with spatial distribution defined by Eq. (2.15)

or Eq. (2.16), and that the incident field can be factored into vector and scalar

components, which can be furthered separated in radial and azimuthal coordinate,

Φ = Φ̂Φ = Φ̂R(r)G(φ), the overlap can be broken into separate parts:

αν = (Φ̂ · σ̂±ν )

∫
dφ eilφG∗(φ)

∫
rdr R∗(r)Fν(r) (5.2)

We use σ̂±ν to denote the sign of the spin of the mode in question, and allow l to

be positive or negative. Optimizing mode excitation clearly requires matching three

field components: polarization, OAM, and radial field structure, which can be tailored

independently in free space. Note that the integral above is in the coordinates of the

end facet of the optical fiber, that is, r = 0 corresponds to the geometric center of

the fiber, around which φ is defined. If the input beam and the fiber are misaligned

in space, the input field must be redefined in terms of the fiber’s coordinate, which

will affect the azimuthal component of the overlap integral. Note also that if either

the fiber mode or the input field is not separable, either in radial and azimuthal

coordinates, or because it has a spatially variant polarization due to tight-focusing

(Youngworth and Brown, 2000) or spin-to-OAM conversion (Bliokh et al., 2010),

simplification of Eq. (5.1) may not be possible.

The polarization degree of freedom can be manipulated with conventional polar-

ization controllers: free space waveplates, or, if the laser is emitted from an SMF, a

fiber-based polarization controller (polcon). The radial and azimuthal parts of the

overlap integral require sculpting by a optical elements control a beam’s spatial dis-

tribution; such devices include apertures inside a resonant cavity (Kogelnik and Li,
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1966), spiral phase plates (SPPs) (Beijersbergen et al., 1994; Turnbull et al., 1996;

Guo et al., 2006), binary phase plates (Davis et al., 2003; Stepniak et al., 2011; Demas

et al., 2015a), axicons for radial field re-distribution (Mcleod, 1954; Arlt and Dholakia,

2000), or combinations of these (Machavariani et al., 2002). Phase only holograms

can be used to tailor optical fields almost arbitrarily (Arlt et al., 1998; Dudley et al.,

2012; Bolduc et al., 2013). Computer controlled phase holograms called Spatial Light

Modulators (SLMs) will be discussed in detail in the next section (Matsumoto et al.,

2008; Ando et al., 2009). There are devices, such a q-plates and s-plates which treat

polarization and azimuthal symmetry as one degree of freedom (Marrucci et al., 2006;

Beresna et al., 2011). q-plates will be discussed in detail in Sec. 5.4.

With the exception of some mode converters which are fabricated directly onto

fiber tips (Kostovski et al., 2014), most mode converters act some distance away from

the fiber, and the resultant optical field is either imaged or Fourier transformed onto

the fiber facet. Thus, it is useful to review (in extreme brevity) free space beam

propagation. This can be cast in terms of Fresnel diffraction (Goodman, 2005) or

propagation of Laguerre-Gaussian (LG) beams, both of which are reviewed here.

Assuming a paraxial optical field with spatially uniform distribution of polariza-

tion, the evolution of the field shape in free space can be written as a Fresnel integral.

This can be generalized to the evolution of a paraxial beam through an optical system

described by an ABCD matrix. If an optical field with distribution U1(ξ, η) passes

through an optical system described by an ABCD ray matrix to the (x, y) plane, the

field distribution in the second plane can be written as (Collins, Jr., 1970):

U2(x, y) =
eikL

iλB
eiπ

D
λB

(x2+y2)

∫ ∫
dξdη U1(ξ, η)eiπ

A
λB

(ξ2+η2)e−i
2π
λB

(xξ+yη) (5.3)

Where L is the average path length through the ABCD system, and A,B, and D are

elements of the system’s ABCD matrix. If the optical system performs an imaging
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operation, B = 0 (Saleh and Teich, 2007). In the limit B/A → 0 and using AD −

CB = 1 (Siegman, 1986):

U2(x, y) =
eikL

A
eiπ

C
λA

(x2+y2)U1(
x

M
,
y

M
) (5.4)

Where M is the image magnification, given by M = A. For a fiber, cylindrical

coordinates are more useful, and Eq. (5.3) can be rewritten in terms of a series of

Hankel transforms propagating from the (ρ, θ) plane to the (r, φ) plane:

U2(x, y) =
eikL

iλB
eiπ

D
λB

r2
∞∑

n=−∞

[
in−1einφ

∫
ρdρ eiπ

A
λB

(ρ2)Jn(
2π

λB
rρ)

∫
dθU1(ρ, θ)e−inθ

]
(5.5)

It is clear from Eq. (5.5) that the OAM spectrum of U1 will be maintained as expected;

the ABCD matrix framework assumes an isotropic optical system. Eq. (5.3) - Eq. (5.5)

are used to simulate field propagation in order to optimize system distances and lens

focal lengths. Eq. (5.5) is most intuitive, as it evidently treats different OAM states

separately and sums their fields, while Eq. (5.3) is computationally faster, since fast

fourier transform (FFT) algorithms are well developed.

Alternatively, beam propagation can be understood through a modal decomposi-

tion into the Eigenmodes of free space, which for cylindrical coordinates are the LG

beams (Siegman, 1986). The LG beams are given by:

ul,p(r, φ, z) =
clp
w(z)

[
r
√

2

w(z)

]|l|
e
− r2

w2(z)L|l|p (
2r2

w2(z)
)e−ik

r2

2R(z) eilφeikzeiψ(z) (5.6)
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with

w(z) = w0

√
1 + (

z

zr
)2

zr =
πw2

0

λ

R(z) = z[1 + (
zr
z

)2]

ψ(z) = (2p+ |l|+ 1)arctan(
z

zr
)

cl,p =

√
2l!

(1 + δ0p)π(l + p)!

Here L
|l|
p is a generalized Laguerre polynomial, w0 is the beam waist in the focal plane,

ψ(z) is the Guoy phase, and zr the Rayleigh range. The standard Gaussian beam is

given by l = p = 0. However, for l > 0, p > 0, w0 loses its meaning as a metric for

beam spot size. If the spot radius is taken as the standard deviation of the intensity

pattern, the true spot radius is instead given by w =
√

2p+ l + 1 w0 (Phillips and

Andrews, 1983). LG beams are propagation-invariant in free space, meaning that

as they propagate, their characteristic sizes will scale as determined by w(z) but

they will not change their spatial distribution otherwise. Thus, a free space optical

field can be modeled by decomposing it into its LGl,p constituents, propagating them

separately, and summing them.

With propagation of higher order modes in free space thus reviewed, we turn to

the first of two promising OAM mode converters: programmable SLMs.

5.3 Spatial Light Modulators

Spatial light modulators are programmable holograms which can display near-arbitrary

phase patterns and imprint them on an incident optical field, by spatially modulating

a liquid crystal film, which locally changes the refractive index of the SLM and thus
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manipulates the phase of the incident beam. The SLMs used in these experiments

are Hamamatsu LCOS-SLM X10468-08, which have 792x600 pixels of pixel pitch

20µm, a fill factor of 98%, and an operating range of 1000-1550nm. The SLM uses

parallel-aligned nematic liquid crystals, such that the device causes no polarization

rotation, but only operates on a single polarization, say x̂, with the orthogonal linear

polarization ‘seeing’ a blank mirror.

Assuming that the optical field Ψin is purely x̂ polarized, the near field of the

SLM is given by:

Ψout = Ψine
iΞ(X,Y ) (5.8)

where Ξ(X, Y ) is the holographic pattern displayed on the SLM, and (X, Y ) are

SLM coordinates, written in capital letters as a reminder that they are discrete:

(X, Y ) = (m,n)∆X; (m,n) ∈ {1, 2, ...M(N)} for pixel size ∆X and pixel array size

(M,N).

The SLM can be used in two configurations with respect to the FUT: Fourier

plane or imaging plane. When in the Fourier plane, the near field of the SLM is

allowed to diffract whatever distance between the SLM and the fiber, before it is

input coupled with a high-NA lens. The focal length of the lens needed for a given

beam size can be approximated by calculating the Gaussian beam width in the lens’

focal plane, and comparing
√
l + 1wl, where wl is the beam width of a Gaussian beam

in the focal plane of the lens and l is the desired OAM order, to the size of the desired

fiber mode. Typically, we require focal lengths on of 4 ∼ 8mm for high-l states.

A schematic diagram of the optical system used with the SLM in the fiber’s Fourier

plane is given by Fig. 5·1. A Gaussian beam, whose polarization is controlled by an

in-fiber polarization controller to be parallel with the preferential axis of the SLM,

impinges on an SLM showing a ‘fork’ hologram of l = 2. A fork is a combination of

a spiral phase, ilφ and a tilt pattern kx, the far field of which is an OAM mode of
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Figure 5·1: Simplified schematic of experimental system for using
SLM in fiber’s Fourier plane for mode excitation. Inset: image of light
beam between SLM and fiber

topological charge l diffracting at an angle determined by the incident angle and k

from the SLM. The Gaussian beam will only be converted to the desired OAM mode

(or set of modes with the same azimuthal index) with a finite diffraction efficiency,

η, determined by the SLM’s filling factor, bit depth, finesse (phase quantization) in

being able to replicate the phase function, and inability to display a full 0 to mπ

phase pattern, needing instead to display mod(Ξ, 2π) (Goodman, 2005). This results

in the appearance of multiple diffraction orders. In the case k = 0 these diffraction

orders are colinear. For a large enough k, these can be separated in free space. In

practice, k does not have to be very large, as the fiber acts as a high-quality spatial

filter. The largest possible diffraction angle from the Hamamatsu SLM is 2.5◦ with

typical diffraction angles of ∼ 0.5◦. The SLM is experimentally very easy to align

by observing its diffracted beam. The input Gaussian beam should be directed to

the SLM’s coarse center by use of mirrors, and the far field of that pattern observed.

At first, regardless of the OAM desired, a very high topological charge fork pattern,

such as l = 10 should be displayed. When the center of the fork and the center of the
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Figure 5·2: (a) Far field pattern of SLM with input Gaussian beam
and SLM pattern well aligned (b) and (c) show cases of beam and
pattern offset, with a more dramatic offset for (c)

incoming Gaussian beam overlap, the far field pattern should be nearly isotropic as in

Fig. 5·2(a). If, however, the beam and pattern are not overlapping on the SLM plane,

the far field will show an anisotropic ring shape as in Fig. 5·2(b) and (c). The pattern

center may then be moved digitally to single-pixel resolution in order to center it on

the incoming beam. A high l should be used for this initial alignment as its effect on

the beam is more appreciable due to faster free-space diffraction for larger l.

After the input beam and SLM are centered, the diffracted beam from the SLM

is passed through a QWP and into the clear aperture of an high-NA aspheric lens or

microscope objective. Two mirrors with tilt control should be between the SLM and

fiber. Care must be taken centering the input OAM beam on this lens with low tilt, as

if the beam strikes the lens far from center, even if it is not vignetted and even if the

input OAM beam is nearly perfect, the focal plane of the lens will feature distortions

due to lens aberrations, as in Fig. 5·3. Experimentally this can typically be done

by placing an IR card shortly after the lens, and moving the two mirrors such that

the beam coming through the lens is both centered and isotropic. Due to the short

focal distances involved, placing a camera in this plane involves the use of an imaging

system, which is not always practical. However, observing the lens throughput by

eye to observe symmetry can typically assure purities on the order of 15dB or better
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Figure 5·3: Field in the focal plane of a lens when an OAM state is
incident by off-center. Field is both elliptical and clearly brighter on
one side than the other, implying undesired OAM coupling in free space

and which can be later optimized with better fiber characterization feedback, such as

time of flight.

The fiber may then be aligned in the following way. First, reverse-illuminate

the fiber from the end which will become the output facet, by butt-coupling that

facet with SMF. This will excite a random assortment of predominantly lower-order

modes. Using an IR card, manipulate the input facet in the ẑ direction such that the

reverse-illumination is roughly collimated leaving the coupling lens. Move the fiber

in the transverse direction to the lens and roughly center the fiber’s output on the

SLM pattern, which should visibly enlarge the beam if the SLM has a high-l fork

pattern displayed. Adjust the fiber’s longitudinal displacement from the lens again to

ensure near-collimation. Then, remove the fiber’s output facet from the illumination

source and image it onto a camera. This alignment will not be enough to ensure good

purity, but will be sufficient to act as a starting point, from which the fiber should be

moved in the transverse directions to the lens. Alignment is stopped when the imaged

output is ring-like and isotropic. Finer adjustment can now be performed by using
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the SLM. Typically the pattern center may need to be displaced by a pixel or two,

and a spherical wavefront curvature will need to be added to optimize the coupling

strength.

Time domain may be used as an in situ alignment technique to ensure high-

precision alignment. A time domain trace while a fiber is being aligned is shown in

Fig. 5·4. l = 6 is selected on the SLM, and we try to excite the l = 6 SOa mode. Two

parasitic features are evident in this trace, one from l = 6 SOaa and one from l = 5

SOa. Coupling across l = 6 mode families may be controlled by tuning the QWP

angle. Control of cross-l coupling is determined by free space alignment, and error can

come from many sources, including SLM center offset, tilt, and fiber offset. We find

that centering the SLM using a camera before the fiber, rough-aligning as described

above, and then fine aligning using two mirrors between the SLM and fiber is typically

enough to ensure launch purity at the 20dB level. Changing the topological charge

Figure 5·4: Time domain trace of fiber mode excited with SLM and
QWP. Discrete coupling to SOaa from SOa controllable by QWP angle,
coupling from l = 6 to l = 5 controlled by free space coupling alignment
precision

on the OAM should then result in high purity for OAM states within a ∆l of 2 or

3, after which defocus may become an issue and lead to higher crosstalk into other
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l modes. It is typically possible to achieve purity of 15dB or better into one OAM

mode with an offcenter SLM pattern, using some combination of fiber offset and tilt

to counterbalance the error induced on the SLM. However, switching l in this case will

quickly yield very poor mode purity. In the process of alignment, it is thus typically

helpful to switch the SLM’s topological charge a few times to ensure good alignment.

The OAM mode excitation is highly sensitive to fiber position, as shown in Fig. 5·5.

Here, the fiber is aligned as well as possible using an f = 6.25mm coupling lens, and

the output mode purity is estimated using the Ring method. The fiber is then moved

slightly, in 0.5µm increments, and the mode purity again calculated. Displacing the

fiber by as little as 0.5µm results in a mode purity degradation of 10dB or more.

One disadvantage of using a tilted phase front on the SLM is that the location of

the optical field in the lens’ focal plane becomes wavelength dependent. The phase

pattern on the SLM is written as:

Ξ = lφ+ TILT ×X (5.9)

The parameter TILT is a phase tilt that is controlled in situ, which can also be

expressed in terms of an effective grating pitch Λ[mm] = 256
TILT

. If we assume that

the fiber is in exactly the Fourier plane of the lens, Eq. (5.3) simplifies to a Fourier

transform. From the properties of a Fourier transform, a tilt in the space plane will

be mapped onto an offset in the Fourier plane (Goodman, 2005). Noting that the

kernel of an optical Fourier transform is given by 2π
λf

where f is the focal length of

the lens, this coordinate offset in the fiber plane will be given by:

x = f
λ0 + ∆λ

Λ
(5.10)

where λ0 is the wavelength at which the system is aligned. Assuming that the system

is aligned at the center wavelength, it is clear that there is a wavelength dependent
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Figure 5·5: (a) Mode purities as calculated by the Ring method when
the fiber is displaced in the focal plane of an f = 6.25mm lens. Circles
indicate offset in +x, crosses offset in −x (b) Mode purities as a func-
tion of source wavelength calculated by Ring method for alignment at
1550nm. Circles indicate calculated mode purities when the wavelength
is kept at 1550nm, but the TILT parameter is adjusted as if the source
were at those wavelengths. Insets are experimental images from this
TILT sweep measurement

offset, ∆x = f∆λ/Λ, which will affect the input coupling. This is shown experimen-

tally in Fig. 5·5(b). The solid traces indicate mode purities from a Ring measurement

taken over a wide wavelength range, 1530nm to 1570nm. The mode purity into

modes with ∆l = 1 rapidly increases from ∼ −30dB up to worse than −20dB when

the wavelength is changed by only 5nm. Instead of changing wavelength, one could

also change the TILT parameter, and compare the effective offsets in the lens’ focal
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Figure 5·6: Free space diffraction patterns for an ensemble of OAM
modes generated by an SLM

plane, we find:

∆TILT

TILT
=

∆λ

λ0

(5.11)

The wavelength is kept constant at 1550nm but the TILT parameter is changed

to achieve the same offset, we find the same deviation in purity (purple circles in

Fig. 5·5, where the data is plotted as ∆TILT = ∆λ, which gives finer resolution

in fiber position than does our translation state, for which the finest gradation was

500nm. Noting that a 5nm shift in wavelength brings us to approximately -20dB

in mode purity, it is evident, using Eq. (5.10) that the fiber needs to be aligned to

within 200nm to achieve better than -20dB mode purity. This also places a limit

on the operating bandwidth of the system, although for systems implementations

across C-band, for instance, two SLMs could be used simultaneously to correct this

wavelength dependent offset, much like two parallel gratings are used for chirped

pulse amplification (CPA) (Maine et al., 1988).

When the SLM is in the fiber’s Fourier plane, the distance between the SLM and

fiber should be as short as possible. Far fields from the SLM for various l values are

shown in Fig. 5·6, and as expected, higher l states diffract more rapidly. Placing a

positive lens on the SLM can alleviate this, but eventually states will be vignetted

by the clear aperture of the high-NA focusing lenses, which are typically < 5mm. It

is also apparent from Fig. 5·6 that as l increases, the number of rings in the far field

pattern also increases. This can be understood from LG mode projection. The initial
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beam is a near-ideal LG0,0 mode, which is then multiplied by a spiral phase front. This

will never project perfectly into an LGl,0 mode, since LGl,0 has no intensity on axis,

consequent of its phase singularity. It will instead project into some combination

of LGl,p modes, with more and more p needed as l increases, since as l increases,

the LG modes tend to become rings which are thinner and have a center-of-mass

further away from the origin, with diminishing overlaps with a Gaussian distribution

(Siegman, 1986).

To control this ringing effect, we may introduce amplitude-sculpting on the SLM.

The simplest method for doing so is by introducing loss, which may be achieve by

adding the following checkerboard pattern to the SLM in regions where we desire to

lose power (Dudley et al., 2012).

Ξloss = mod(
X + Y

2
, 2) (5.12)

Physically, this can be thought of as a combination of gratings in the vertical and

horizontal directions, with the most rapid pitch possible, in order to induce significant

scattering. Define the SLM’s pattern as an annulus of inner radius rinner and outer

radius router; the pattern induces high loss for all radial coordinates outside this

annulus. The LG projections as a function of these inner and outer radii can be

numerically solved; an example for l = 3 is plotted in Fig. 5·7. The coupling strength

into LG3,0 only decreases as the outer radius is shrunk or the inner radius enlarged,

but coupling into LG3,1 can be minimized for some annular apertures. This becomes

more difficult for higher l states as the coupling strength into LGl,0 strictly decreases

for increasing l. Control of ringing is shown experimentally in Fig. 5·8 for the case

of l = 5. As the inner and outer boundaries of the annulus are changed, the far

field becomes more like a desired ring shape. It should be noted that this does not

necessarily improve the coupling efficiency into the fiber; loss at the input facet has
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Figure 5·7: (a) Coupling strength into LG3,0 of a Gaussian beam
multipled by a spiral phase and modulated by an annular binary trans-
mission aperture; vertical axis is increasing inner radius of the annulus
in the downward direction, and horizontal axis is increasing outer ra-
dius in the right direction (b) Coupling strength into LG3,1 under same
conditions (c) Mode purity LG3,1/LG3,0 under same conditions. Note
a curve (dark red) where LG3,1 is suppressed
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Figure 5·8: (a) Near field image of SLM field, showing annular pass-
band and fork lines (b) Far field diffraction for rinner = 20pix and
router = 300pix (negligible effect) (c) rinner = 20pix and router = 100pix
(d) rinner = 32pix and router = 150pix Control of ringing structure is
evident
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Figure 5·9: Excitation of (a) HE1,1 and (b) HE1,2 in air core fiber

been traded for loss at the SLM plane. However, this kind of beam sculpting is

desired for controlled excitation of HE4,1 versus HE4,2 modes in fibers which support

multiple radial order modes. Fig. 5·9 shows the excitation of HE1,1 and HE1,2 modes

in the first generation air core fiber, enabled by this annular aperturing technique

(note that as we will discuss in Chap. 6, the fundamental mode in an air core fiber

has a ring shape but no OAM). This technique can be extended to sculpting nearly

arbitrary field shapes using more complicated phase masks, which manipulate the

full complex amplitude of the beam leaving the SLM (Bolduc et al., 2013). However,

more complicate phase patterns will intrinsically result in lower diffraction efficiency

and thus higher loss due to finer spatial features.

One intrinsic difficult with using an SLM in the far field is that different mode

orders will by default have different mode sizes in the focal plane of the coupling lens,

even when the amplitude is sculpted. For exciting a small manifold of OAM states,

such as l = 5, 6, 7, this is not an issue, but for exciting a wide variety of mode orders,

this is problematic. Experimentally, we observe that size-matching the desired OAM

mode is crucial for obtaining pure mode coupling. There will always be some tilt

or misalignment in the input coupling system which provides an alignment purity
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‘noise’. If the input coupling is poor in strength due to the OAM mode being badly

mis-sized, the desired mode’s strength will be much closer to this limit imposed by

either random defects, or aberrations which are nearly impossible to correct by hand.

We observe from time domain that in some cases, we cannot achieve a mode purity of

better than -12 ∼ -15dB if the lens and/or beam size are poorly matched to the fiber.

This issue can be solved by using an SLM in a multi-pass configuration (Sridharan

et al., 2012; Vaity et al., 2014; Gregg et al., 2015a)

Figure 5·10: Sculpted ampli-
tude distributions for a few OAM
states

A second configuration for an SLM is to use

it in the image plane of the FUT, in which case

the SLM is typically placed as far away from the

fiber as possible to ensure a large magnification.

From Eq. (5.4), it is clear that in such a configu-

ration, a spherical phase (lens) should be placed

on the SLM to account for the phase accrued in

the imaging operation (in imaging a flat surface

onto a flat surface, not a sphere onto a sphere)

(Goodman, 2005). This configuration is useful as

it can provide immediate alignment assistance -

the SLM plane can be imaged in either direction

(from fiber to input, or input to fiber) and the nec-

essary magnification thus tuned, since the beam

sizes can both be defined in terms of pixel radius,

and should be about the same. This configuration

can also be useful for differentiating in excitation between HEl,1 modes and HEl,2

modes by introduce in π phase shift in the appropriate place in the SLM plane. How-

ever, this configuration cannot use a tilted grating on the SLM. If the imaging system
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Figure 5·11: Image of (a) blank SLM surface illuminated by Gaussian
beam (b) SLM surface with a spiral phase pattern and (c) SLM surface
with a fork pattern

has enough clear aperture and is designed intelligently enough that the beam does

make it to the fiber facet, the fiber will see a magnified reconstruction of the pattern

on the SLM, which now includes a linear phase gradient across the face of the SLM.

This is equivalent to trying to input couple an OAM state, and will result in an OAM

spectrum with undesired modes. Thus, in an imaging configuration, multiple diffrac-

tion orders are not separable in space, although the lens on the SLM may render

undesired beams significantly weaker locally.

In (Gregg et al., 2015a) we utilized a two stage SLM excitation system to excite a

variety of fiber modes. The input Gaussian beam is collimated as it strikes the first

SLM pattern, which contains a helical phase, a tilt, an amplitude mask to excite LGl,0

modes of waist w, and a lens of focal length ∼1m. Light propagates approximately 1m

to the second SLM phase plate, thus the first beam is Fourier transformed onto the

second SLM plane. The second SLM apertures higher diffraction orders, and contains

only a lens, and is imaged into the FUT. The waist from SLM1 was variable, allowing

for change in the spot size on SLM2, which varied the coupling efficiency. A phase

discontinuity of π at a certain radius is applied on SLM2 to selectively excite first

radial order or second radial order modes.

The SLM is controlled by a Labview virtual instrument (VI) which treats the SLM

as a monitor. The phase patterns are calculated and summed before being taken

modulo 255 (bit depth of the SLM) and displayed. Early versions of this code were
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written by Dr. N. Bozinovic, and were expanded and adapted for the work herein.

In theory the bit depth of the SLM changes slightly with wavelength, but this leads

to negligible loss changes. SLM insertion loss depends on pattern complexity, and is

typically on the order of 1 ∼ 4dB. The SLMs come with pre-calculated calibration

patterns meant to account for the fact that the SLM surface can be slightly curved.

We find that these patterns do not appreciably change the achievable purity whether

they are applied or not; however, if the pattern is applied during alignment and later

removed, this can lead to immediate misalignment.

One limitation of SLMs is that they typically cannot modulate light faster than

a few tens of Hz. This prevents their application as a dynamic switching element.

However, for static alignment, their stability on the order of hours to days in the

face of temperature variation and environmental fluctuation can prevent the need for

constant realignment.

If zero-order QWPs are used, and the mirrors between the SLM and kept at slight

angles, suppression of undesired other polarizations can typically be achieved to -25

to -30dB. The mirrors should be aligned to displace the beam vertically very little

(that is, the SLM and the coupling lens/fiber should be mounted such that the are

nearly the same height). Then, the QWP should be kept between the second mirror

and fiber, as the two mirrors are unlikely to mix the linear polarizations but may

induce a phase shift between them, which would scramble circular polarizations.

For input coupling, the fiber is mounted on a fiber V-groove on a Thorlabs

nanomax 6-axis stage. We find that although the angular precision is not always

necessary to achieve high-purity coupling, these stages tend to be much more sta-

ble than the standard 3-axis translation stages, which yields much better long term

system stability. For output coupling, any reasonable three-axis stage can be used,

although the lens needed to image the fiber must be relatively high-NA due to the
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rapid divergence of free space OAM states.

5.4 Liquid Crystal q-plates

Optical systems using SLMs can excite OAM modes in fiber by separately tailoring

their polarization and phase. Although this implies the freedom to, within the appro-

priate system, excite any single OAM mode, it also implies that it may be difficult to

excite a controlled superposition of modes efficiently, other than the superposition of

SOa and SOaa of the same l. It is known that for l = 1, the degenerate states couple

for fiber propagation at 100s of meter, or kilometer length scales (Bozinovic et al.,

2013). This was controlled in transmission experiments by making a fiber polcon with

loops of OAM carrying fiber, allowing for disentangling of fiber mixing of degenerate

states similar to polcons for single mode fiber. However, this unwinding methodology

may not be extendable to multiple states simultaneously (in the same fiber), and as

we shall see in Chap. 7, high-l states resist this mode coupling completely over short

fiber lengths. Thus, it would be beneficial to use a mode converter which has the

ability to excite arbitrary controlled superpositions of degenerate OAM states.

Such a functionality is offered by q-plates , which couple spin and orbital angular

momentum of free space beams (Marrucci et al., 2006; Marrucci et al., 2011). A

q-plate is essentially a spatially variant half-wave plate, wherein the orientation of

the fast axis of the half-wave plate, α, varies as a function of azimuthal coordinate,

φ, and completes q rotations as φ goes from 0 to 2π.

α(φ) = qφ+ α0 (5.13)

q can be a positive or negative integer or half-integer, and α0 is a constant. q-plates

can be realized by photo-alignment of liquid crystal cells wedged between indium tin

oxide (ITO) substrates (Slussarenko et al., 2011b). An AC bias is applied to the
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liquid crystals, causing molecule oscillation into and out of the plane of the q-plate

which has the effect of slightly changing the refractive index, thus the birefrince of

the q-plate is tunable to arbitrary wavelengths (Slussarenko et al., 2011a).

If a q-plate is biased to half-wave retardance for a given wavelength of operation,

it performs the following linear transformation:

q ·
(
Aσ̂+ +Bσ̂−

)
= Aeiα0σ̂−ei2qφ +Be−iα0σ̂+e−i2qφ (5.14)

That is, the q-plate flips the spin from plus to minus, or vice versa, and adds OAM of

order 2q. Since half-wave plates (HWPs) will exchange circular polarizations without

affecting the sign of the OAM, a q-plate followed by a HWP is effectively a q-plate of

charge −q (although the output beam would retain its original polarization. Strictly

speaking, a q-plate of charge q followed by an HWP is equivalent to an HWP followed

by a q-plate of charge −q). Critically, note that σ̂+ is exactly converted to the SOaa

OAM of topological charge 2q, while σ̂− is converted to that state’s degenerate pair,

the SOaa OAM of topological charge −2q. Thus, controlling input polarization, with

either free space waveplates or fiber polarization controllers, directly controls the

superposition of degenerate OAM states excited at the fiber facet. In most cases, the

phase term corresponding to α0 can be safely ignored, as it does not affect the ability

of the q-plate ability to excite a controllable OAM superposition. These terms are

thus dropped for the rest of this chapter. However, two instances in which this phase

term cannot be ignored are discussed in Sec. 7.4 and Sec. 10.1.

All q-plates used in the experiments in this document are provided courtesy of

Mr. Andrea Rubano, Dr. Ebrahim Karimi, and Dr. Lorenzo Marrucci. The q-plate

can also be biased to be half-wave retardance for a given wavelength by application of

an AC voltage of frequency 1 ∼ 4kHz, which fully converts the input state, or biased

to full-wave retardance, leaving the original state intact (Slussarenko et al., 2011a).
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For an arbitrary bias, the q-plate will create a superposition of the original state and

the converted state as the retardation is between mλ/2 and mλ. This is indicated

in Fig. 5·12. In Fig. 5·12 (a)-(c) the bias of a q = 1/2 plate is increased from its

static value for a input wavelength of 1550nm. In the partially biased case in (a) the

singularity is off-center due to the superposition of a Gaussian and an l = 1 OAM

state; note that both spins must be incident upon the q-plate to see this interference,

as σ̂+ will be converted to σ̂− by the q-plate , and the converted and unconverted

beams will not interfere spatially due to orthogonal polarizations. The singularity

depth in (b) indicates good conversion to the desired OAM mode, while the clear

spot visible in (c) occurs when the q-plate is over-biased to a retardance of λ. (a)

demonstrates that for the case of a q = 1/2 plate, alignment is achieved iteratively, as

both an offset in the center of the beam on the q-plate , and an imperfect q-plate bias

setting will yield an off-center, dim singularity. However, for a higher q such as (d)-(e)

for q = 3, alignment is more straight-forward, as an offset will yield a cresecent-moon

shape as in (d), and imperfect bias will yield a 6-fold star pattern as in (e), or, in

nearly perfect bias, the output beam will look like a bright ring circumscribing a

hexagon. A well converted beam is shown in (f).

Although its main utility is in the entangled nature of the spin and OAM degrees of

freedom, for the purposes of alignment, those two functions (polarization conversion

and OAM conversion) can be treated separately, that is, we can imagine it to be a

scalar phase plate with an additional desired property). Thus, the q-plate can be

aligned much the same as an SLM regarding centering the plate, and aligning the

beam from the q-plate to the fiber, illustrated schematically in Fig. 5·13 for the case

of l = 1. Much as the SLM required high-fidelity alignment to the pattern center

and through the coupling lens, so does the q-plate . We observe that if the q-plate

is not centered, one polarization can be well-coupled into the FUT. However, when
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Figure 5·12: (a)-(c) Throughput of q = 1/2 plate as a function of
increasing bias (d) Offset q = 3 plate at idea bias (e) Centered q =
3 plate at non-idea bias (f) Ideally biased and centered q = 3 plate
throughput

the input polarization to the q-plate is changed to the opposing spin, the fiber input

coupling will degrade rapidly, even to the point that the l = 2q mode is no longer

dominant. Thus, the alignment procedure should be modified as follows. As before,

forward illuminate through q-plate and fiber coupling lens, and back-propagate from

the FUT to ensure rough alignment and collimation. However, when the output

fiber mode is observed, the polarization to the q-plate should be varied between

launching one OAM state, and launching a superposition of the two states. The q-

plate center and the tilt to the fiber can thus be adjusted iteratively. If the input

polarization is set to only excite one OAM state, the alignment tends to coalesce into

an equilibrium in which one degenerate OAM state has 20dB or better mode purity,

while its degenerate partner has mode purity 10dB or worse. As with the SLM, time

of flight is the easiest way to ensure pure coupling, so long as enough fiber is available.

However, unlike the SLM, the q-plate lacks the ability to also impose a ‘lens’ on the

beam propagating through it, and is thus more sensitive to placement in the optical

system, and coupling lenses must be well chosen. Suppose that a collimated beam

strikes the q-plate , propagates a distance z2 between the q-plate and the coupling
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Figure 5·13: Sketch of input coupling system with q-plate

lens of focal length, f , and the focuses down onto the FUT which is exactly in the

focal plane of the lens. The ABCD matrix for such a scenario is given by:(
0 f
− 1
f

1− z2
f

)
(5.15)

Investigation of Eq. (5.5) shows that the field will be an exact Hankel transform

of the beam striking the q-plate , although the incident beam has l = 0 and the

Hankel transform will be order l = 2q = 1, with the exception of the spherical phase

term outside the integrand. The focal length of the lens will determine the scale

of the OAM beam in the plane of the fiber, as shown in Fig. 5·14 (a), where the

distribution of the optical field as a function of radius is calculated for multiple lenses

and compared with the distribution of the l = 1 fiber mode. Fig. 5·14(b) shows the

calculated coupling efficiency as a function of coupling lens focal length, with a local

maximum of around 1dB at a focal length of 8-10mm. Fig. 5·14(c) shows a decline

in coupling efficiency as the q-plate to fiber distance increases, due to the building

spherical phase curvature (according to simulations, the absolute value of the field

envelope does not change for any point in (c).

Our full experimental apparatus is sketched in Fig. 5·15. A continuous-wave

(CW) laser is passed through an electronic fiber polcon, which can select an arbitrary

polarization state at the output of a segment of SMF. The light is collimated and
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Figure 5·14: (a) Field distribution in focal plane of lens using q = 1/2
plate for variety of focal lengths (b) Coupling efficiency versus lens
focal length for a fixed z2 of 16mm, the limit on proximity available in
experiment (c) Coupling efficiency as a function of z2 for a fixed focal
length

passed through a q-plate which is biased by a function generator, turning the q-

plate ‘on’ or ’off’. The beam of light is next passed through two QWPs the fast

axes of which are either crossed, doing nothing, or parallel, making a HWP. The

bias setting determines whether the q-plate converts the Gaussian or not, the QWPs

determine whether the SOa l = 1 modes or the TE and TM modes, and the input

polarization determines which modes within a given set are selected (note that in

free space, as given by Eq. (2.17a) and Eq. (2.17b) the TE and TM modes can

be written as a linear combination of SOaa l = 1 OAM states, although the pure

OAM states are by definition not fiber modes as TE and TM are not degenerate).

The light is then coupled into OD110 Vortex fiber, which supports l = 1 stably at

1530nm, and in which LP0,2 and l = 2 are nearly degenerate with each other and lossy

(Chap. 6). Coupling loss, defined as power before the q-plate minus power after the

fiber, after normalizing for in-fiber loss, is 3.1dB for the fundamental mode and 2.4dB

for the OAM and TE/TM modes. 1.4dB of loss was insertion loss from the q-plate ,
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Figure 5·15: Schematic of system used to test functionality of q = 1/2
plate

which is not anti-reflection (AR) coated. Coupling is stronger into the higher order

modes because the lens was chosen for coupling into the set, resulting in a higher

loss into l = 0. The states then pass through 300m of vortex fiber, after which they

are either sorted by circular polarization, or directed to a fast detector for time of

flight measurements. Fiber output images and interference patterns are shown in

Fig. 5·16. Only one is shown for l = 0 as both modes have identical interference

patterns in different bins. As expected, the two OAM modes show bright rings in

only one polarization and spirals with one arm and a handedness which matches the

polarization orientation. Meanwhile, the TE and TM modes show two rings of roughly

equal brightness, and one-armed spiral interference patterns of opposite handedness.

Note that the TE constituent OAMs are out of phase by π, while for the TM mode,

the arms originate at the same point. Launched mode purities are calculated using

time of flight measurements. Since distributed cross-coupling between OAM and



108

Figure 5·16: (a) Output and (b) output plus reference after propaga-
tion through 300m of vortex fiber with 1530nm CW source

TE/TM is on the -15dB level, and distributed cross-coupling between l = 0 and l = 1

is not observed above the detector noise floor, the input mode purity is calculated as

ratios of discrete peaks as described in Sec. 4.5. The results are shown in Fig. 5·17.

Discrimination among modes is on the order of 20dB or better, with the exemplary

measurement of the power in LP0,2 when TE is launched impacted by detector impulse

response.

Transitioning from q = 1/2 to higher order q-plates , such as q = 3 for the l = 6

families, mode selectivity remains on the same order of magnitude, although the input

coupling efficiency strictly decreases as a function of increasing l for the same fiber.

For larger q values, the q plate by itself will excite the SOaa modes if q > 0, while a

q-plate plus HWP will excite the SOa modes.
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Figure 5·17: Excited mode purities using a q = 1/2 plate. Measure-
ment of TE into LP0,2 occluded by detector impulse response; cross
coupling should be on the same order as that into l = 0

Note that the inverse element of a q-plate is a q-plate of the same q, that is,

q · q ·
(
Aσ̂+ +Bσ̂−

)
=
(
Aσ̂+ +Bσ̂−

)
(5.16)

Putting a set of degenerate SOaa modes through a negative q-plate of the same |q|,

for instance, doubles the topological charge imparted:

q · − q ·
(
Aσ̂+ +Bσ̂−

)
=
(
Aσ̂+ei4qφ +Bσ̂−e−14qφ

)
(5.17)

Thus, sending the output of an OAM fiber containing all of the |l| = 2q modes through

either a q or −q plate and projecting into SMF provides a method of differentiating

SOa and SOaa states with very low measurement crosstalk. This, along with the

functionality of q-plates as higher order polarization controllers, will be discussed in

depth in Chap. 7

5.5 Other Excitation Mechanisms

There are numerous other strategies for exciting OAM modes, such as on-chip multi-

plexers (Su et al., 2012; Sun et al., 2014) which typically use a phased-array antenna

type structure for emulating the helical phase of an OAM mode. The OAM mode

sorter can in theory be applied in the reverse direction, for excitation of collinear

OAM beams with negligible loss (Berkhout et al., 2010), although such a system
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would require precise free-space optics to match the spindle-like output point spread

function (PSF) of the mode sorter. Photonic lanterns (Lai et al., 2007) or fused fiber

couplers (Pidishety et al, submitted to CLEO 2016) could be used to excite OAM

modes in a phase matched manner. Perhaps one of the most interesting possibili-

ties is the sculpting of multiple modes simultaneously by multi-plane light conversion

(Morizur et al., 2010; Labroille et al., 2014), which uses a series of gradual unitary

transforms to convert multiple beams with low loss, and has already been demon-

strated to be compatible with mode division multiplexing (MDM) (Genevaux et al.,

2015). This will be discussed further in Chap. 11

5.6 Summary

We have discussed in detail two methods for exciting OAM modes in fibers: using

SLMs to tailor the phase and a QWP to tailor the polarization of the OAM modes, or

using q-plates to excite specific linear combinations of degenerate OAM modes using

input polarization as a control. Alignment tolerances and procedures are discussed,

and the utility of time of flight measurements as an alignment method is reiterated.

The ability to excite controlled OAM modes to 20dB or better in mode purity has

been demonstrated.

The free space coupling described in this chapter applies only to weakly guided

OAM modes in fibers - strongly spin-orbit coupled modes will require additional phase

and polarization tailoring not available through the techniques just described (this

will be discussed in Chap. 6 and Chap. 11 as research into these modes is still ongoing

at the time of writing this document). LP modes could easily be described by the

methods described in this chapter, but with binary (0 and π retardance) phase plates

which break the SLM into azimuthal segments. SLMs can also be used to excite

scalar LP0,m modes in fiber via both imaging and far field configurations (Demas



111

et al., 2015a), and can be used in single pass or multi-pass, single or multiple beam

combinations for a wide variety of beam tailoring options outside the scope of this

document (Davis et al., 1999; Maurer et al., 2007; Vasilyeu et al., 2009; Litvin et al.,

2015).

With excitation and characterization mechanisms discussed, we turn to the last

and more important experimental piece for enabling the transmission and study of

OAM states in fibers: the fibers themselves.
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Chapter 6

OAM in Fibers

The study of optical vortices in fiber is a relatively recent one. Generation of OAM by

stress-induced birefringence (McGloin et al., 1998) and acousto-optic angular momen-

tum transfer (Dashti et al., 2006) were shown, and a large amount of theoretical work

describing optical vortices in MMF (Alexeyev and Fadeyeva, 1998), and weakly guid-

ing fibers under a wide variety of perturbations (Alekseev et al., 2002; Alexeyev et al.,

2009) (and many more works by the same group of authors) had been demonstrated

by the mid-2000s. However, to my knowledge, the first demonstration of propagation

of optical vortices in fiber over reasonable length scales (more than a few m) was by

Ramachandran et al in 2009, while the first demonstration of OAM propagation over

lengths of the scale ∼1km was not until 2011 (Bozinovic et al., 2011).

The reasons for this delay are twofold. From a more abstract theoretical point of

view, authors were interested in obtaining a pure optical vortex which is maintained

for arbitrarily long distances, which, given that OAM modes come in degenerate

pairs, should be impossible since any perturbation with a nonzero couplign coefficient

will eventually couple them. This lead to consideration of twisted fibers and twisted

elliptical fibers (Alexeyev et al., 2004; Alexeyev and Yavorsky, 2004) with incredibly

small and difficult to fabricate twist pitches (well under 1cm) to ensure modal stability

by breaking all modal degeneracies. From a conventional ‘fiber’ point of view, if the

fiber modes are constructed as LP modes, then a coherent superposition of two LP

modes with a fixed phase relationship is necessary to obtain a linearly polarized optical
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vortex. LP modes are four-fold degenerate, and can freely couple in the presence of

bends and induced polarization birefringence, shape deformation, etc. From that

point of view, maintaining an optical vortex under reasonable conditions should be

difficult or impossible.

This chapter discusses fibers which support OAM states and polarization vortices.

It begins with, to my knowledge, the first fiber to stably support OAM states and

polarization vortices over km length scales and in the presence of perturbations, and

which is thus denoted the ‘Vortex Fiber.’

All of the fibers in this chapter were fabricated by Dr. Poul Kristensen (OFS

Fitel, Denmark), without whose inestimable contributions, both intellectual and ex-

perimental, this thesis surely would not exist.

Many of the subsections in this chapter feature field simulations of different waveg-

uide structures. The simulation tool used here, the engine of which was built by Dr.

Martin Pedersen (Pedersen et al., 2011), is a finite difference solver which simultane-

ously finds the coupled Hr and Hφ equations as an Eigenvalue problem, then finds Hz

using the Magnetic Gauss’ law. As long as |Hz| << |Hr|, |Hφ|, due to the relations

Hr ≈ − β
ωµ
Eφ and Hφ ≈ β

ωµ
Er from Eq. (2.24), we can use the H field as a proxy for

the E field, and specifically, we can use either Hr or Hφ in lieu of the mode amplitude

in the weakly guided case, F (r).

6.1 The Vortex Fiber

The LP fiber mode solutions are analogous to the solutions one would find solving

the time independent Schrödinger equation for a rotationally symmetric 2D quantum

well, with the added degree of freedom of polarization (that is, an additional 2-fold
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degeneracy in choosing x̂ or ŷ polarization).[
− ~2

2m
∇2
t + V (r)− E

]
Ψ = 0 ↔

[
∇2
t + n(r)2k2 − β2

]
et = 0 (6.1)

The main insight in (Ramachandran et al., 2005b; Ramachandran et al., 2009) was

to invoke the fact that light is not a scalar quantity; that the boundary conditions

are not agnostic to polarization, and to leverage this in waveguide design.

Specifically, consider the l = 1,m = 1 modes. In the LP picture, these are the

four-fold degenerate LP1,1 modes, while in the weakly guiding picture, these are the

TE0,1, TM0,1, and the two l = 1 SOa OAM modes, or equivalently, the two HEe,o
2,1

modes. For discussion of the Vortex Fiber, we use HE mode designations, since these

were used in the original work. The deviation of each of the vector modes in β from

the value predicted by scalar mode theory, β0, is given by (Snyder and Love, 1983):

δβTE = 0 (6.2a)

δβOAM =
∆

4π

λ

nco
(I1 − I2) (6.2b)

δβTM = 2
∆

4π

λ

nco
(I1 + I2) (6.2c)

with ∆ the fiber index profile height parameter, ∆ =
n2
co−n2

cl

2n2
co

, nco being the maximum

refractive index in the guiding region(s) and ncl being the cladding refractive index,

with:

I1 =

∫
rdr F (r)F ′(f)f ′(f) (6.3a)

I2 = l

∫
drF 2(r)f ′(r) (6.3b)

F(r) is the field’s radial envelope as in Sec. 2.2, and f(r) is the shape function of the

waveguide scaled to 1 at the point of highest refractive index. Note that the TE mode

does not have a polarization correction to its β value due to the mode having exactly
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zero electric field in the radial direction - thus its behavior is entirely determined by

field continuity, making it analogous to a scalar solution. Similarly, the TM mode has

the largest correction because its field is entirely radially polarized, thus its behavior is

entirely determined by D field continuity. The HE modes, which have a combination

of radial and azimuthal polarization, are between the two extrema.

If the degeneracy among TE/TM/HE2,1 is sufficiently lifted, mode coupling

among these modes should be significantly reduced due to phase mismatch. Eq. (6.3a)

and Eq. (6.3b) imply that the degeneracy can be strongly broken if large values of

the electric field and field derivative of the guided mode coincide with large refractive

index gradients. Thus, the Vortex Fiber is designed to have a ring-shaped guiding

region for the l = 1 and TE/TM modes. A central core is retained for ease of coupling

from SMF.

The fiber refractive index profile and effective index curves for one realization of

the Vortex Fiber (outer diameter (OD)110) is shown in Fig. 6·1(a). As is evident

from Fig. 6·1(b), the effective index splitting among the HE2,1, TE, and TM modes

is on the order of 10−4, which is of comparable order of magnitude to the birefringence

induced splitting in PM fibers (Noda et al., 1986). This splitting was confirmed in

(Ramachandran et al., 2009) by means of microbend gratings, where it was observed

that the resonance wavelengths for TE and HE2,1, and HE2,1 and TM are split

by approximately 100nm, confirming the simulated neff splitting. Fig. 6·1(c) and

(d) show plots of the H field in the Vortex fiber, obtained by simulation using an

experimentally measured index profile. The Hr and Hφ components overlap almost

perfectly with a relatively small Hz, indicating that the modes are weakly guided,

although the HE1,1 mode has an atypical Gaussian + ring shape.

The l = 1 OAM modes in the vortex fiber have been excited by microbend gratings

(Bozinovic et al., 2012) and SLMs, data transmission at Terabit-per-second rates has
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Figure 6·1: (a) Effective index curves for all guided modes in OD110
Vortex Fiber (b) zoom-in of TM/TM/HE21 modes, where splitting
on the order of 1 × 10−4 is evident (c) Right axis: Field profiles of
HE1,1 mode in Vortex Fiber plotted with Left axis: index profile (d)
Field profiles of HE2,1 mode in Vortex Fiber plotted with index profile.
Figure based on a similar figure from (Ramachandran et al., 2009)

been demonstrated (Bozinovic et al., 2013), and preliminary experiments have been

conducted, suggesting that the Vortex Fiber could be an efficient source for coaligned

pump and probe beams for stimulated emission depletion (STED) microscopy (Yan

et al., 2013)

However, the Vortex Fiber is designed to support only one set of OAM states,

the l = 1 SOa modes. Although the splitting between l = 1 and TE/TM is 10−4 or

better at 1550nm, the splitting between the l = 2 states at 1550nm is approximately

1× 10−5. If the Vortex Fiber is stretched radially to the point that it supports l = 3

and l = 4, their splitting in effective index will also be on the order of 10−5. This

can be qualitatively understood by investigation (and with some aid of hind-sight

gained from later considerations in air core fibers). The splitting in β from the scalar
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solution for l > 1 modes is given by (Snyder and Love, 1983):

δβSOa =
∆

4π

λ

nco
(I1 − I2) (6.4a)

δβSOaa =
∆

4π

λ

nco
(I1 + I2) (6.4b)

Equations Eq. (6.4a) and Eq. (6.4b) imply that the splitting between SOa and SOaa

modes is therefore only dependent on I2, as indicated in Eq. (2.18) but rewritten here:

∆βl = βSOa l − βSOaa l = l
∆

2π

λ

nco

∫
drF 2(r)f ′(r)

Eq. (2.18) indicates that the splitting depends only on the square of the field distri-

bution and the fiber’s index profile. The square of the field is clearly positive definite,

but f ′(r) can take on positive and negative values, because the refractive index can

increase or decrease. If F 2 and f are reflection symmetric about the same point,

which is nearly the case for l = 2 in the Vortex Fiber, as shown in Fig. 6·2, then

the splitting should be zero. This is not exactly true because the mode center-of-

Figure 6·2: Field profiles for l = 2 mode in Vortex Fiber

mass changes as a function of mode order and wavelength, and the presence of the

high-index core region makes f(r) not reflection symmetric about the ring center.

However, the higher l modes in the Vortex Fiber will all be contained mostly in the
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ring region, and will feature the same weak splitting. Moreover, the presence of the

central core in the Vortex Fiber allows for the presence of multiple radial orders for

l = 0 (and eventually higher l if the central core becomes large enough), which should

be avoided if possible. The removal of the central guiding region, and the insertion

of the largest refractive index gradient available for fibers fabricated with modified

chemical vapor deposition (MCVD) - that of glass to air- lead to the design and

fabrication of a fiber with an air core for supporting OAM states.

6.2 Air Core Fibers: Design Criteria

There are two possible reasons for designing a fiber with an air hole in the center.

First, the fiber could be designed to guide light in the air region by creating a photonic

bandgap (Bornstein and Croitoru, 1985). These fibers are designed both to avoid

undesirable nonlinear effects and to reduce latency, although such fibers can have

losses on the order of single dB/m (Temelkuran et al., 2002). Second, the air hole is

used to shape the modes, or the modal density of states, which exist in a Ge-doped

ring region around the air core (Oh et al., 2005). This class of fibers was proposed and

used as tapered mode converters from the fundamental mode in SMF to the LP0,2

mode in a HOM dispersion compensating fiber (DCF), or to achieve a monomode

fiber with an annulus shaped fundamental mode.

We seek to design a fiber or set of fibers which support OAM modes, featuring

large neff splittings between SOa and SOaa modes of the same l. We know from

Sec. 6.1 that a large splitting will be ensured by a large effective index gradient

between the ring guiding region and the glass cladding, so as a design parameter, we

generally keep that index step as large as possible. In order to obtain a fiber which

stably guides an ensemble of OAM states, in addition to designing a fiber with neff

splittings on the order of 10−4 as in PM fibers (Noda et al., 1986), we also aim to
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design a fiber with the following properties:

• The number of m = 2 modes is zero OR

• The number of m = 2 modes is small, and none of the m = 2 modes feature

accidental degeneracy with the OAM modes in the wavelength region of in-

terest (the telecommunications C-band). Ideally this should be robust against

fluctuations in air core inner diameter or fiber outer diameter

• The highest order OAM mode has an neffsufficiently above nSiO2 that it is not

cutoff or near cutoff

• The modes are well described by the weakly guiding approximation; that is,

they are true OAM modes and not SOC angular momentum modes.

The last point requires some additional comments. As shown in Sec. 2.1, only for

weakly-guiding fibers do OAM modes exist. More generally, states with an integral

total angular momentum exist, with a possibly non-integer breakup of orbital and

spin angular momentum. Their electric field distributions for a pair of degenerate

angular momentum states are given by Eq. (2.12), rewritten here:

e±t =
1

2
e±ijφ

[
δ±
(
γσ̂+e−iφBj−1(r) + ασ̂−eiφBj+1(r)

)
+ δ∓

(
ασ̂+e−iφBj+1(r) + γσ̂−eiφBj−1(r)

)]
Evidently the above is a superposition of two different OAM states of different l,

weighted by γ and α. All of the state excitation and characterization techniques

discussed in earlier chapters, except for time of flight, will not work for these states

to either excite pure modes or determine mode purity so long as γ and α are both

nonzero.
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A simplified version of the waveguide we simulate is shown in Fig. 6·3(a). The

index contrast between ring and cladding, ∆n1 is a free parameter, but for the subset

of simulations show in Fig. 6·3 we keep it constant at 0.04, while the cladding is kept

at pure Silica and the core kept as air. We vary the inner radius of the fiber while

Figure 6·3: (a) Simplified index profile of air core fiber (b)
neffsplitting versus inner radius, for constant ring width, and OAM or-
der (c) Metric of spin-orbit coupling in one example fiber versus OAM
order (d) Example of radial and azimuthal part of electric field for
spin-orbit coupled state, and complete polarization distribution

the ring thickness, r2 − r1 is kept constant. ∆neff versus azimuthal mode order and

inner radius is shown in Fig. 6·3(b). There are two clear regions of high neff splitting

in the parameter space. For waveguides with thin rings relative to the inner radius,

there is a large neff splitting for low-l modes, while for most waveguide designs,

there is a smaller band of well-split high-l states. For the latter region, the modes
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are OAM states and the neff splitting is driven by the gradient between the high

index ring and the glass cladding. Because this effect happens for modes which come

closer and closer to cutoff, in analogy to the radical change in a modal dispersion

near to cutoff, we refer to this as the Dispersive Guidance regime. However, the first

region features strong SOC, as shown in Fig. 6·3(c). The radial and azimuthal electric

field components are nearly identical in shape, due to the strong confinement of the

high index region. Thus, as a metric of the strength of SOC, we plot the absolute

value of the ratio of the maximum field value of the azimuthal field component, eφ

divided by the maximum field value of the radial field component, er. In the weak-

guidance regime, this is exactly one, which is the tendency for high-l states. Low

l states, on the other hand, although they feature large neff splitting are strongly

spin-orbit coupled. An example electric field distribution is shown in Fig. 6·3(d) for

the l = 2 SOa and SOaa states. The radial and azimuthal field components are

clearly different in strength, resulting in a spatially-dependent elliptical polarization,

which is pseudo-radial for the SOaa modes and pseudo-azimuthal for the SOa modes.

Technically speaking these modes are not OAM states; we retain the SOa and SOaa

designations for convenience.

We perform a wide parameter sweep for ring widths varying from 1.5µm to 5.25µm

in 0.5 µm steps. We find that for very small ring widths, the states are nearly all in

the SOC regime, although the number of m = 2 modes is typically 0 or at worst 1, as

shown in Fig. 6·4(a) (Ramachandran et al., 2015): As the ring size is expanded, there

is a greater chance to obtain more OAM states in the Dispersive Guidance regime,

but the number of m = 2 modes increases as well, as in Fig. 6·4(b). These m = 2

modes will be low in neff , comparable to the desired OAM modes, at which point

accidental degeneracy becomes a concern. However, if the ring is made too small, it is

often difficult to achieve more than one well-guided OAM mode order; even for a ring
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Figure 6·4: (a) neff splitting for a set of air core fibers with ring
width 2µm. Number of m = 2 modes in each fiber written in purple at
right edge of plot. Smaller plots below indicate strength of spin-orbit
coupling versus inner radius and mode order for both SOa and SOaa
families (b) Same set of plots for air core fibers with ring width 5.25µm

width of 3.25µm as in Fig. 6·3 where it appears that three or four designs support 2

OAM families, the highest l is often dangerously close to cutoff, while the lower l may

be accidentally degenerate, or nearly accidentally degenerate with an m = 2 mode.

The fibers in the next sections are not presented in chronological order. The
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first generation of this fiber was designed by Dr. Steve Golowich to support a large

number of OAM states which were well separated (on the order of 10−4 in effective

index) from their nearest neighbors. However, a mistake was made in between the

design and the fabrication, leading to an incorrect draw-down ratio used during the

draw process. The first air core fiber had a high-index ring larger than was designed;

consequently, the index splittings for some of the modes were not large, and several

m > 1 modes existed. In retrospect, this was a lucky break. The correct fiber, now

called generation 2, was fabricated but features strong SOC for most of the guided

mode orders, as this was not a design consideration prior to fabrication. The first

generation of air core fiber, instead, provided a platform for studying high-l OAM

modes, specifically l = 7, 8, 9, and strongly informed the design of the third and fourth

generation of OAM carrying fibers. Since the first, third, and fourth generation of

OAM fibers utilize the Dispersive Guidance regime, they are presented sequentially,

and the second generation of fiber is presented last.

As a design compromise between avoiding spin-orbit coupling and still achieving

guidance of multiple OAM states, we aim to fabricate a fiber with inner ring radius

3µm, and outer radius 8.23µm, with the goal of stably supporting l = 5, 6, 7 OAM

modes in the third and fourth generation fibers. Final pre-fabrication simulations are

performed using a ‘stretched’ index profile from the gen1 air core fiber, to determine

the change in modal density of states when realistic index gradients are added in the

ring region. The fiber design is robust to fluctuations of the ring outer diameter by

±0.2µm, but only ±0.1µm fluctuations in the inner diameter. Due to the demanding

draw tolerances, the fiber is drawn from the same preform in ∼ 1km segments for a

larger number of possible fiber samples.
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6.3 Generation 1 Air Core Fiber

The first generation of fiber was fabricated with an air hole 10µm in diameter. For

this reason, we denote the fiber as ‘gen1’ or ‘Core10’. The fiber is fabricated beginning

with a standard MCVD deposition of GeO2 onto high-purity SiO2. After the dopants

for the high index ring region are deposited, a small layer of SiO2 is deposited on

the inside of the ring to help with stability during the draw process. The preform is

partially collapsed, leaving a smaller air hole in the center. When the fiber is drawn,

the hole is pressurized and N gas is flown through the tube. The combination of

draw-down ratio and pressure allow control over both the fiber OD and the aspect

ratio, defined as the width divided by the radial center-of-mass, of the ring region.

The drawn fiber has an OD of approximately 125µm

We measure the index profile of the air core fiber using an interferometric fiber

profiler (Interfiber Analysis IFA-100), which illuminates the fiber transverse to its

cross-section, and uses the diffraction pattern to infer the index profile. This device

Figure 6·5: (a) Air core fiber soaks in refractive index matching oil via
capillary action (b) Measured refractive index profile of air core fiber
plus index matching oil

typically is used to measure small refractive index differences, and we find that having

it directly measure the glass-air boundary results in substantial rounding errors. We
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fill the fiber with index matching oil (Cargille Labs) with refractive index roughly

1.45, the refractive index of silica at the measurement wavelength of 632nm. The

fiber is filled by cleaving the end and allowing it to soak in oil overnight via capillary

action, as shown in Fig. 6·5(a). The measured refractive index profile of the fiber plus

oil is given in Fig. 6·5(b). Evidently a refractive index step of approximately 0.035

has been achieved between guiding region and cladding, although the ring region’s

index is not constant. The ring is approximately 5µm thick. The step in refractive

index after 62.5µm in radius is due to immersion of the FUT in oil.

In order to more accurately determine the inner radius of the high-index ring,

several air core fiber samples are cleaved and mounted into a sample holder along

with several samples of SMF-28e (Corning). The cross-section of the air core fiber is

imaged at several magnifications (Fig. 6·6), and the inner radius of the air core fiber

(in pixels) is found using Kasa’s circle-fitting method (Corral and Lindquist, 1998).

The outer radius of the SMF-28e is then found using the same circle fitting method,

and the conversion between pixels and µm is achieved by using the documented outer

radius of the SMF. We find that the inner radius of the air hole to be 5.1µm.

In the process of cleaving the air core fiber for microscope imaging, several times

we noticed a dark line across the high index ring region, as in Fig. 6·7. We interpret

this as a shearing effect from the cleave propagating around the fiber in an asymmetric

manner. For an ideal cleave, the fiber is clamped and pulled to a desired tension,

and a sonic blade is applied to the edge of the cladding with exactly zero angle

between the line of the blade and the transverse plane of the fiber. However, if the

blade is angled slightly, or if the fiber is mounted improperly such that the blade

strikes it at an angle, evidently the cleave will propagate in a plane which is not

transverse to the fiber’s longitudinal axis. For a solid fiber, this results in a poor

cleave angle. However, since the center of this fiber is hollow, the cleave will split
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Figure 6·6: (a) Imaged cross-section of gen1 air core fiber (b) Zoom-in
on core region and adjusted refractive index profile

into two parts which propagate separately around the air core and combine on the

other side. If they are offset in ẑ when the two halves recombine, there will be a

discontinuity in height on the side of the ring opposite the side struck by the cleaver’s

blade. Optically, this discontinuity looks like an azimuthally-dependent perturbation

and should be avoided if at all possible. This effect becomes progressively worse as

the air hole becomes larger, and later fiber-handling experiments with a fiber of air

Figure 6·7: (a) Imaged cleave with discontinuity across ring region
(b) Imaged cleave with unperturbed ring region, but some discontinuity
visible in the cladding
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core 25µm showed that cleaving was incredibly difficult. For high-precision cleaving,

we use a CT-100 Fujikura cleaver, with tension approximately 180g. The fiber is first

stripped with fiber strippers or a razor blade before being wiped down with ethanol

and mounted into the cleaver. The cleaver has clamps on both left and right sides of

the blade, with the fiber to the right of the blade being discarded after the cleave. We

find that ensuring that the right edge extends over its clamp by ∼ 1− 2cm and then

rotating the fiber while tapping the clamp down (but not clamping it) until tapping

the clamp onto the fiber does not cause the fiber to jump out of its groove is generally

the best way to align the fiber for cleaving; however, a success rate of better than 1

cleave in 4 is unlikely.

With the refractive index profile obtained, we simulate the measured fiber from

1500 to 1600nm. Although the fiber properties are wavelength sensitive, the fiber

can be rescaled to achieve the same behavior in any wavelength range of interest.

The effective index separation between each OAM mode and its nearest neighbor is

shown in Fig. 6·8. For l > 1, the nearest neighbor for each SOa mode are the SOaa

modes of the same |l|, and vice versa, so only one plot is needed for each l. For l = 1,

the nearest neighbor is TE. For l = 2 − 4, the SOa modes are higher in neff , while

for l > 4 SOaa have larger neff . This can be interpreted as the cross-over point

in Eq. (6.5), where on one side the air-glass gradient is driving the effective index

splitting, while one the other, the large glass-glass gradient drives the splitting. The

air core, for these l > 4 modes, instead has the effect of a repulsive barrier, forcing the

confined field away from the inside edge of the waveguide. We observe that desired

neff splitting has been achieved for l = 8 and 9

The effective index curves for all mode orders is shown in Fig. 6·9. The different

m = 1 OAM families spread out in effective index as mode order increases, with the

l = 0 and TE modes having comparable neff splitting to that between TE and l = 1,
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Figure 6·8: Distance between OAM modes and their nearest neighbors
as a function of l at 1500nm

while the higher l orders are separated by ∼ 4 × 10−3. The fiber supports m = 2

modes up to l = 4, which are closely bunched at lower effective indices.

Figure 6·9: (a) Effective index versus wavelength for all m = 1 mode
orders (b) Effective index versus wavelength for all m = 2 mode orders

The mode field distributions are shown in Fig. 6·10. Each m = 1 mode is a ring

with nearly the same center point and width. The overlap between the radial fields,∫
rdrFl1(r)Fl2(r), assuming

∫
rdrF r

l (r) = 1 is 99.9% between l = 0 and l = 3, 98.6%
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between l = 0 and l = 6, and at worst 93.8% between l = 0 and l = 9.

Figure 6·10: Mode field distribution versus radius for a subset of
OAM modes in the air core fiber

In order to test the existence and stability of the OAM modes in this fiber, we

excite free space OAM states with an SLM, and couple them into the fiber as described

in Sec. 5.3. The modes are propagated over 2m of fiber, after which, the output is

passed through a circular polarizing beam splitter, and interfered with a Gaussian

reference. Each mode obtains a spiral interference pattern as expected, and shown

in Fig. 6·11. More quantitatively, we measure the mode purity as a function of

Figure 6·11: (a) Spiral interference patterns for each of the 12 trans-
mitted OAM states (b) Example of a calculation of MPI (mode purity)
versus wavelength; worst case MPI for all modes shown in (c)
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wavelength using the Ring technique (Sec. 4.3). We find that each mode is at least

10dB pure, with the dominant parasitic modes being ∆l = ±1, indicating that the

limiting factor was alignment rather than in-fiber coupling. This is, to my knowledge,

the first demonstration of the existence and excitation of stable higher order OAM

modes in fiber (Gregg et al., 2013). Moreover, over short lengths, it seems that even

the degenerate OAM states do not couple to each other - this will be revisited in

Chap. 7.

The fiber length is changed to 1km (the longest amount available to us at the

time) for time of flight measurements. Results for are shown in Fig. 6·12 for the

SOa modes (a) and SOaa modes (b), using the 1GHz detector. The relative delay

Figure 6·12: Time of flight trace for l = 8 (a) SOa and (b) SOaa
modes in the gen1 air core fiber.

between the two mode groups is 1.2ns, compared to the theoretical value of 1.1ns. In

a standard fiber, these two peaks would not be separately resolvable. Satellite peaks

around 17 and 26ns are from the detector’s electrical impulse response.

However, at 1km lengths, l = 9 does not propagate due to high loss in the fiber.

The loss for l = 9 is not directly measured; we find that at 1530nm, the edge of the

telecom C-band, l = 9 can propagate about 10m, but is not observed at 1550nm,
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nor is it observed at longer lengths at 1530nm. Further, propagation of l = 7 over

1km yields a large distributed coupling feature, and output mode patterns which

have double-ring features, as shown in Fig. 6·13. We postulate that the cause of this

Figure 6·13: (a) Time of flight trace for l = 7, SOa or SOaa (b) Fiber
output after 1km when l = 7 is launched, using a narrowband ECL as
illumination source. Seven-fold symmetry strongly visible in the right
bin

behavior is a mode-crossing between the l = 7,m = 1 mode and the l = 0,m = 2,

or the TE0,2 mode. A zoomed-in view of the neffcurves is shown in Fig. 6·14 l = 7

and l = 8 are in proximity to several neffcurves for lower-order modes. It is clear

from the figure that the m = 1 and m = 2 mode sets have different dispersions,

meaning that intersection between the mode lines is likely at some wavelength. If the

measured inner diameter of the air core is slightly incorred, the l = 8 modes could

be below the set of m = 2 lines, while the l = 7 modes would be in more danger

of being accidentally degenerate with the l = 0 and l = 1 m = 2 modes. It is not

infeasible that the inner diameter of the air core fluctuates during the draw, leading

to accidental degeneracy at some fiber lengths, which, given that the modes would

automatically be phase matched, would lead to mode coupling. The tolerance on
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Figure 6·14: Zoomed-in neff curves for l = 7 and l = 8 in gen1 air
core fiber

inner diameter will be discussed in detail in Sec. 6.2, but according to simulations,

a change in inner radius of 0.1µm is enough to cause a drastic relative shift between

the m = 0 and m = 1 modes.

Thus, the end result for the gen1 fiber is that 4 modes, the l = 8 SOa and SOaa

modes, are supported for km propagation lengths. This represents a factor of two

improvement over the channel capacity of PM fiber. In the next section, we describe

how the lessons learned from this first generation of air core fiber led to the design

and fabrication of an improved air core fiber for supporting high-l fiber OAM states.

6.4 Air Core Fiber Generation 3 & 4

Six attempts are made to draw the fiber specified at the end of Sec. 6.2, denoted

a-f. One trial, b, was found to be very lossy after fabrication and is not included

here. Details on the other five samples are found in Table 6.1. Fibers c and d vary

drastically over the course of the draw. Fibers e and f are closest to the design

specification, while a, although further from the desired inner diameter, is the most

stable from a direct comparison of the ends.
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Table 6.1: Summary of fabricated gen3 air core fibers. OSE: Outside
edge, ISE: Inside edge

Spool Preform ID OSE Hole dia (µm) ISE Hole dia (µm) Length (m)

A 120607381 5.76 5.46 1365
C 120606381 6.65 9.8 1524
D 120606381 6.5 8.06 1256
E 130402381 5.9 6.08 1450
F 120607381 6.12 5.98 1406

Input coupling with an SLM into a ∼ 1.5m piece of gen3a from the OSE reveals

that the l = 6 modes run into an accidental degeneracy with l = 2,m = 2, as

in Fig. 6·15(a), where four-fold and eight-fold rotation symmetry is evident in the

output images. Launching instead l = 2 shows l = 4 symmetry (Fig. 6·15(a)). The

SOa states show this behavior from approximately 1530nm to 1590nm, while the

SOaa modes show cross-coupling from 1550nm to at least 1605nm, the upper-limit

in wavelength accessible for the measurement. l = 7 appears to be cutoff in this

fiber above 1480nm, according to transmission over a 5m length of the fiber. Gen3a,

on the other hand, features no accidental degeneracy of the desired OAM modes in

the C-band - no accidental degeneracy is observed for l = 6 in a 5m segment from

1440nm to 1590nm. l = 7 is guided up to approximately 1500nm, and unfortunately

is too lossy to be transmitted over 1km at 1530−1565nm. Gen3f, meanwhile, features

intermodal coupling within the first 300m of the OSE as indicated by time domain;

when this is cut, Gen3f is found to be stable with respect to l = 6 across the C-

band, and is functionally identical in transmission to Gen3a. A comparison of the

two index profiles is found in Fig. 6·16. The profiles are nearly identical; fiber f is

evidently slightly wider, but on the scale measurable by the refractive index profiler,

they are difficult to differentiate. Transmission is attempted over 1km for both gen3a

and gen3f; time of flight results for gen3f are shown in Fig. 6·17. The peaks for the

l = 5 states are well separated, as are the peaks for the l = 6 states.

Fiber loss is measured by cutback. The l = 5 and l = 6 states are aligned by time
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Figure 6·15: (a) 4- and 8-fold symmetric output when l = 6
is launched, indicating accidental-degeneracy induced coupling with
l = 2, m = 2 (b)4-fold symmetric fiber output when l = 2 is launched
(c) l = 3 launched, m = 1 and m = 2 modes evident

domain after 1km of fiber, and after mode purities of at least 15dB are confirmed,

output power is measured. The fiber is them cleaved after ∼2m, and the output

power measurement is repeated. Loss is then calculated as 1.9dB/km for the l = 5

modes and 2.2dB/km for the l = 6 modes, with no differential loss between the SOa

and SOaa states measurable.

Fiber handling for gen3 is much the same as gen1. Cleaving should be done with

a high-precision cleaver, at a tension of approximately 180g. If the fiber is not held

straight while cleaving, a discontinuity is visible across the high-index region.

The gen3 fiber was used for the experiments in Chap. 7 and some of the experi-

ments in Chap. 8. In an attempt to fabricate a fiber which supported 12 OAM states

over km lengths, a new version of the fiber was drawn. The only change was an

increase in inner diameter of the air hole from 3.0µm to 3.05µm, in an attempt to

slightly increase the neff of the l = 7 modes while not affecting the stability of the
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Figure 6·16: (a) End facet image of gen3a OSE (b)Refractive index
profiles of gen3a and gen3f

l = 6 and l = 5 modes. Details on these new fibers, denoted gen4, are found in

Table 6.2. To avoid confusion with previous generations of fibers, these are called

gen4-X, where X is the spool label in Table 6.2. Fibers gen4-2A and gen4-2B are

closest to the design target and appear most stable, while gen4-5 and gen4-6 feature

drastic changes across the manufactured fiber.

Table 6.2: Summary of fabricated gen4 air core fibers.

Spool Preform ID OSE Hole dia (µm) ISE Hole dia (µm) Length (m)

1B 150122281 6.89 6.34 1211
2A 150122281 6.49 6.31 1181
2B 150122281 6.39 6.21 1180
3 150122281 6.78 6.68 1215
4 150122281 5.94 6.23 1966
5 150122281 6.31 5.44 1815
6 150122281 4.12 6.19 1355

Excitation with an SLM is performed on a short length of each fiber pulled from

the OSE, except for gen4-5 and gen4-6, and the wavelength is swept looking for

accidental degeneracies. Gen4-2A and gen4-2B show accidental degeneracy between

l = 6 and l = 2 from approximately 1530nm to 1590nm. In short lengths of each

fiber, l = 7 and l = 5 are accidental degeneracy free across the measurement range,

while l = 8 exists up to 1510 ∼ 1530nm for the fibers gen4-1B, gen4-2A, gen4-2B,

and gen4-3. It is not observed at any wavelength of gen4-4, likely due to the smaller
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Figure 6·17: (a) Time of flight traces for l = 5 and l = 6 SOa
and SOaa modes in gen3f fiber, offset for vertical clarity. In order of
increasing group delay, traces are l = 5 SOaa, l = 5 SOa, l = 6 SOaa,
and finally l = 6 SOa. Inset: fiber output after 1km (b)-(d) close-ups on
each mode group’s time of flight trace showing distributed intermodal
crosstalk

air hole at the OSE.

Testing is performed at full-spool lengths using either an ECL and observation of

fiber output, or a pulsed laser and time domain. l = 5 and l = 7 are transmitted

without accidental degeneracy in each fiber except for gen4-6, which does not support

l = 7. l = 6 is found to exhibit effects of accidental degeneracy in every fiber across

C-band, except for gen4-3. An example time of flight measurement for the gen4-2B

fiber is shown in Fig. 6·18 when we attempt to excite l = 6 SOa and SOaa, by using

a q-plate followed by an QWP. If l = 6 is well aligned and launched, the large lobes

around 15 and 25ns are the only visible features. If the fiber is offset slightly, the



137

peaks corresponding to l = 7, l = 5, and l = 4 are visible. If no coupling were evident,

Figure 6·18: Time of flight for l = 6 in gen4-2B showing mode cou-
pling due to accidental degeneracy

l = 6 should fall almost halfway between l = 5 and l = 7 in time. Instead there is no

strong peak evident, with all of the power being dumped into the large lobes. The

difference in time of flight between l = 6 and l = 2,m = 2, with which l = 6 apparently

couples, would be 32ns if both were launched purely, the fiber was not distorted, and

no mode coupling occurs. If the QWP after the q-plate is removed, or replaced with

an HWP such that either the SOa or SOaa are launched independently, both lobes

remain, indicating that it is not mode-specific coupling. The separate resolvability of

the peaks means that coupling does not occur across the whole length of fiber; if so,

one would see only a Gaussian distribution localized around the mean transit time of

the two modes (Kawakami and Ikeda, 1978; Poole, 1988).

Gen4-3 provides a window into the evolution of accidental degeneracy induced

mode coupling. Both the SOa and SOaa states propagate without issue at 1556nm

when both are launched simultaneously, as shown in Fig. 6·19. However, as the
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Figure 6·19: Time of flight for l = 6 in gen4-3 showing evolving
accidental degeneracy as a function of wavelength. Traces offset for
clarity

wavelength is decreased, the peak corresponding to the SOaa modes begin to decrease

in strength and small features are evident in the times prior to that peak (since the

group index for the l = 2,m = 2 mode is less than that of l = 6, any coupling into

that mode will arrive earlier). As the wavelength is further decreased, more mode

coupling is evident, as more distributed coupling features can be seen prior to the

desired pulse. As the wavelength is further decreased below 1540nm, the l = 6 SOa

states are corrupted as well.

It is not directly obvious from the above that this accidental degeneracy induced

coupling will lead to crosstalk between SOa and SOaa states of the same l. As we

will show in Chap. 8, it indeed does lead to debilitating crosstalk between the two

sets of modes.

Although there are two radial orders of both l = 0 and l = 1, there is no immediate

reason why these states could not be used as independent information carriers. l =

0,m = 1 is separated from the TE0,1 mode by 5× 10−4 in neff , and the l = 0,m = 2

mode is similarly separated from TE0,2 by 4 × 10−4. Further, there is again no
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reason in principle why the TE and TM modes could not be used as information

channels themselves, as they well separated in neff from their nearest neighbors, are

directly accessible with q-plates , and even feature the advantage that no degenerate

state coupling is possible. However, when their time of flight spectrum is measured,

distributed coupling between the l = 0 and l = 1 states is evident, as showin in

Fig. 6·20. Despite the large neff splitting, significant cross-coupling between l = 0

Figure 6·20: Time of flight for l = 0 in gen4-3. Burst around 20ns is
from m = 1, burst at 45ns is from m = 2

and l = 1 is observed. This will be also revisited in Chap. 8, but we attribute this to

the relative likelihood of fiber perturbations - it should be much easier to encounter

a perturbation which imparts an OAM perturbation ∆l = 1 such a gentle bend, than

one which imparts a transfer of spin.

Loss measurements via cutback are repeated on gen4-3. Loss is measured as

0.8dB/km for l = 7 and 1.0dB/km for l = 5. This is an exceptionally low loss for

a higher order mode in a fiber. We attribute the difference between gen3 and gen4

to a dual-layer polymer coating applied to gen4. Note also that that loss is lower

for l = 7 than for l = 5; we conjecture that this is because the modal field of l = 7



140

encounters the edge between glass and air less, which results in lower scattering loss.

The loss measurement is repeated for gen4-1B, and losses of 1.0dB/km and 1.2dB/km

are measured for l = 7 and l = 5, consistent with those measured for gen4-3.

A summary of the relevant properties of gen4-3 is shown in Fig. 6·21. Although

only gen4-3 is shown, the other gen4 fibers except for gen4-5 and gen4-6 have very

similar neff , loss, and dispersion characteristics as these properties tend to be slowly

varying with respect to small changes in the fabricated waveguide. The only char-

acteristic which varies from waveguide to waveguide is the wavelength of accidental

degeneracy, and even this varies along the length of the waveguide, as we will explicitly

show in Chap. 8.

Figure 6·21: (a) End facet image of gen4-3 (b) Measured transmis-
sion loss (c) Effective index versus wavelength. Insets are experimental
images after ∼2m of fiber propagation at 1550nm, except for leftmost
image which is at 1500nm. (d) Group indices and (e) Dispersions for
OAM modes of interest over C-band

Different sections of air core fiber are spliceable, so long as the current applied
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directly to the fiber is kept low. If a high current (15mA or larger in a splicer) is

applied to an air core fiber, the air hole will collapse, as shown in Fig. 6·22(a), in

which gen1 fiber is spliced with an SMF at currents typical for SMF-SMF splices. If;

Figure 6·22: (a) gen1 air core fiber spliced to SMF at relatively high
current; hole collapse evident (b) air core to air core (gen4-3 to gen4-
2B) splice at lower current. Guidelines in red to indicate that ring
guiding region is tapered slightly but not collapsed

however, the splice current is kept low, the air core will not collapse. Two air core

fibers can be spliced together in this way. Alignment within the splicer is critical, as

a misaligned splice will discretely couple power into nearest-neighbor OAM modes.

Splices were performed with an Ericsson FSU 995 FA splicer, with a splice program

and process detailed in App. C. Crosstalk of -15dB or better and mode-independent

loss of 0.2dB can be achieved, but typically several splice attempts are needed. This is
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likely due to limited equipment available to us, as high precision splices are possible

(see, for instance, high precision splicers offered by OFS or Fujikura/AFL). This

enables us to splice together different fiber samples, to study long-distance transport

of OAM states.

We close this section with a comment on the use of the air core in the Dispersive

Guidance regime. As mentioned in Sec. 6.2, the splitting for these states is driven by

the dielectric interface between the ring guiding region and the cladding. One may

reasonably ask how the air core itself contributes to the neff splitting in this case.

Simulations indicate that it slightly (by a few percent) decreases the desired split-

ting, since the gradient is opposite in sign to that between ring region and cladding

(Eq. (6.5)). Rather, the main function is to alter the density of states, and remove

m = 2 modes, which could still potentially be done with an all-glass waveguide. The

primary advantage of the air core - its massive index gradient, is only utilized in the

SOC regime.

6.5 Air Core Fiber Generation 2

Unlike the fibers in sections Sec. 6.3 and Sec. 6.3, the fiber described in this section

generally does not support OAM modes, rather, it supports spin-orbit coupled states.

The fiber was designed by Dr. Steve Golowich (Golowich et al., 2012). Fibers were

drawn aiming for two different targets, one having an inner radius of 9µm and one

with an inner radius of 12.5µm. The fabricated fibers are detailed in Table 6.3. These

fibers should be more stable with respect to fluctuations of the inner radius of the air

core, since by design no m = 2 modes exist.

The neff spectrum for gen2-1, calulated using an experimentally measured refrac-

tive index profile, is shown in Fig. 6·23. Modes up to l = 9 are guided, and large

splitting is evident for lower-l modes. The neff splittings are plotted in Fig. 6·24.
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Table 6.3: Summary of fabricated gen2 air core fibers.

Spool Preform ID OSE Hole dia (µm) ISE Hole dia (µm) Length (m)

1 120606382 9.1 9.3 1211
2 120606382 12.9 12.3 1181
3 120606382 12.4 12.4 1180
4 120302381 9.8 11.7 1215

Figure 6·23: neff spectrum for all guided modes in gen2-1

Lower order modes are affected so strongly by the high-contrast of the air core that

they split into other mode orders; for instance, in this fiber, the TE0,1 mode is actu-

ally higher in neff than the l = 0 OAM modes, while the TM0,1 mode falls between

the l = 2 SOa and SOaa states. The splitting generally decreases as a function of

mode order, once the mode orders are sufficiently separated as to not cross into each

other, as expected from Sec. 6.2.

As expected, even to relatively high mode orders in this fiber, the fields are not

scalar. The simulated H fields for the l = 5 SOa and SOaa states are shown in

Fig. 6·25 The effect is more pronounced for the SOaa states. The SOaa states have

an absolute value of total angular momentum of l−1, and refer to a lower mode order,
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Figure 6·24: Distance in neff between adjacent modes; for high-l this
is SOa-SOaa splitting, while for low-l this splitting is with respect to
other mode orders (other |l|).

if mode orders are labeled in (r̂, φ̂). The l = 5 SOaa and l = 3 SOa states, which

are of the same mode (cylindrical) mode order and total angular momentum, have

comparable SOC, although the field component becoming stronger (r or φ) is different.

This is also discernible from Fig. 6·4(a), comparing the SOC for the SOa and SOaa

modes, and again reiterates the origin of the modal behavior. Typically, fiber modes

are given their mode orders with respect to a Cartesian coordinate frame; i.e. the ‘LP’

Figure 6·25: Mode fields for l = 5 SOa and SOaa states in gen2-1
fiber. Significant different in radial and azimuthal components indicates
SOC
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modes or the WGA OAM modes refer to coordinate rotations within the (x,y) plane.

As the index contrast of the waveguide becomes stronger and the boundary condition

difference between r̂ and φ̂ becomes more significant, the mode orders should be

applied in the Cylindrical frame as in a metal-clad cylindrical waveguide. The SOC

is weakest for the highest-order modes, but so is the neff splitting. This implies that

for truly scaling capacity in air core fibers, the ability to controllably excite the SOC

modes is needed. This, along with additional properties of the gen-2 fibers, will be

discussed in Chap. 10.

In addition to the creation of the SOC polarization distribution, high-efficiency

excitation of a multitude of OAM states with roughly the same ratio of ring width

to inner ring diameter, aspect ratio for brevity, is impossible with only one phase

element. As described in Sec. 5.2, beams of different l tend to diffract differently,

with high-l states tending to have smaller aspect ratios than lower-l states. The low

aspect ratio design of this fiber implies that simply converting to an OAM state with

a spiral phase plate before input coupling should result in high input coupling loss for

low-l modes. Recent work has demonstrated the existence of ‘perfect OAM beams’,

which have controllable aspect ratios and are created by two phase plates (Vaity

et al., 2014). Alternatively, two axicons can controllably produce a shifted-Gaussian

intensity pattern, which could be utilized (Machavariani et al., 2002).

6.6 Summary

Fibers supporting OAM states have been designed and proposed. The design space of

air core fibers has been surveyed, and two distinct regions for stable mode guidance

have been discussed - the Dispersive Guidance regime in which high-l OAM states

are supported with ∆neff increasing as a function of mode order, and the Spin-Orbit

Coupled regime, in which many mode orders feature large ∆neff between SOa and
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SOaa mode groups, but for which the fiber modes are not OAM states.

Four generations of air core fibers have been fabricated and tested. Gen1 provided

a stable platform for l = 8 over km lengths, but featured high loss for l = 9, accidental

degeneracy for l = 7, and insufficient splitting for lower-l modes. Gen3a and Gen3f

provide a platform for studying l = 5 and l = 6 across km lengths, with reasonable

transmission losses ∼ 2dB/km. Gen4-3 supports l = 5 and l = 7, and partially

supports l = 6 over C-band, while 4 other fibers from Gen4 support l = 5 and l = 7

across C-band, with mode loss ∼ 0.8dB/km for l = 7 and 1.0dB/km for l = 5. Gen2

provides a multitude of states which are well separated from their nearest neighbors

in neff but which are spin-orbit coupled.

Several index profiles of air core fibers are given in Fig. 6·26. It is interesting to

Figure 6·26: Refractive index profiles for several fabricated air core
fibers

observe the differences between gen3-a and gen3-f, which were successful in avoiding

accidental degeneracy of l = 6, with that of gen3-e, which was not. Fiber gen3-e

is only slightly thinner, approximately 0.25µm with respect to the other two, yet
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this shift is sufficient to vary the neff curves enough to cause accidental degeneracy.

Although this fluctuation could feasibly be improved with more iterations to the draw

process, it also underscores the utility of the SOC fiber design, assuming that the SOC

states can be successfully excited. Gen4-3 and core10 are included in the figure for

reference. Both fibers have comparable ring sizes and suppress SOC - indicating that

so long as the mode fields have space in which to expand they will tend to avoid the

sharp index gradient at the air-glass edge, and will not be SOC.

In parallel to the research outlined in this document, research has been performed

on OAM in fibers by the group of Dr. Sophie LaRochelle. An inverse parabolic

fiber was designed to support low order OAM states (Ung et al., 2014), and at least

two iterations of low aspect ratio air core fibers were fabricated and tested (Brunet

et al., 2014a; Brunet et al., 2014b). However, in testing a fiber which was claimed

to support 36 states, the effects of spin orbit coupling were ignored, and modes were

transmitted only over 85cm. Thus, we consider the investigation of these kinds of

fibers an unsolved problem, although one which is beginning to attract more attention.

Having demonstrated fibers which support OAM states, we next study the proper-

ties of OAM-carrying modes in these fibers, specifically, their mode coupling proper-

ties regarding coupling between degenerate (Chap. 7) and nearly-degenerate (Chap. 8)

modes.
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Chapter 7

Degenerate States and Conservation of

OAM

It is well known that degenerate eigenmodes of many systems tend to couple strongly

due to inherent phase-matching, which is the operating principle of fiber gratings

(Erdogan, 1997) and of nearly all coherent nonlinear processes (Agrawal, 2008). The

degenerate polarization modes of SMF, for instance, couple readily, as anyone who has

worked with SMF can attest. Polarization stability was only attained by disrupting

the rotation symmetry of the fiber by inducing a large birefringence, either by de-

forming the core or by adding stress rods as in Panda fiber (Noda et al., 1986), which

broke the degeneracy between the polarization modes on the order of 10−4 in neff .

Modern PM fibers (such as Corning PM1550) are specified to maintain polarization

to -30dB or better after 100m based on this principle.

One might expect, then, to observe coupling between degenerate OAM states

over even short lengths of air core fiber. For high-l states, one would be wrong. In

this chapter, we discuss the curious perturbation resistance of high-l OAM states to

bend perturbations, as realized by a conventional polarization controller (polcon).

We show that mode stability generally increases with mode order, and attribute this

stability to conservation of OAM - like a top which becomes more stable to external

perturbations as it spins faster, OAM states in air core fibers become more stable

against the influence of external perturbations as their angular momenta become

larger. Over longer lengths, coupling between degenerate OAM states is observed.
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We postulate that this is an effect of distributed fiber twist, and show that it can

be precompensated, across a wide wavelength range, by using q-plates for mode

excitation.

7.1 Degenerate States in SMF and the Vortex Fiber

It is well known that bend-induced birefringence causes polarization mode coupling

in SMF (Ulrich et al., 1980; Barlow et al., 1981). The coupling itself is a second-order

stress effect, where the induced stress is proportional to the square of curvature of

the bend, or inversely proportional to the square of the radius of the bend (in SMF,

first order effects have no effect due to parity). This effect can be utilized to make a

polarization controller (polcon). If SMF is wrapped tightly in a circular bend, some

amount of birefringence is induced for the polarizations in-plane and out-of-plane with

respect to the bend. A length of uniformly bend SMF bent is essentially a waveplate

of some retardance. In free space, a series of QWP, HWP, and QWP can enact

any polarization mapping on the Poincare sphere (Saleh and Teich, 2007). Thus,

three such fiber bends, with approximate retardances λ/4, λ/2, and λ/4, are used,

with the ability to rotate the bends with respect to each other, to make a polcon

(see, for instance, Thorlabs FPC030). In practice, the lengths within the bend are

never equivalent to quarter and half-wave retardance, but near-arbitrary polarization

transformations are still possible.

Figure 7·1: In fiber polcon used to switch between spins

The behavior of the polcon on SMF can be understood from the alternative point
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of view of the circular polarization states as ideal modes, instead of the linear states as

local normal modes. In Fig. 7·1, tuning an in-fiber polcon is used to switch between σ̂+

and σ̂−. In that picture, the local birefringence causes phase-matched mode coupling

between σ̂+ and σ̂−. Specifically, if we assume that the local perturbation has slow

and fast axes x and y, and can be modeled as:

∆n =

(
δn 0
0 −δn

)
(7.1)

Which, from the point of view of x̂ and ŷ implies:

neff,x = neff,0 + 〈x̂|∆n|x̂〉 = neff,0 + δn (7.2a)

neff,y = neff,0 + 〈ŷ|∆n|ŷ〉 = neff,0 − δn (7.2b)

Where the inner product implies both a conjugate vector dot product and an inte-

gration over all space; mode envelopes as a function of r are assumed identical and

are assumed to be normalized to 1 under inner product with themselves. From the

point of view of σ̂+ and σ̂− implies that the coupling coefficient between them is:

κσ =
〈
σ̂+ |∆n| σ̂−

〉
= δn (7.3)

In view of this perturbation, the x̂ and ŷ fields are unchanged, but pick up an addi-

tional propagating phase. Their superpositions, the σ̂+ and σ̂− states, are no longer

modes in the perturbed fiber, or equivalently, feature mode coupling between them.

Recently, it has been shown that using the same polcon can induce mixing between

the degenerate l = 1 OAM states in Vortex Fiber (Bozinovic et al., 2012; Bozinovic

et al., 2013). This is indicated schematically in Fig. 7·2. Clearly the above analysis is

inadequate to describe this case, since if the simplistic model of Eq. (7.1) is applied to

the l = 1 OAM states, the mode coupling coefficient is zero by azimuthal symmetry.



151

Figure 7·2: In fiber polcon used to switch between l = 1 OAM states
in the Vortex Fiber

κl=1 =
〈
σ̂+eilφ |∆n| σ̂−e−ilφ

〉
= δn

〈
eilφ|e−ilφ

〉
= 0 (7.4)

Much as σ̂+ and σ̂− have an alternate representation as combinations of x̂ and ŷ, the

OAM modes have an equivalent representation in the HE (and EH for l > 1) modes.

The alternative basis for the l = 1 OAM modes are the HEe,o
2,1 vector modes, with:

V ± = HEe
2,1 ± iHEo

2,1 (7.5)

and

HEe
2,1 = F1(r) [x̂cos(lφ)− ŷsin(lφ)] (7.6a)

HEo
2,1 = F1(r) [x̂sin(lφ) + ŷcos(lφ)] (7.6b)

The correction to the effective indices of the HE modes is also zero by parity, unlike

the case of x̂ and ŷ in SMF. Rigorously, the dominant sources of stress in the

fiber should have an x or x2 dependences, where x is the coordinate in which the

fiber is deflected (Ulrich et al., 1980). The former does nothing in SMF or here

in the Vortex Fiber by parity, and the latter is a second-order dependence. A more

probable description is that the polcon can be approximated as a tensoral polarization

perturbation, as in Eq. (7.1), in conjunction with a tilted phase front.

∆n = eipx
(
δn 0
0 −δn

)
(7.7)
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Where p depends on the bend angle and fiber material parameters, as in Eq. (3.12).

As noted in Chap. 5, a tilted beam incident from free space can excite an OAM

spectrum centered around a desired l, thus, it is reasonable to posit that a ‘tilt’ in the

fiber could cause similar mode coupling, which might be expected in any event since

the OAM modes are degenerate. After any reasonable length of Vortex Fiber, the

OAM modes are observed to be in a superposition of degenerate modes, even if only

one is launched. Thus, controlled perturbations to switch between the degenerate

states is not only beneficial, but necessary, if the two l = 1 OAM modes are to be

used as MIMO-free data channels.

7.2 Conservation of OAM

Given that the OAM modes coupled under both controlled and distributed pertur-

bations in the Vortex Fiber, it was curious to observe that in the air core fiber, after

5m or 10m of fiber propagation, the degenerate OAM states do not show significant

crosstalk. The polcon experiment was repeated with air core gen3a fiber inserted

into a fiber polcon, as in Fig. 7·2 except with air core fiber instead of Vortex Fiber

and an SLM as excitation instead of a q-plate , in a 2-4-2 loop configuration, bend

radius 2.8cm. The output is imaged onto a camera after passing through a circular

polarization beam splitter (CPBS), as in Fig. 7·3(b). A series of images is saved as

the polcon paddles are tuned, and the power within each circular polarization bin

is measured at each orientation. We define a degradation factor, α, indicating the

maximum crosstalk. For high l states, as the l = 7 SOa state in (b), degradation

factors are typically < 10%. For comparison, the l = 0 mode in SMF, for the same

series of bends, α ∼= 1. Measurements for all OAM states for which SOa to SOaa

coupling is suppressed is shown in Fig. 7·3(d). Thus we find that for high-l states in

air core fibers, OAM is truly a conserved quantity even in the presence of anisotropic
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Figure 7·3: (a) Theoretical predication of OAM content of a bend
perturbation with radius 2.8cm. Coefficients rapidly decrease with in-
creasing OAM content (b) Power binning measurement for l = 7 SOa.
As the polcon paddles are tuned, negligible coupling between bins is
observed (c) Binning measurement for l = 0 in SMF for comparison
(d) Experimentally measured degradation for each l, plotted against
a shifted 1/l trend line (e) OAM content needed to couple between
degenerate states

perturbations. The OAM decomposition (that is, the azimuthal Fourier series, as in

Eq. (3.13)) of a 2.8cm bend is shown in Fig. 7·3(a). The coefficients rapidly decrease

with increasing ∆l. Assuming that the bends transfer spin angular momentum, the

OAM transition needed to couple between degenerate states is ∆l = 2l (Fig. 7·3(e),

which becomes increasingly difficult as the OAM order increases. Like a spinning

top or bicycle wheel which becomes more difficult to perturb with increasing angu-

lar velocity, these states become more stable with increasing OAM. This finding is

counter-intuitive for two reasons. First, the states are degenerate and do not couple,

indicating a paucity of perturbations with the necessary OAM transition. Second, in

many systems, the lowest order eigenstate is the most stable, and the opposite is true
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here.

Implicit in the above discussion is the fact that OAM modes are stable against

gentle motions of the air core fiber on a lab table, or coiling the fiber in bends at

least a few cm in diameter. The same cannot be said of the HE modes of the same

order. As shown in Fig. 7·3, when an l = 6 SOaa mode in gen4-3 is imaged into

σ̂+ and σ̂− bins, and polcon paddles are turned, negligible mode coupling between

degenerate states occurs. The same fiber’s output is then passed through a q-plate

and a (linear) PBS, which then measures HEe and HEo in separate bins. As the fiber

is gently moved around the optical table, sloshing between bins is evident, suggesting

that the HE modes of the same mode order are themselves not stable. Thus, the

Figure 7·4: (a) Binning measurement of l = 6 SOaa modes out of
gen4-3 fiber as polcon paddles are manipulated (b) Binning measure-
ment of l = 6 SOaa modes out of the same gen4-3 fiber, passed through
a q-plate and reconverted to l = 0 and projected into linear polariza-
tions, thus measuring HEe,o mode content. The fiber is then gently
moved around the optical table

effect measured in Fig. 7·3 is characteristic only of the higher order OAM modes, not

of the higher order vector modes.

We conjecture that this can simply be understood from the point of view of simple

rotations (discussed below) or from geometric effects (see Sec. 7.4). Suppose that the

fiber is rotated such that adjacent sections see a differential rotation, modeled as
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φ→ φ+ φ0. Evidently, the OAM modes will acquire a phase shift from this counter-

clockwise rotation:

V ± ∝ σ̂±e±ilφ → ei(l+1)φ0V ± (7.8)

Note that the phase shift goes as l+1 and not l because the circular polarizations also

acquire a phase shift upon rotation. Only SOa modes are shown, but clearly the effect

is similar for SOaa modes. This phase shift gels well with previous research indicating

that twist induces an angular momentum-dependent birefringence (Alexeyev et al.,

2008). The HE modes are not simply expressed in terms of a phase shift; Eq. (7.6a)

Eq. (7.6b) are modified by φ→ φ+φ0. Under this rotation, the modes transform to:

HEe → cos(lφ0)HEe − sin(lφ0)HEo (7.9a)

HEo → cos(lφ0)HEo + sin(lφ0)HEe (7.9b)

The EH modes, although not written, show similar behavior. For a given rotation,

as l increases, the vector modes will actually become less stable, and will couple more

freely. Thus, it may be not only convenient, but appropriate, when describing higher

order modes in weakly guiding fibers, to use the OAM basis rather than the HE

basis, due both to its physical intuition and the states’ resistance to common pertur-

bations. Further, the perturbation resistance of these modes could be advantageous

for applications requiring high purity over short distances, such as chip-to-chip or

chip-to-rack communications, or fiber sensing.

7.3 Degenerate States, q-plates, and Twist

Over long propagation lengths, light can encounter myriad perturbation symmetries

due to imperfections in the draw process, or twists and microbends. We observe that

for fibers of length 50m or greater, the degenerate OAM states are typically mixed.



156

Cutback results from 50m down to 10m did not yield conclusive results on the beat

length of the degenerate states. At this moment, the exact coupling mechanism is

not known.

We suspect that the main culprit is distributed twist. As described in Sec. 3.3,

twist can modulate the effective indices of each OAM mode according to the total

angular momentum. We use the experimental apparatus in Fig. 7·5(a) to study

induced twist in air core fibers. One of the l = 6 SOaa modes is excited in gen3a fiber

using a q-plate and propagated for ∼2m. The fiber is then clamped, strongly enough

to prevent the fiber from moving, but weakly enough that SOa to SOaa coupling

is not observed. The fiber is then clamped again into a Newport F-AM-FC bare

fiber adapter with the fiber ferrule removed, which is then mounted onto a motorized

rotation stage. The fiber fed through the clamp is clamped again on a Thorlabs

HFF001 clamp, after which it is imaged through a CPBS. The apparatus is designed

Figure 7·5: (a) Apparatus for inducing twist (b) OAM mode before
and after induced twist (c) Ring coefficients evolving as the fiber is
rotated, inducing more twist and apparently coupling between SOa
and SOaa states.

to controllably induce twist. If the twist is induced in the middle of the fiber, there
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will be equal and opposite twists imposed on either side of the rotation point; thus

the end must be twisted. However, if the fiber end facet is directly mounted into the

rotation mount, the fiber will move unstably around, and off of, the camera, as the

fiber mount is not well-centered enough on the center of symmetry of the rotation

stage. This apparatus is used to controllable induce twist between the first clamp and

the rotation stage; the final HFF001 clamp has an adjustable groove size, and is used

to prevent the fiber end facet from moving (the fiber is free to rotate between the

rotation stage and the output clamp). For the experimental data below, the distance

between rotation stage and first clamp is 8cm.

One OAM mode is launched, as in Fig. 7·5(b), top. The fiber is twisted, and

after a certain amount of twist, approximately 270◦ in this case, the smooth ring

gives way to an LP-like constellation of beads, indicating interference between l and

−l, and thus mode coupling between SOaa and SOa. When the fiber is rotated the

same amount in the opposite direction (−270◦), no such mode coupling is observed.

However, when the other SOaa state is launched, LP-like mode coupling is observed

at −270◦ and no mode coupling is observed at 270◦. Coefficients for the ring method

for one rotation sweep from 90◦−450◦ are shown in Fig. 7·5, indicating that the mode

coupling appears periodic with angle. Wavelength was swept, and it was found that

the ring coefficients did not change appreciably over 40 to 50nm.

The results from this experiment in the end were inconclusive; no statistically

significant trends were observed as a function of twist length, and experiments still

remain to be performed. However, it is evident from these preliminary measurements

that twist has the potential to couple across a ∆l = 12, and may thus lead to coupling

between the degenerate states in the presence of intrinsic or external birefringence.

However, any mode coupling between degenerate states can be compensated with a

q-plate of appropriate charge, over some wavelength range. As illustrated in Fig. 7·6,
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any fiber coupling between any two degenerate OAM states can be seen as a linear

transformation in the 2-mode subspace of those OAM states. If the fiber is written

Figure 7·6: (a) In an idea fiber, a single OAM mode is preserved (b)
In a long-length, imperfect fiber, coupling between degenerate OAM
states occurs (c) Precompensation of in-fiber mode coupling by q-plate
excitation of a superposition of degenerate OAM states

as a 2 × 2 matrix in the basis of degenerate OAM states, in the presence of mode

coupling, the matrix is non-diagonal. However, by launching into the fiber a controlled

superposition of the two OAM states, enabled by illuminating the q-plate with a some

combination of σ̂+ and σ̂−, one can make the transmission matrix between input

circular (or linear) polarization and output OAM states diagonal. A second q-plate

(or other mode converter) at the fiber output can thus diagonalize the transmission

matrix between input and output polarizations. This is shown explicitly in Fig. 7·7,

in which a polcon prior to the q-plate used to excite modes in the air core fiber

determines in which polarization port light leaves the system, as measured by an

HP optical multimeter. The effect is wideband, with at least 17dB of suppression

across the C-band. The extinction of 17dB could be limited by several factors; cross-l

detection can be observed at this level due to imperfections in alignment of the input

or output coupling systems, and due to different degenerate state mixing in the fiber,
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there is no reason to presume that the input polarization which unwinds the fiber

perturbation matrix for l = 6 is the same as that which unwinds l = 5. The optimal

bias point of each q-plate is itself a function of wavelength, and some small amount

of light could remain in l = 0 for the entire measurement.

Figure 7·7: Input beam from an ECL is converted to an SOaa OAM
state using a q-plate , and transmitted through 500m of air core fiber.
At the output, it is reconverted to an l = 0 beam through a second
q-plate and coupled into SMF, where it is split by a fiber PBS. Con-
trolling the polcon after the ECL before the first q-plate determines
which polarization port the signal arrives at the output. Setting the
polcon to minimize power in one port does so at least across C-band,
as indicated in (b) and (c)

7.4 OAM Modes, HE/EH Modes, and the Pancharatnam-

Berry Phase

It is well known that even in the absence of linear or circular birefringence a polar-

ization rotation can be observed in SMF due to geometric effects when the fiber’s

trajectory is not restricted to a plane (Pancharatnam-Berry phase) (Chiao and Wu,

1986; Tomita and Chiao, 1986; Berry, 1987). The exact polarization rotation de-



160

pends on how the fiber is arranged in three dimensions (Wassmann and Ankiewicz,

1998). When a fiber is bent into a two-dimensional curve and a linear polarization

is launched, the angle of the linear polarization with respect to the normal vector

of the plane containing the curve is constant. Any continuous curve through three-

dimensional space can be broken into components, each of which is contained entirely

in one plane, but for which adjacent planes may be rotated with respect to each other.

In three dimensions, the polarization will rotate according to the integrated torsion

of the curve (Ross, 1984):

θp = θ0 −
P∫

0

τ(s)ds (7.10)

where we measure the polarization at point P, θj is the angle of the linear polarization

with respect to the input binormal of the fiber (i.e. a reference vector) at point j, τ

is the torsion, and s denotes arc length. Even if the fiber endpoints are fixed, torsion

may be induced by bending the fiber in three dimensional space. It is even possible

to make a polarization controller with this effect (Han et al., 2015).

The OAM modes themselves are rotation invariant. However, their linear combi-

nations, i.e. the HE and EH modes, are not, as indicated in Sec. 7.2. Moreover, the

EH and HE modes of the same |l| have different rotation symmetry, corresponding

to their total angular momentum rather than their OAM. The HE3,1 mode is 3-fold

Figure 7·8: Polarization distribution of HE3,1 and EH1,1
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rotationally symmetric, requiring a rotation of 120 degrees to maintain its orienta-

tion. The EH1,1 mode, on the other hand, requires a rotation of 180 degrees, as does

the fundamental mode of an SMF. We thus make the empirical assertion that the

sensitivity to such geometric phases should increase as j.

We test this using the apparatus in Fig. 7·9. The fiber is laid out on the table

except for a part approximately 50cm in length, which is lifted off the table and

wrapped onto a single coil, suspended by a rod. The ends of this coil are laid on

the table with enough slack that they can move freely. The ends of the coil are then

moved apart in controlled 5mm steps, inducing a linearly increasing torsion in the

single-coil helix. At the input of the fiber, a polcon and a q-plate are used to excite a

Figure 7·9: Experimental apparatus for measuring geometric-phase
induced mode coupling in HE/EH basis

single HE or EH mode. At the output, a second q-plate is used to project the HE or

EH mode back into an l = 0 mode with spatially invariant polarization, after which

the beam is passed through a polarizing beam splitter and imaged with a camera.

The images are binned and the relative powers in x̂ and ŷ thus computed. In this

manner, the geometric effect experienced by the OAM modes is mapped back onto

a simple polarization rotation. Experimentally, it is difficult to return exactly to

the same initial conditions. However, the steps are repeatable, and and we compare

periodicity from measurement to measurement.

Data for EH5,1 and HE7,1 are shown in Fig. 7·10. The last data point in the
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EH5,1 is spurious due to the fiber slipping, otherwise a clear periodicity is evident.

Measurements were repeated three times due to uncertainty in the “helix” and the

Figure 7·10: Power in each linear polarization as a function of helix
pitch for (a) HE7,1 and (b) EH5,1

periods calculated and averaged. The ratio of the periods of EH5,1 to HE7,1 is 0.69,

while 5/7 ≈ 0.71, indicating good agreement with the expected result.

The measurement is repeated using OD105 Vortex fiber, with the HE2,1 modes

and the same experimental apparatus, although we note that the exact shape of the

helix has likely changed, since the fiber sample has been swapped out. The pitch,

shown in Fig. 7·11 (a), is much reduced from that of l = 6. An interesting comparison

Figure 7·11: Power in each linear polarization as a function of helix
pitch for (a) HE7,1 and (b) EH5,1

is with TE/TM, shown in Fig. 7·11 (b). Because the modes are symmetric, they are
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unaffected by the geometric phase and no polarization cross-coupling is observed.

(However, as a caveat, we note that the TE and TM modes are not degenerate; if this

result is due to some other strange mode coupling effect between degenerate states,

we expect it to be much reduced for the largely dephased TE and TM modes).

This behavior helps to explain the results of Fig. 7·4, in which the powers in

EH/HE were seen to vary strongly while the powers in their constituent OAM modes

were relatively stable. Indeed, when the stability experiment is repeated using a pol-

con, we observe similar mode stability from both HE/EH modes and OAM modes of

high-l. This indicates that there may be some hope for a true polarization maintaining

fiber, if the fiber can be constrained to lie in one plane.

The fact that the rotation scales with j suggests a possible use for OAM modes

+ q-plates to be used as a fiber sensor, as the high-l modes will by default be j

times more sensitive than SMF. Additionally, the ability to launch multiple modes,

which will have controllably different responses, simultaneously suggests a reduction

in ambiguity. This will be discussed more in Sec. 11.2.

7.5 Summary

We have demonstrated in this chapter than high-l OAM states resist common per-

turbations over short length scales, even though the modes come in degenerate pairs.

Not only does this open the possibility of using each state independently over short

length without the need for pre- or post-compensation, but it also implies that there

is, innately, a difference between the OAM and EH/HE basis sets for higher order

modes in weakly-guiding fibers, since the EH/HE modes are themselves not stable to

simple fiber rotations and experimentally are observed to couple freely in the pres-

ence of even relatively faint perturbations. We expect that this stability in the face of

common perturbations will be advantageous for OAM in applications desiring short
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length transmission without digital signal processing (DSP), such as short-reach com-

munications inside data centers (Zhang et al., 2012).

We have shown that although degenerate state mixing does occur for fiber trans-

mission at the hundreds of m to km lengths, q-plates can be used to pre-compensate

this mode coupling, and such compensation is relatively wideband, with one polcon

setting able to pre-compensate for the entire C-band.

It would be interesting to study the stability properties of OAM states across a

wide range of l. Behavior for l = 0 and l = 1 are well known (Bozinovic et al.,

2012; Gregg et al., 2015a), and recent research on OAM polarization mode dispersion

in 1.1km of an inverse-parabolic fiber seems to indicate that l = 2 also couples in

the presence of common perturbations (Wang et al., 2015). To my knowledge, the

space between l = 2 and l = 5 remains unexplored. Given the rapid decay in bend

azimuthal Fourier series coefficients in Fig. 7·3, it may be the case that a wide array

of OAM states are stable against such perturbations, but we have also seen in air

core fibers accidental-degeneracy induced coupling between states which have ∆l = 4

(gen3e, and gen4) and ∆l = 7 (gen1), so it may be that only for l ≥ 4, 5 that this

stability truly occurs. Further, it is unknown how this concept will extend to the SOC

states. Likely such stability will be equivalent or even slightly better, since the states

now exist in an OAM superposition, and coupling should be driven by interactions

between the lower l components, which now have modal weights less than unity. This;

however, remains to be tested.
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Chapter 8

Broken Degeneracy and Long Length

OAM State Propagation

The main argument behind the introduction of stress rods into PM fiber (Varnham

et al., 1983; Tsao, 1992), and the design of a fiber with high refractive index contrast

(Ramachandran et al., 2005b), is the breaking of modal degeneracy to introduce

stability for the modes in question, either the polarization modes of SMF or the

azimuthal mode order L = 1 vector modes.

However, according to coupled mode theory, mode coupling between even phase

mis-matched states can and does still occur (Marcuse, 1974). The polarization sta-

bility in PM fibers is well known, and depending on the type and fabrication quality

can be -30dB or better per 100m (Noda et al., 1986) (or see, for instance, Corning

Panda PM 1550). The l = 1 OAM mode stability versus TE and TM modes is

estimated as -10dB after 1km (Bozinovic et al., 2013), which was enough for Tbps

communications using FEC. Experimentally, a sharp enough bend can induce visible

coupling between high-l SOa and SOaa OAM states even over a bend a few cm in

length, although the bend diameter needed to observe such coupling is less than 1cm.

In this chapter we study distributed mode coupling between SOa and SOaa OAM

states over long lengths of fiber. Note that the symmetry arguments discussed in

Chap. 7 do not apply here for high-l states; for a given l, there exists a pair of non-

degenerate states V + ∝ σ̂+eilφ and W− ∝ σ̂−eilφ such that coupling between them
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only requires a birefringent perturbation which couples spins:

〈
σ̂−|∆n|σ̂+

〉
6= 0 (8.1)

Such perturbations are known and expected in SMF, and will occur over long lengths

of air core fiber. For low-l states for which ∆l = 2l is small, it may be the case that

coupling between V + and W+ may be preferred over the birefringent perturbation

needed to coupling V + and W−. This is a possible subject for future work.

In Sec. 8.1, we discuss coupling from SOa to SOaa which, instead of being enabled

by birefringent perturbations, is enabled by accidental degeneracy with a lower l OAM

family. The remainder of the chapter discusses distributed coupling between adjacent

modes of the same l. In Sec. 8.2, time domain and time domain + q-plate output

projection measurements are performed on air core links ≈ 1km in length. Sec. 8.3

describes preliminary experiments leading to the OAM loop experiment, which is

discussed in detail in Sec. 8.4, and in which distributed mode coupling is measured

at multiple fiber lengths and a comparison is made with coupled power theory in

a two-moded fiber. It is found that OAM modes follow the expected hyperbolic

tangent power transfer behavior, and that relatively small changes in ∆neff can lead

to large changes in mode coupling coefficient. We compare out results on recent work

studying distributed mode coupling between adjacent LP mode families, and find that

for similar splittings, OAM modes perform at least an order of magnitude better in

resisting mode coupling.

8.1 Accidental-Degeneracy Induced Coupling

As discussed in Sec. 6.4, gen4-3 of the air core fiber features accidental degeneracy

across only part of the C-band, with higher wavelengths featuring stable propagation

of SOa and SOaa l = 6 modes, while lower wavelengths feature output symmetries
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indicative of l = 2,m = 2 modes, and according to simulations, these mode families

are proximal in neff . Here, we study the level at which this coupling influences

the intermodal crosstalk between l = 6 SOa and SOaa; at some point, for instance,

perhaps only single-coupling events between l = 6 and l = 2 will be likely, resulting

only in loss. Alternatively, if multiple-coupling instances are possible, both crosstalk

and MPI are possible, with both impairing any system relying on modal stability.

We study this coupling with the apparatus in Fig. 8·1. OAM states of l = 6

are launched, either by a q = 3 plate for SOaa states, or a q = 3 plate followed by

an HWP for SOa states. As previously described, a q-plate followed by an HWP

Figure 8·1: MUX/DEMUX system used to test in-fiber crosstalk by
q-plate output coupling

is essentially a q-plate with charge of −q, so q = −3 will be used for brevity for

this combination. The states are propagated through 1200m of gen3-4 fiber, after

which they are passed through either a q = 3 or q = −3 plate and coupled into

SMF. When the SOaa states are launched by a q = 3 plate, using a q = 3 plate

at the output measures power retained into SOaa states, while deMUXing with a

q = −3 plate measures power coupled into the SOa states. The output coupling loss

is approximately 5.8dB, with 1.5dB lost in transmission through the q-plate and

4.3dB lost in SMF input coupling. We expect that the resolution between power in
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SOa and SOaa will excellent, since one mode set will be sent to the fiber as l = 0

states, and one as l = 12 states, which will have a miniscule overlap integral. Fig. 8·2

shows a the effect of transmitting an l = 6 SOaa (top) and SOa (bottom) state, after

1.1km fiber propagation in gen3f, through a q = 3 plate, which down-converts the

SOaa states to l = 0 while up-converting the SOa states to l = 12. This is especially

evident in the far-field, where the l = 0 beam has evolved into a spot, while l = 12

is clearly a ring. Some light in the center is evident due to crosstalk in the FUT;

Figure 8·2: l = 6 SOaa (top) and SOa (bottom) states transmitted
through a q = 3 plate, converting them to l = 0 and l = 12, respectively.
In the farfield (right) these become a spot and a large ring beam. Top
far field image attenuated with respect to bottom

however, note that the even though the spot is bright crosstalk is not necessarily

severe, since the power in the parasitic modes has now been condensed into a small

spot while the power in the desired modes is now spread out into a larger ring.

When performing input coupling, the limiting factors determining how much par-

asitic SOaa is excited when intending to launch SOa are the precision of the HWP

used, which is typically -22 to -25dB, and the amount of polarization scrambling off

of theoretically polarization insensitive components, such as mirrors. In this out-
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put coupling setup, the q-plate is placed before two coupling mirrors, removing this

uncertainty.

The Pritel pulsed laser (∆Λ ≈ 0.5nm) is swept across C-band, and l = 6 SOa

and SOaa are launched. For each launch condition, output projections with a q = 3

and q = −3 plate are performed, thus giving crosstalk for each mode set at each

wavelength. The measured powers are plotted in Fig. 8·3. As is evident from Fig. 8·3

Figure 8·3: Measured powers using q-plate output projection for (a)
l = 6 SOaa launched and (b) l = 6 SOa launched. Difference between
curves yields wavelength-dependent crosstalk

both the SOa and SOaa modes deteriorate as the wavelength is decreased, especially

for wavelengths shorter than 1540nm. Evidently, in this range coupling between the

two mode sets aided by accidental degeneracy is possible, and l = 6 SOaa appears to

be more strongly affected, as would be expected from time domain Sec. 6.4. Measured

crosstalks at longer wavelengths agrees quantitatively with that measured by time of
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flight, lending credence to both measurements.

The measuredment in Fig. 8·3 is incoherent in nature, given the wide bandwidth of

the laser source. The measurement is repeated using a narrowband ECL. Wavelength

is swept across 1nm in 100steps for seven wavelengths across the C-band, using the

same MUX/deMUX setup as above. Data is shown in Fig. 8·4(a) when l = 6 SOa is

launched and (b) when l = 6 SOaa is launched. Not only the crosstalk but evidently

the MPI in the parasitic mode increases as the wavelength is decreased.

Figure 8·4: Measured powers using q-plate output projection for (a)
l = 6 SOaa launched and (b) l = 6 SOaa launched, with narrowband
ECL as source. (c) Measured crosstalk as a function of wavelength

The only other component which could directly lead to wavelength-sensitive crosstalk

is the HWP used to make the q = −3 element. The HWP used is a zero-order HWP

from Thorlabs, which previous (and later) measurements confirm does not contribute

to crosstalk above the -20dB level across the C-band.

Thus, we conclude that operating in this regime will be extremely detrimental

from a communications point of view. It is unclear whether the coupling is a two-
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step process, aided by two different accidental degeneracies, or a three-step process

aided by one:

l = 6 SOa→ l = 2 SOa → l = 6SOaa (8.2)

Or

l = 6 SOa→ l = 2 SOa → l = 2 SOaa → l = 6 SOaa (8.3)

This could likely be tested using output coupling of l = 2 on short lengths of fiber.

Regardless of the exact transition, it is evident that coupling among all l = 6 states

has occurred.

It may be the case that this regime has other applications we have not considered.

If the fiber strongly couples the photons, one could imagine it as a black box out

of which, if l = 6 SOa is inserted, one of eight (l = 6 SOa ×2, l = 6 SOaa ×2,

and then the four l = 2 m = 2 states) emerge with some probability. This could

have application to quantum entanglement experiments, or more prosaically, if the

coupling is sufficiently random, random number generation.

8.2 km Length Propagation and Time of Flight

We use time of flight to study distributed coupling over long-length fibers. Given

the equipment available to us, to study distributed coupling between SOa and SOaa

states, which are typically separated in group index by 2 ∼ 4×10−4, fibers of at least

50m are needed. As sample system diagram is shown in Fig. 8·5. At the fiber output,

for most measurements, we couple into an MMF which is patched into a fast detector.

This results in traces such as Fig. 8·6(a), when the l = 6 SOa mode is launched. We

have hereto assumed that the distributed in the ∼1ns preceding the main peak is

entirely in the l = 6 SOaa mode set. We confirm this by using the second output

setup in Fig. 8·5 where the fiber output is passed through a q = 3 or q = −3 plate

and then coupled into SMF, revealing separately the time signatures of the SOa and
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Figure 8·5: Experimental system for measuring distributed mode cou-
pling by time of flight, and sanity-checking MMF output coupling

SOaa modes. As expected, the mode coupling shoulder is, to the resolution of the

measurement, entirely in the parasitic mode group.

Figure 8·6: (a) Time of flight trace of l = 6 SOa after 1200m in gen4-
3 fiber, with output coupled into MMF (b) Time of flight trace of the
l = 6 SOa and l = 6 SOaa projected into l = 6 SOa.

Time of flight traces are measured for the l = 5, 6, 7 modes in gen4-3 (at 1555nm,

where l = 6 is stable), and shown in Fig. 8·7. Dashed lines and corresponding

y-axis label indicates strength of local intermodal coupling, while integration over
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the shoulder (red) divided by integration over the peak (green) yields the crosstalk

numbers given in red. Measured crosstalk values are comparable for l = 6 and l = 7,

Figure 8·7: (a) Time of flight measurement of both l = 7 states,
excited independently, shown on linear scale (b-d) Time of flight mea-
surements of l = 5, 6, 7 on log scale

the effective indices of which are, according to simulation, 1×10−4 and 1.7×10−4. l =

5 on the other hand is significantly worse, despite having an neff separation of 7×10−5,

seemingly comparable to l = 6. This underscores the dependence of intermodal

coupling on phase mismatch between modes - typically the functional dependence on

phase mismatch in coupled mode or coupled power theory, given by R in Eq. (3.10),

is assumed to be strongly peaked around ∆β = 0, meaning that power transfer

could, and apparently does, rapidly increase as the phase mismatch is decreased.

Unfortunately, the group index separation of l = 4 in this fiber is insufficient to resolve

between mode-coupling induced broadening and dispersive broadening. The same is

true for l = 3 and l = 2, so time domain measurements in a more heavily-coupled

regime are not possible. Short length experiments, however, nearly always show a

strong LP-like output for l = 4, which has a simulated neff splitting of approximately
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2× 10−5.

It would be useful to develop a model to predict the intermodal coupling between

OAM modes at arbitrary lengths, which by necessity must include mode coupling

measurements at multiple data points. Furthermore, given the large amount of air

core fiber (albeit in ∼1km pieces) fabricated, it is possible for us to test OAM propa-

gation at length scales ∼ 10km; to my knowledge, OAM propagation over more than

1.1km in fiber has yet to be demonstrated, and questions still remain about OAM

scalability. We realize this long-length propagation by using a recirculating loop ex-

periment, akin to the classical telecom experiments used to test trans-oceanic length

cables (Bergano and Davidson, 1995). Before this experiment can be performed,

several practical lead-up tasks required investigation.

8.3 Loop Buildup

A simplified schematic for the loop experiment is shown in Fig. 8·8. A pump beam (red

Figure 8·8: Simplified loop diagram

arrow) enters the loop through an input/output coupling element, here represented

with a beam splitter. The part of the pump which is coupled into the loop traverses

the fiber loop and is emitted from the loop fiber’s output facet (blue arrow) and fed

back into the coupling element. It is either re-coupled into the loop for further round
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trips, or output coupled for diagnosis.

For traditional loop experiments in SMF, in-fiber acousto-optic modulators (AOMs)

were typically as the coupling element, as they were low-loss ways of both rapidly

input/output coupling, and could also be varied in time such that a near-arbitrary

number of round trips could occur before detection. This is impossible for air core

fibers, as in-fiber AOMs do not exist, and free-space ones are slow for large beams,

and tend to distort the beam passed through them unless collimation is near-perfect.

The last point is critical, since beam distortion will immediately yield crosstalk in

our case. A previous HOM loop experiment circumvented this issue by building long

(60km) loops and using a free-space beam chopper with frequency ∼ 100kHz (Sleiffer

et al., 2013). For our experiments, we are thus restricted to using a standard 3dB

splitter for the input/output coupling element. The pump OAM beam is created

using an SLM and a QWP.

To perform the loop experiment, several things have to be tested.

• Free-space coupling from air core fiber to air core fiber. Coupling from free

space to fiber was discussed in Chap. 5, but coupling from fiber to fiber may

be more difficult due to the precision needed for mounting angle, cleave angle,

fiber position, lens position, etc.

• Components must be tested for polarization scrambling, especially the beam

splitter used for input/output coupling. It would also be preferable to couple

fiber-to-fiber without using mirrors. Silver or gold mirrors at large angles of

incidence can cause polarization scrambling between σ̂+ and σ̂− due to differ-

ences in Fresnel reflection coefficients between s and p polarized light (Saleh

and Teich, 2007); even small differences at slight incidence angles could eventu-

ally become significant due to being in the loop, and thus experienced multiple

times.
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• A splice program (as described in Chap. 6 and App. C) must be developed for

low-loss, low crosstalk splicing.

• The use of a 3dB splitter as opposed to an AOM poses an additional problem

- the loop pump will pass through the beam splitter with only 3dB of loss.

Meanwhile, the beam emitted from the loop after one round trip has suffered

6dB in beam splitter loss, in addition to input coupling, fiber transmission, and

splice loss, meaning that the loop pump will be significantly stronger than the

loop output. These two beams must be separated before the Rx.

• A pulsed source with acceptable repetition rate must be engineered. The Pritel

picosecond pulsed laser used for all time domain measurements to this point

has a repetition rate of 20MHz. This inter-pulse duration of 50ns is insufficient

for longer fiber lengths, as the growing delay between time of arrival of dif-

ferent modes implies that the time signatures of different pulses may overlap,

preventing analysis.

Free space fiber-to-fiber coupling is first attemped with the fibers a minimal dis-

tance apart, as in Fig. 8·9. The fibers are mounted onto two translation stages along

with two f ∼ 4.5mm lenses, and the two stages are directly butted together. Gen4-2B

is illuminated with l = 7 from an SLM, which is checked for alignment with time of

flight, before the end facet is placed into the groove of one of the translation stages.

Throughput is first optimized for power, then for output symmetry on a camera.

Gen4-3 is the ‘receiving’ fiber, as it stably supports l = 6 for the wavelength used

(1555nm); thus, imperfections in the coupling will be more resolvable than if l = 6

strongly coupled to lower l modes under the influence of accidental degeneracy. Bet-

ter than 20dB extinction of undesired l states is achieved, with a fiber-fiber coupling

loss of ∼ 0.5dB. The same fiber alignment stably couples both l = 5 and l = 7. Thus,

fiber-fiber coupling without mirrors is in principle possible.
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Figure 8·9: First test of fiber-to-fiber coupling using gen4-2B to gen4-
3

However, when the translation stages are separated by approximately 80cm, low-

crosstalk coupling is no longer possible. Crosstalk is measured as -13dB for l = 7.

Further, the coupling losses are 1.2dB for l = 5 and 3.0dB for l = 7, implying that

diffraction is beginning to play a role in loss. Introduction of two mirrors between

the stages reduces crosstalk to -22dB or less, with coupling loss 2.2dB for both l = 5

and l = 7.

From the above two measurements, we infer that the larger the fiber-fiber distance,

the larger the loss will be, as might be expected from diffraction theory (note that this

only constitutes a 4F system if the distance between the lenses is 2F). We also infer

that control in addition to the lateral/vertical displacement of the fibers is necessary.

The two lenses also need to be centered with respect to each other, else significant

crosstalk can occur. For the loop experiment, we mount both lenses on x-y translation

mounts, giving an additional alignment degree of freedom.

The beam splitter is an especially important component for this loop, as it has

the potential to induce significant crosstalk between the SOa and SOaa OAM states

by means of discrete polarization scrambling. Standard non-polarizing beam split-

ters such as Thorlabs BS015 (or similar from Edmund or Newport) only maintain
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polarization at the few percent level, and testing our lab revealed that transmission

through the beam splitter preserves circular polarizations to about -18dB, while using

the beam splitter in reflection mode preserves circular polarizations to only -10dB.

We are fortunate in this case, because Tholabs also makes a wedged plate (BSW06,

dielectric coating) beam splitter, which generally does no better at maintaining polar-

izations, but for which the coating is optimal around 1550nm. In-lab testing reveals

that in both reflection and transmission the plate beam splitter preserves circular

polarizations to −21 ∼ −22dB, with the reflected case being slightly worse. Fig. 8·10

shows a time of flight trace for fiber-fiber coupling with a plate beam splitter operated

in reflection between the fibers. Discrete polarization conversion is evident above the

distributed coupling shoulder from in-fiber, but is at least 20dB down. For the loop

Figure 8·10: Time of flight for l = 7 SOa coupled into Gen4-2B, which
is then free-space coupled, through the reflective port of a plate beam-
splitter, into gen4-3. Blip at 2.5ns is due to polarization conversion at
beam splitter

experiment, we use a transmission mode to retain the beam inside the loop; thus,

parasitic polarization conversion can only happen once since polarization conversion

while leaving the loop is irrelevant.

To solve the beam overlap leaving the loop, a free-space AOM is used (Isomet
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1205C-1). If a single pulse is incident on the loop, the part of the pulse which propa-

gates around the loop and the parasitic part which simply passes through the beam

splitter will be well separated in time, with the round trip time being approximately

5µs per km of fiber. The beam leaving the loop is passed through a 1:4 telescope

to shrink the beam size, and is coupled into the AOM. The AOM is set to diffract

the beam for all times except for those when a parasitic pulse is incident, at which

point the AOM is biased for zero deflection. The rise and fall time of the AOM

is approximately 200ns, sufficient for separating desired loop output from undesired

parasitic pulses. The diffracted beam from the AOM is coupled into an MMF and

fed into a fast detector. The AOM diffraction efficiency plus MMF insertion loss is

approximately 4dB for l = 5 and l = 7.

The light source used in these experiments is diagrammed in Fig. 8·11. The

RF output of picosecond laser is amplified and triggers a digital delay generator

(DDG). The trigger signal is down-sampled, amplified, and then applied to an electro-

optic modulator (EOM) (Thorlabs 10GHz LiNbO3) which is biased to a null setting,

blocking all pulses when no voltage is applied. The laser repetition rate is thus down-

sampled by a factor between 10 and 200 depending on the fiber loop length, such that

only one or a few pulses are in the loop at a given time, and their temporal responses

are well separated from each other, and well separated upon reaching the detector

from the train of parasitic pulses which do not enter the loop. The insertion loss

of the EOM is 3.2dB, while the extinction ratio is approximately 25dB. The output

pulse train then passes through a 99/1 coupler, where the 1% tap is sent to the wide

bandwidth oscilloscope as a trigger signal. In some cases for longer fiber lengths,

an EDFA is used to boost the peak powers of the pulses such that multiple round

trips through the loop are visible. However, the EDFA has a minimum average power

setting, below which the amplifier pump is electronically shut off to suppress ASE.
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Figure 8·11: Schematic diagram
of light source used for loop ex-
periments

The down-sampled pulse train is far below this

minimum average power limit due to losing a large

number of pulses. To ‘trick’ the amplifier into

working, an ECL with average power 3mW is

combined with the pulse train through an in-fiber

PBS. The two signals then pass through a polcon

which aligns the pulse train’s polarization with

the SLM used in our free space coupling system

(Fig. 8·12). Thus, the amplified CW beam can be

directed to a beam dump in free space. We do

observe randomly polarized ASE after the EDFA

in free space; this is reduced by using a bandpass

filter before the AOM after the loop. The band-

pass filter contributes an additional 3dB to the

system loss. The EDFA is operated in a low-gain

regime to avoid the onset of SPM in either the

SMF leading to the input coupling system, or in

the FUT. The EDFA itself contains a few meters

of gain fiber and SMF, limiting the peak powers

available.

8.4 Loop Experiment and 13.4km OAM Propagation

All fibers from gen4 other than gen4-5 and gen4-6 are used for the loop experiment.

Details on gen4-3 are listed in Fig. 6·21, and are similar for all other fibers used in

terms of ∆neff , ∆ng, and loss. The fibers stably guide l = 5 and l = 7, but l = 6 is

lost to accidental degeneracy. We have four samples of length 1.2km, and one sample
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of 1.9km, allowing loop lengths of up to 6.7km. After the longest loop is measured,

gen4-2A is cutback by 600m, allowing for a shorter-length data point.

The experimental setup is shown in Fig. 8·12. Light from the source described

Figure 8·12: Experimental setup for loop experiments

in Fig. 8·11 is collimated and converted into an OAM mode by an SLM and QWP.

The fibers are aligned in two distinct segments. Segment C-D is illuminated from

facet C, using a second SLM. Once good (< −20dB) mode purity has been observed

via time domain, the coupling from D to A is optimized, and observed at facet B.

Optimization from D to A involves alignin both the two fibers and the coupling lenses

- this is done first by eye and by IR card to ensure that the beam emitted from D

is collimated and strikes the coupling lens for A at the center, and then observing

that the focusing beam is always roughly centered on the lens’ optical axis. Finer

tuning is then performed while observing the output field and time of flight spectrum

from B. The ability to change the excited state illuminating facet A is crucial; often,
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for a given l, coupling between D and A can be optimized, but only for that state;

that is, some combination of different offsets and aberrations leads to decent mode

purity even though the beam may be offset on some elements, especially for l = 7,

which is the highest l guided in these fibers at 1550nm. Iterating through the desired

states while aligning ensures a more accurate alignment. Coupling loss from D to

A is measured as 1.2dB. Input coupling from the SLM to facet A is then optimized

Figure 8·13: (a) Beam from SLM to pump facet A overlapped with
output from facet D (1200m gen4-3) (b) Same but with beam from SLM
defocused for illustration, showing the two beams slightly separated

using two guiding mirrors and observing the output from B; the fiber is not touched

again. Note that coupling from D to A could not be optimized just by input coupling

into facet A and observing the output from D, as the first round trip will always be

significantly stronger than the second, resulting from coupling from D to A. Moreover,

when the system is well-aligned, the output from facet D and the pump beam from

the SLM, as observed at the loop output, are well aligned in space as in Fig. 8·13(a).

Finally, the loop is closed by splicing facets B and C while observing the time of flight

from the loop output. The average measured splice loss is 0.2dB with crosstalk -15dB



183

or better.

Measurements are taken at several loop lengths between 1.2km and 6.7km, and

crosstalk is measured by time of flight for both l = 5 and l = 7. Since the EOM

used to select pulses only has 25dB of extinction, there are parasitic pulses which

are emitted from the EOM and pass through the beamsplitter, thus arriving at the

detector 28dB suppressed from the beam pumping the loop. For comparison, for

l = 7, we are interested in measuring distributed coupling features approximately

30dB suppressed from l = 7’s main peak, which itself is 6dB of beam splitter loss and

approximately 6dB of input coupling loss suppressed from the loop pump. To avoid

encountering these parasitic pulses within the time of flight region of interest, the

fiber is cut back by a few cm when necessary, since doing so changes the arrival time

of the features of interest while it does not change the time of arrival of the parasitic

features.

For loops of 3.1km length or less, the Newfocus 1444-50 picosecond detector is

used due to its time resolution. For loops of 3.1km and longer, the Newfocus 1611

1GHz photoreceiver is used, due to its superior sensitivity. Note that not only does

the pulse become weaker, but it broadens due to dispersion, which makes it appear

weaker in peak power to a detector capable of resolving the pulse. Even a significantly

broadened picosecond pulse appears as a Dirac delta to a detector with resolution of

only 1GHz. The two detectors agree on the measured crosstalk at 3.1km to within

0.5dB so long as the calculation for the 1GHz detector includes a multiplicative factor

to make up for the occlusion of part of the mode coupling shoulder due to the slower

impulse response for the main peak. This multiplicative factor becomes less and less

significant as the fiber length increases.

For first round trips, integration as described in Sec. 4.5 and illustrated in Fig. 8·7

is sufficient to yield accurate crosstalk values. For second round trips at longer lengths,
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although the fiber can be cutback slightly to avoid parasitic peaks, those peaks have

impulse responses of their own which, for the 1GHz detector, take almost 40ns to

completely die out. Given that the repetition rate of the laser was initially 50ns, the

entire timespan is thus filled with this ringing noise. In this case, the root-mean-

square (RMS) strength of the mode coupling shoulder is determined. Distributed

coupling is then approximated as this RMS value multiplied by the shoulder width.

Supposing the detector is linear; that is, the electrical receiver measured by the

oscilloscope is E = Eloop + Ep, where Ep is the parasitic signal from the ringing noise

of the parasitic pulses. If (a, b) denotes the interval in time over which cross-coupling

can be observed, and (b, c) denotes the interval of the main (unconverted) pulse, then:

XTmeas =

∫ b
a
E∫ c

b
E
' XTideal +

∫ b
a
Epump dt∫ c

b
Eloop dt

(8.4a)

XTideal =

∫ b
a
Eloop dt∫ c

b
Eloop dt

(8.4b)

XTRMS =

√〈
E2
loop

〉
× (b− a)∫ c

b
Eloopdt

(8.4c)

Where 〈Y 〉 denotes an ensemble average of quantity Y . The RMS value of the mea-

sured trace is given by

ERMS =
√〈

E2
loop + 2EloopEpump + E2

pump

〉
(8.5)

The middle term in Eq. (8.5) is zero. Eloop is a positive, slowly varying quantity in the

region of the cross-coupling shoulder so long as it is above the noise floor. If, in the

region of the cross-coupling shoulder, we subtract the mean of the pump trace from

both the combined and pump traces, Epump is evidently zero-mean and sinusoidally

variant, with an amplitude changing slowly on the scale of its oscillations. Thus, we



185

make the approximation that:

〈EloopEpump〉 ≈ 0 (8.6)

Then: 〈
E2
loop

〉
= E2

RMS −
〈
E2
pump

〉
(8.7)

Both quantities on the RHS of Eq. (8.7) are independently obtainable from subsequent

measurements of the time of flight with the loop open and then with the loop blocked

(measuring only the parasitic pump). The RMS crosstalk can then be calculated

directly. The RMS method and integration method are performed on a first round

trip of at 5.5km loop - the measured crosstalks are -10.8dB with the background

subtraction and -9.8dB for the RMS method, indicating good agreement.

The out-of-fiber losses in this system are significant. The addition of an EOM,

3dB splitter, and an AOM introduce approximately 10dB of loss, on top of ≈ 6dB of

coupling loss for l = 7, higher than optimal since the lenses and fiber positions were

optimized for fiber-fiber coupling instead of free-space to fiber coupling. The relatively

poor extinction of the EOM and lack of an in-fiber AOM also restrict measurement

capabilities, since the parasitic signals become more and more comparable to the

features of interest. Note that it is harder to measure crosstalk for stable OAM

states, since the mode coupling shoulder is relatively weaker, and more comparable

to discrete parasitic effects. Ultimately these imperfections and external losses dictate

that we only successfully observe 2 round trips for most fiber lengths (at 2.4km we

observe round trip 3, but at a power level too weak to calculate crosstalk). SMF

loops have the luxury of including an EDFA within the loop itself to negate loop loss,

which we cannot (yet!) do for these fibers.

Measured crosstalks are plotted in Fig. 8·14 for l = 5 and l = 7. The crosstalks

follow well a hyperbolic tangent, as expected from coupled power theory (Kawakami
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and Ikeda, 1978). Based on the data, we find that the mode coupling rates are approx-

imately h = 1.4× 10−1/km for l = 5 and h = 1.7× 10−2/km, based on minimization

of mean-squared error (MSE) between the theoretical crosstalk and the measured

crosstalk. The latter value is comparable to measured values in elliptical core PM

fibers (Noda et al., 1986). After transmission over 13.4km, the l = 7 OAM states are

pure to approximately -7.2dB. The states are > 10dB pure at 5.5km, and at 2km, a

distance relevant for large-scale data centers (Lam et al., 2014), they are 15dB pure.

The crosstalk is measured at several points across the C-band for a loop length of

Figure 8·14: Measured crosstalk for l = 5 and l = 7. Dashed lines are
theoretical crosstalk, for a given h values. Inset mode images become
progressively beadier at longer lengths, indicating stronger crosstalk

5.5km, and fluctuates by only 0.5dB across that wavelength range, confirming that

the crosstalk is wavelength agnostic. This measurement is, however, an incoherent

one and will not reveal information about MPI (Ramachandran et al., 2003). We find

more than an order of magnitude difference in mode coupling rate between l = 7 and

l = 5, despite the ∆neff being different by only a factor of ∼ 2.
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Due to accidental degeneracy in most of the gen4 fibers, l = 6 cannot be measured

at a multitude of lengths. However, when gen4-2A was cutback, it was found that

l = 6 propagates in one half of the fiber, meaning that two data points - one at

600m and one at 1200m, can be obtained. Considering only those two point, l = 6

should have a mode coupling rate of h ≈ 4× 10−2/km, more comparable to l = 7

than l = 5, as results over 1.2km shown in Fig. 8·7 seem to suggest. During unrelated

measurements, gen3a was cut back in 50m segments from 1000m to 500m, with time

domain being taken at each length. This cutback yields several more data points,

which are plotted in Fig. 8·15. The neff splitting for l = 6 in gen3a is 1.1 × 10−4,

comparable to that in the gen4 fibers. The experimental data suggest a mode coupling

rate of h ≈ 4.1× 10−2, again similar to that found in the gen4 fibers. A summary of

Figure 8·15: Measured crosstalk for l = 6 in gen3a fiber versus length,
with theoretical crosstalk. Insets are experimental fiber outputs passed
through a CPBS

the neff splittings and associated mode coupling rates is given in Table 8.1. These

data points provide ‘benchmarks’ from which the crosstalk of a given mode of a known

effective index splitting can be predicted for a given fiber length. Although there are

only three data points, it appears that the change in h per change in neff is more



188

significant between l = 5 and l = 6 than between l = 6 and l = 7. Given that

phase matched coupling is nonlinearly stronger than phase mismatched coupling, and

that many authors model the phase mismatch dependence as a Gaussian centered at

∆β = 0, this is believable (Bjarklev, 1986).

Table 8.1: Summary of experimentally measured mode coupling rates
for different OAM modes

l ∆neff h(1/km)

5 7× 10−5 1.4× 10−1

6 1.1× 10−4 4.1× 10−2

7 1.7× 10−4 1.7× 10−2

Recent measurements have studied similar mode coupling between adjacent LP

mode families (Maruyama et al., 2015). Despite comparable spooling tensions (∼

0.45N used in these experiments), the OAM states are an order of magnitude or

greater more stable for comparable ∆neff . Although the smallest spooling tension

in (Maruyama et al., 2015) is 0.7N, the mode coupling should scale approximately

linearly with applied force (Tsubokawa et al., 1988), meaning that extrapolation from

the data in that paper by a factor of two is reasonable. We attribute this stability to

the larger probability of perturbations, such as slight bends, containing the ∆l = 1

OAM component needed to couple between LP0,1 and LP1,1, compared with the

birefringent perturbations necessary to couple spins.

We also find over the course of the measurement that the crosstalk for l = 5 is

strongly sensitive to spooling tensions. Spooling at high tension can cause crosstalk

in a single spool to degrade from about -10dB to -3dB or worse. On the contrary,

the crosstalk for l = 7 does not change for similar changes in spooling tensions. Both

states become worse when the spooling tension is too low, as this tends to lead to

slippage during the spooling process, which can cause microbends. This also gels

with observations in (Maruyama et al., 2015), which indicate that mode coupling is a
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strong function of spooling tension if the effective index separation between nearest-

neighbor modes is below a certain level.

8.5 Summary

We have shown, by means of a circulating loop experiment enabled by a large ∆neff

between adjacent OAM states and an extremely low (0.8dB/km) loss, OAM state

propagation over 13.4km. Three OAM states have been measured, and their mode

coupling rates determined by time of flight measurements. The l = 7 modes, featuring

a ∆neff of 1.7 × 10−4 are found to have mode coupling properties comparable to

elliptical core fibers.

It is at this point worth commenting on the outlook of these fibers to long-haul

communications. A splitting of 1.7×10−4 is quite large, without transitioning into the

SOC regime. Although the refractive index of the ring guiding region can be further

increased, in practice to about 0.05 above the index of Silica, it will be difficult to

significantly increase the refractive index splitting of the OAM modes in the weak

guidance regime. Supposing that one wanted to transmit data over classical long

haul links of 26km (Keiser, 2011), the crosstalk for these l = 7 modes would be about

-4dB. To obtain even 10dB purity at these lengths would require a mode coupling rate

a quarter of what we measure. Given that the stability as a function of neff is not

linear, it may take a significantly larger splitting that currently obtained to achieve

such a low mode coupling rate. These fibers will be hard pressed to obtain intermodal

crosstalk comparable with, for instance, uncoupled multi-core fibers (Saridis et al.,

2015). Further, although the loss of 0.8dB is incredibly low for a higher-order mode

in a fiber, it is still a factor of four larger than that in SMF. Some of this loss may be

due to fabrication imperfections, but fibers with higher Germanium concentrations

will intrinsically feature higher losses (Lines, 1984). It is thus unlikely that air core
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fibers will ever see implementation in long-haul communications, even presuming that

SDM is implemented in some form.

However, a recent class of so-called ‘Mega’ data centers has recently arisen, driven

by the omnipresence of cloud computing (Zhang et al., 2012) which feature a myriad

of both short (few m) and long (1-2km) links, and for which the additional system

complexity and energy consumption of telecom DSP is undesirable. Provided that a

simple way of exciting multiple OAM modes simultaneously, such as a tree of fused

fiber couplers, can be developed, OAM could make a significant impact on such

systems, both in terms of energy consumption and in terms of on-chip or rack-to-rack

fiber footprint.

One additional measurement that should be made regarding intermodal OAM

stability is a study of lower order OAM modes with comparable ∆neff s. It may be

the case that for a low l mode such as l = 2, significantly higher ∆neff is required to

obtain intermodal stability, since a transition of ∆l = 4 is not impossible with a gentle

bend, and may even be more likely than a birefringence-induced spin transition.
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Chapter 9

MIMO-free 12 Mode OAM Transmission

The performance of OAM modes in “real” systems is little-studied. Most OAM

transmission experiments are either performed at lab scale (meters) or were data-

free. Several authors have erroneously studied “OAM tranmission” in fibers not

designed to support OAM states (Wang et al., 2016), thus ignoring any advantage

that may be gained by fruitfully employing OAM modes. Transmission of true OAM

modes has been demonstrated using up to 4 modes at km-length scales both in an

entirely MIMO-free manner, where degenerate mode coupling was unwound using an

fiber polcon (Bozinovic et al., 2013), and using degenerate mode group (2x2) MIMO

(Nejad et al., 2016).

Our target is the transmission of multiple OAM modes simultaneously, using

QPSK or a higher order modulation format. Although traditional optical communi-

cation systems have strict limits on BERs- for instance, Gigabit Ethernet requires a

BER of 10−12 or less, the advent of FEC coding has allowed a more relaxed threshold

at the cost of a system overhead which decreases the data rate (Hamming, 1950; Free-

man, 2007; Chang et al., 2011). Two common FEC protocols are hard-decision for-

ward error correction (HD-FEC) and soft-decision forward error correction (SD-FEC).

The required BER for HD-FEC is 3.8 × 10−3 with an overhead of 7%, while the re-

quired BER for SD-FEC is 2.4× 10−2 with an overhead of 20% (Yu et al., 2011; Cho

et al., 2012; Dong et al., 2016). We require OAM transmission with BERs under the

SD-FEC limit at minimum.
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Based on the results from Chapters 6-9, we have the building blocks necessary

to perform a transmission test of multiple higher order OAM modes simultaneously.

In this chapter we describe experiments, in collaboration with Denmark Technical

University (DTU), studying data transmission on |l| = 5, 6, 7. We perform data

transmission using 10 GBaud QPSK on a 25 GHz-spaced frequency comb containing

60 wavelength channels over 1.2km. We find that, at three test wavelengths, all modes

not affected by accidental degeneracy may be sent simultaneously with BERs below

the soft FEC limit. This experiment is, to my knowledge, the first transfer data on

more than 4 distinct spatial modes without MIMO. Our limitations are accidental

degeneracy, which prevent the transmission of l = 6 at some wavelengths, drift and

imperfection in input coupling, and potentially difference in degenerate state coupling

across the source bandwidth, which limits the mode extinction available with our q-

plates . Our experiments underscore the critical need for an efficient, low-crosstalk,

stable MUX, if OAM transmission in fibers is ever to become practically feasible.

9.1 Experimental Setup for 12 Mode Data Transmission

The experimental setup is outlined in Fig. 9·1. A frequency comb with 60 WDM

channels, spanning from 1550nm to 1562nm with 25GHz spacing, is generated using

a 1544nm CW source which is phase and intensity modulated for sideband generation.

This is amplified and passed through highly nonlinear fiber to broaden the optical

spectrum. The comb is spectrally flattened and split into even and odd channels

using a wavelength selective switch (WSS). In most experiments, the odd and even

channels are separately modulated with 10 GBd QPSK signals and combined using

a 3dB PM coupler as shown in Fig. 9·1. For some experiments they are instead

modulated with 10GBd differential binary phase shift keying (DBPSK), using an

intensity modulator biased at the null point. DBPSK is used instead of on-off keying
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Figure 9·1: Experimental apparatus used for OAM fiber transmission
test. WSS: wavelength selective switch, AWG: arbitrary waveform gen-
erator, POL: linear polarizer, SLM: spatial light modulator, OBF: op-
tical bandpass filter, OMA: optical modulation analyzer. Insets: comb
source optical spectrum and fiber end facet image

(OOK) due to an increase in receiver sensitivity of 3dB (Weber, 1978). Difficulties in

source preparation prevented us from considering 16-QAM, or other higher complexity

modulation formats.

The signal is split in a 1×8 coupler. Two outputs are discarded, while the other 6

outputs are independently amplified for use as data channels for the 12 OAM modes.

Each of the 6 amplified outputs of the 1 × 8 coupler is passed through a polariza-

tion controller and collimated using a reflective collimator (Thorlabs RC04APC-P01).

Each path is directed through a q-plate , creating a combination of degenerate states.

The specific linear combination is adjusted, using the preceding polcon, such that

the degenerate state mixing in the fiber is unwound and each data stream leaves the

fiber as a pure OAM state (see Sec. 5.4). With two modes each in the SOa and SOaa

sets for |l| = 5, 6, 7, we excite 12 modes in total. The states are made collinear using

a system of 3dB splitters, and coupled into the fiber under test with an f = 8mm

aspheric lens. Although the current system design cannot increase the link capacity
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over simply using 12 SMFs in tandem, since it doubles the number of channels by

decreasing the signal to noise ratio (SNR) of each channel, it suffices to test the trans-

mission properties of the air core fiber. The signals are transmitted through 1.2km

of gen4-3 fiber. The fiber output is collimated and passed through a CPBS before

being directed to an SLM. The combination of CPBS and SLM project one of the

desired modes into an l = 0 free space mode. This is coupled to an output SMF, such

that only one data stream is read at a time. Thereafter, the desired WDM channel

is selected using a tunable optical bandpass filter (OBF), and is sent to an optical

modulation analyzer (OMA), which handles detection and error counting for QPSK.

For DBPSK, the output of the OBF is sent to a delay line interferometer with a delay

of one bit, converting the phase difference to an amplitude modulation and enabling

direct detection (Xu et al., 2004).

The inputs are independently amplified to account for differential loss. The l = 7

channels have one less 3dB beam splitter in path than the l = 5 and l = 6 channels,

and will thus have lower loss. Even if the number of beam splitters were equal for all

channels, there would be slight differences in size mismatch between the different l

states, and it would be difficult to position the q-plates equally distant from the fiber

coupling lens (where a difference in distance between plate and lens would result in a

differential loss from differing phase curvature; see Sec. 5.4). The amplifiers are tuned

to equalize detected power in each mode.

The system is aligned using a tunable repetition rate pulsed laser by measuring

the time of flight response and optimizing for mode purity. The output projection is

aligned in steps - first the projection is set for the desired mode and all input data

streams except for the desired mode are blocked. The output coupling mirrors and

SLM settings are aligned to optimize power coupled into the output SMF. After this,

the desired input data stream and the data stream of the same |l| are blocked and all
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others, already aligned at the input by time domain, are unblocked. The SLM pattern

at the output is then shifted by a few pixels to minimize total detected (parasitic)

power.

The polarization of each arm is aligned by temporarily removing one input to the

polarization MUX and adjusting polarization such that the output projection into

one degenerate state is minimized across the frequency comb. We observe that it is

not always possible to achieve a strong suppression of degenerate states across the

frequency comb, which may be due either to imperfect mode coupling, or more likely

to in-fiber mode coupling (Wang et al., 2015). Transmission of l = 6 SOaa is lost

around 1550nm due to the presence of accidental degeneracy. We attribute this to

the occurrence of MPI: light couples from l = 6 to a lower order mode, with which

l = 6 is accidentally degenerate, before coupling back to the channel, corrupting the

datastream.

9.2 Experimental Results

Using a DBPSK modulation format, we may map out the detected BER as a function

of input power. We consider several cases of interest:

• Only the two degenerate modes, of a given mode order, are sent and the rest

are blocked

• Only the four modes of the same |l| are sent simultaneously; the rest are blocked

• All modes are sent at the same time

Each of these cases is shown for the l = 5, 6, 7 SOa modes at a representative

wavelength of λ = 1558.5nm in Fig. 9·2. As can be seen, when only the two degener-

ate modes are sent, the mode orders are nearly identical and error-free transmission

is achieved for all of the modes considered. When all 12 modes are sent, the channels
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Figure 9·2: Measured BERs as a function of received power for a
subset of modes at 1558.5nm, for the case of: launching only pairs of
degenerate modes (circles); launching all 4 modes of a given l (dia-
monds); and launching all modes (squares).

are again markedly similar to each other, plateauing as the received power increases

due to mode coupling. However, when the 4 mode case is considered, the channels

are markedly different, with the l = 7 SOa modes almost achieving error-free commu-

nication, plateauing around a BER of 10−8. l = 5 is significantly worse, with a BER

plateau around 10−5, while l = 6 falls between the two. This directly correlates with

the neff splitting as a function of mode order, as might be expected, since this should

be the dominant source of crosstalk in the 4 mode case (input coupling crosstalk due

to polarization scrambling from the beam splitters expected to be -20dB or less in

each case). The mode orders being similarly bad in the 12 mode case suggests that

inter−l crosstalk from the MUX or DEMUX is the dominant source of error. How-

ever, the plateau region for l = 5 should always be higher in BER than those for l = 6

and l = 7, since the contribution to MPI from in-fiber crosstalk is higher.
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For QPSK transmission, BERs are measured at three test wavelengths: 1550nm,

1556nm, and 1562nm, corresponding to the comb’s shortest, center, and longest wave-

length, respectively. Measured BERs with constellation diagrams inset are shown in

Figure 9·3: Measured BERs for all OAM modes at three test wave-
lengths while all OAM modes are simultaneously transmitted. All 34
measurements are below the SD-FEC threshold. Inset: example con-
stellation diagrams.

Fig. 9·3.The measurements are performed with the fiber loaded with 60 WDM chan-

nels and all 12 modes. The l = 6 SOaa modes experience accidental degeneracy in

the vicinty of 1550nm, as MPI corrupts the channel un-recoverably, meaning that

only 10 modes are measured at this wavelength. All 34 measurements are below the

SD-FEC limit, while 24 of the 34 are below HD-FEC. Pessimistically assuming that

all 30 WDM channels between 1550nm and 1556nm support only 10 modes, while the

30 longer wavelength channels support 12, the demonstrated system has an aggregate

capacity of 10.56 Tbit/s after the 20% SD-FEC overhead has been subtracted for
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all modes. The demonstrated spectral efficiency is thus 7.04bit/s/Hz. Had we not

been limited by accidental degeneracy, and with a comb source extending across the

C-band, our system would have a potential capacity of 33.6 Tbit/s. The spectral

efficiency would instead have been 7.7bit/s/Hz.

System performance is limited by intermodal crosstalk, which has two contri-

butions: in-fiber mode coupling and misalignment or imperfections in the MUX or

DEMUX. The in-situ transmission matrix of the fiber under test is shown in Fig. 9·4.

Intermodal crosstalk is shown to vary between −10.3dB and −11.8dB depending on

Figure 9·4: Measured transmission matrix for system under test. Each
column corresponds to an output projection, and each row to a launch
condition. Each column is normalized to 0dB in the desired mode with
entries denoting crosstalk in dB. −l indicates SOa to SOaa coupling, 6=
l,−l indicates contributions from other mode orders, and 6= l indicates
total crosstalk.

the mode. Each column corresponds to an output projection setting, while each row

indicates which modes are launched and thus contribute to crosstalk at the receiver.

The strongest parasitic contribution for |l| = 5 is in-fiber crosstalk between the |l| = 5

SOa and SOaa modes (−12.8dB) because this mode group has the smallest ∆ neff .

|l| = 6 and |l| = 7 are mainly limited by crosstalk from different l orders. Since the

splitting between the OAM mode of order l and that of order l + 1 is an order of

magnitude or more larger than the splitting between modes of the same |l|, we expect
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in-fiber mode coupling between adjacent OAM mode order to be negligible over 1km

as in Chap. 8 (Maruyama et al., 2015). Thus, we conclude that such crosstalk is a

direct result of of imperfections in the free space MUX or DEMUX.

Over the course of these experiments, significant drifting of the MUX and DEMUX

are observed as a function of time, limiting the number of measurements which could

be made before the system required realignment. For a true transmission test, the

fiber should not be perturbed or moved between channel measurements. This is the

primary reason we measure only 3 wavelength channels as opposed to all 60; we do

not expect to see significant variation among nearby wavelength channels. As part

of the alignment, we observed the optical frequency comb transmitted through the

system on an optical spectrum analyzer (OSA). We observe that the degenerate-

mode-coupling unwinding performed by the polcons + q-plates does vary across the

frequency comb. We are better able to control degenerate state mixing with l = 7

compared to l = 5, as might be expected from Chap. 7. However, we note that the

experimental data shown here includes both endpoints of the comb, which should be

the worst case(s), since the polcon is optimized for the whole comb.

Although all measured BERs are below the SD-FEC limit, there is no clear trend

as to which are below HD-FEC as opposed to SD-FEC. Generally, the l = 7 modes

are better than the l = 5 and l = 6 modes, as might be expected from the highest l

mode and the mode order with the largest ∆ neff . However, two of the l = 7 modes

at 1562nm are almost above the SD-FEC limit. On average, the l = 6 modes actually

have higher BERs than the l = 5 modes, which may be a consequence of the fact

that they have two nearest-neighbor OAM mode orders carrying data (as opposed to

l = 5, which effectively has one neighbor, since l = 4 is not used as a data carrier).

This may again be indicative of poor input coupling.
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9.3 Limitations

In the process of performing these experiments, we were limited by the piezo stage

which held the input end of the fiber under test, and potentially some of the mirrors

on the input side as well. The fiber input coupling was observed to drift on the

time scale of tens of minutes, which prevented intense characterization of WDM data

transmission. In the lab at BU, we use a 6-axis stage from Thorlabs (MAX600 series),

which we find to be time-stable on the order of half a day, (after the system has been

realigned once or twice). The 3-axis piezo used for these experiments was insufficient

for the time necessary to take data for 60 WDM channels × 12 spatial modes = 720

data streams. This difficulty underscores the need for a stable, low-crosstalk MUX

and DEMUX.

However, even presuming that the stage and mirrors had been perfectly stable,

consider the case of an OAM mode like l = 6 which has two adjacent mode orders in l.

In such a case, it can be difficult to achieve parasitic mode suppression, as evidenced

by time of flight measurements, to better than -20 to -25dB. Assume -20dB as an

order of magnitude approximation. Both l = 7 and l = 5 will leak into l = 6 at this

level, meaning that the signal leaving the fiber in l = 6 will only be -17dB pure, from

equal weight contributions at the -20dB level from both l = 5 and l = 7. We have

no reason to assume that the mode selectivity at the fiber output, projecting back

into SMF should be any purer. Thus, when we launch all modes simultaneously, we

expect similar crosstalk from l = 5 and l = 7 into the l = 6 datastream at the point

of coupling into SMF, for a purity of -14dB, assuming negligible differential loss. In

addition, we expect in-fiber crosstalk between l = 6 SOa and SOaa to occur at the

-15dB level or so, meaning that if we consider the l = 6 SOa mode, the total MPI is

only on the order of -11.5 to -12dB if the MUX and DEMUX have selectivity -20dB.

This number is of the same order of magnitude as those in the transmission matrix
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in Fig. 9·4.

We have observed over the course of experiments that using the polcons to unwind

degenerate state coupling may have some limited bandwidth. Suppose that this

effect is due to in-fiber properties as opposed to input coupling imperfections, such

as differential input coupling loss between degenerate states, a symmetry-breaking

effect which could prevent the polcon + q-plate from spanning the higher order OAM

Poincare sphere (Padgett and Courtial, 1999). In this case, the only solution is to use

2× 2 MIMO to unwind channel-dependent degenerate state coupling. Although this

adds to the complexity of the receiver, it also allows for a greater diversity of possible

MUX devices, as the state-tuning functionality of the q-plate is no longer useful.

All of these considerations inform the design of a MUX or DEMUX device for

OAM states. Such a device should be selective in OAM order by -25dB at absolute

minimum to get all states below the hard FEC limit for QPSK (higher selectivity

would be preferable as it might allow for the possible use of higher dimensional mod-

ulation formats, with more stringent SNR requirements). An alternative would be to

design the OAM fibers with the strategy of using every other OAM order and leaving

an ”OAM guardband”. However, given that weakly guided OAM states well split in

neff themselves tend to come in bands or groups, this would constitute a significant

design sacrifice. Our MUX must also be WDM-compatible, and either polarization

insensitive, or designed to launch circularly polarized OAM beams. At current, there

is no known technology this author is aware of which meets these requirements. Pho-

tonics lanterns (Huang et al., 2015) and evanescent fiber couplers (Pidishety et al.,

2016) may become promising candidates, and the performance of multi-plate light

converters (Morizur et al., 2010) with OAM modes remains to be validated.

Investigation of the WDM-compatibility of our system was limited by the EDFA

gain bandwidth on the long wavelength side. On the short wavelength side, our
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12 mode transmission was limited by accidental degeneracy, which is the poltergeist

haunting the stability of high-l OAM modes in the weakly guided regime, especially

since the vector splitting between OAM modes is a slowly varying function of wave-

length. Although improvements in air core fiber fabrication have enabled long-length

transmission of OAM modes in the presence of parasitic lower-l, m = 2 modes, their

existence represents a serious challenge to fabrication of air core fibers on a large

scale, and to developing fibers supporting a larger ensemble of OAM states. To truly

scale capacity by an order of magnitude or more above what has already been shown,

accessing the spin-orbit coupled regime will be necessary.

9.4 Summary

Data transmission utilizing MDM falls under two schools of thought - either the

transmission fiber is designed such that mode coupling during transmission is min-

imized as with the OAM fibers discussed herein and with multicore fibers, or the

fiber is designed such that the group indices of all modes of interest are matched,

as in traditional MMF, and mode coupling is unwound using N × N MIMO DSP

(Grüner-Nielsen et al., 2012).

Here we have demonstrated a system capable of a 6-fold improvement over pre-

vious OAM transmission results in overall capacity (10.56 Tbit/s compared to 1.6

Tbit/s) and a 4-fold improvement in spectral efficiency (7.04 bit/s/Hz compared to

1.6 bit/s/Hz) (Bozinovic et al., 2013). With the full C-band, and using an improved

fiber with no accidental degeneracy, the improvements would be even more signifi-

cant (33.6Tbit/s and 7.7bit/s/Hz). However, a more meaningful comparison for the

long-term outlook of OAM in fibers is with SMF and other MIMO-free MDM strate-

gies. The record result for transmission capacity in SMF, to my knowledge is 101.7

Tb/s, achieved by using both the C and L-bands, using orthogonal frequency divi-
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sion multiplexing and 128-ary quadrature amplitude modulation (QAM) (Qian et al.,

2012). This result had a spectral efficiency of 11 bit/s/Hz. Our system could surpass

this spectral efficiency by increasing the modulation format to only 8-QAM, or by

increasing the baud rate from 10Ghz to 20GHz, which should be possible with a more

intelligent MUX.

As of the writing of this document, the highest capacity achieved without higher

order MIMO (i.e., results can include a conventional 2 × 2 MIMO for polarization

division multiplexing (PDM)) is 2.15 Pb/s, using a 22 core single mode multi-core

fiber, with 399 25GHz spaced WDM channels and 24.5 GBaud 64 QAM, achieving

a spectral efficiency of 215.6 bits/s/Hz (Puttnam et al., 2015). This represents a

significant increase over our results. Higher order modulation formats and an exces-

sively large frequency comb aside, the fiber demonstrated by Puttnam et al contains

44 spatial modes (including polarization diversity), which is more than 3 times the

number of modes demonstrated in this chapter.

However, this result, as with many of the early multi-core fiber results, does not

utilize “space” in the sense that none of the spatial channels within the fiber overlap.

The best case for total aggregate capacity should include both multi-core and multi-

mode strategies (Soma et al., 2015; Igarashi et al., 2016). Indeed, the current record

holder for spectral efficiency (as of ECOC 2016) employs both of these strategies

(Soma et al., 2016). This will be discussed in more detail in Chap. 11. OAM modes

remain the only known and verified way to access the design space of neff without

the use of heavy MIMO processing.
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Chapter 10

Extending the Number of States:

Spin-Orbit Coupling Revisited

The motivation for moving from the Vortex Fiber to the air core fibers was to increase

the number of stably supported OAM modes. As a consequence, high-l OAM modes

were studied and found to have several desired properties. However, experiments to

this point have focused on fibers which have an OAM guide-band, that is, a segment of

OAM states that are supported with higher states cut-off and lower states unstable.

This is fundamentally inefficient, as it discards large portions of the possible state

space in neff . A fiber which stably supports a wide array of modes populating the

available contrast in refractive index is the ultimate goal.

Outside of OAM modes, an alternative strategy for breaking modal degeneracy is

to use elliptical core, or otherwise PM fibers (Wang and LaRochelle, 2015; Li et al.,

2016). These fibers require moderate ellipticities (1.4) to achieve a modest number

of modes (8), and work has not addressed the possibility of accidental degeneracy,

which may prove problematic to scaling this class of fiber. However, in such fibers,

all modal degeneracies are removed, eliminating the necessity for q-plates or 2 × 2

MIMO. This class of fibers is still in its infancy and may receive more attention in

the coming years.

Given the discussions of Chap. 6, it seems that to reach the point of many (more

than 20) well-supported states in a circularly symmetric fiber while avoiding acciden-

tal degeneracy with m = 2 modes, which limited the experiments in Chap. 8 and
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Chap. 9, one will need to access the Spin-Orbit Coupled regime. To support more

modes, a larger mode volume is needed. To break the ‘LP’ degeneracy, stronger con-

finement is needed (Fig. 10·1) In this chapter, we excite SOC Angular Momentum

Figure 10·1: Increasing waveguide confinement (index step) leads to
OAM stability, but eventually to SOC. However, to support a large
number of stable vector modes, SOC will almost definitely be encoun-
tered

modes by using a combination of a q-plate and an SLM. Excitation purity and in-

termodal crosstalk will be measured by time of flight and output projection into all

guided fiber modes. We find that we can controllably excite and stably transmit 24

modes over 10m of gen2 fiber, an improvement in mode count by a factor of 2 over

the gen4 fibers. This is the first demonstration of controlled excitation of such SOC

fiber modes, to our knowledge, and the first time that such a large stable mode count

has been demonstrated. The spin-to-orbit coupling effect observed in these fibers is

similar to that found in nanofibers and high NA focusing in free space (Bliokh et al.,

2015; Shahraam Afshar et al., 2012). However, we also find that the fibers in gen2

are incredibly lossy, potentially due both to the larger air core and a strong water

absorption, and that intermodal ∆l = 1 coupling between adjacent mode orders is

much stronger than expected. This points towards future work with these fibers,

both in reducing the transmission loss and understanding the origin of the increased
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intermodal coupling.

10.1 Spin-Orbit Coupled Mode Excitation

As discussed briefly in Chap. 5, standard methods of exciting OAM states will not

excite pure SOC modes. Insight into exciting these modes can be gained by returning

to Eq. (2.12). We have seen in simulations that the shapes of the radial and azimuthal

components of the electric field,ψr and ψφ, are nearly identical. We see the effect of

the SOC as a difference in peak value, rather than shape of either field, in contrast to

higher order modes in standard ‘top-hat’ fibers where the field envelope of the radial

and azimuthal components of the mode can differ significantly (Thomas et al., 2011;

Israelsen et al., 2014; Rishøj et al., 2016). We can thus make the approximation that

Bj+1 ≈ Bj−1 ≡ Fj(r).

There are two intelligent choices for mode designation schemes. We could denote

the modes according to the absolute value of their total angular momentum, j, and

its sign. For instance:

AV +
j = Nje

ijφFj(r)
[
γVj σ̂

+e−iφ + αVj σ̂
−eiφ

]
eiβV,jz (10.1a)

AV −j = Nje
−ijφFj(r)

[
αVj σ̂

+e−iφ + γVj σ̂
−eiφ

]
eiβV,jz (10.1b)

AW+
j = Nje

ijφFj(r)
[
γWj σ̂

+e−iφ + αWj σ̂
−eiφ

]
eiβW,jz (10.1c)

AW−
j = Nje

−ijφFj(r)
[
αWj σ̂

+e−iφ + γWj σ̂
−eiφ

]
eiβW,jz (10.1d)

Where we use V and W in analogy to the weakly guided OAM modes, N is a nor-

malization factor, and Fj does not depend on whether the mode is SOa or SOaa, and

radial subscripts are dropped as the fiber of interest support only m = 1. This way

of writing the modes has the advantage of underscoring the underlying physics of the

the SOC modes, but contains an unnecessary number of free variables, since αVj and

αWj are related by Eq. (2.13).
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Alternatively, we could denote these SOC modes as El,A and El,AA:

El,a = Nl+1Fl+1(r)
[
Al+1σ̂

+eilφ +Bl+1σ̂
−ei(l+2)φ

]
eiβl,az (10.2a)

E−l,a = Nl+1Fl+1(r)
[
Al+1σ̂

−e−ilφ +Bl+1σ̂
+e−i(l+2)φ

]
eiβl,az (10.2b)

El,aa = Nl−1Fl−1(r)
[
Al−1σ̂

−eilφ −Bl−1σ̂
+ei(l−2)φ

]
eiβl,aaz (10.2c)

E−l,aa = Nl−1Fl−1(r)
[
Al−1σ̂

+e−ilφ −Bl−1σ̂
−e−i(l−2)φ

]
eiβl,aaz (10.2d)

Here l is the SOC mode’s dominant component, where |Aj| >> |Bj|, and a and aa

are short for “aligned” and “anti-aligned” and are kept in analogy to the weakly

guiding OAM modes, since these modes are still predominantly spin-orbit aligned or

anti-aligned. The negative sign in Eq. (10.2c) and Eq. (10.2d) is necessary to ensure

A and B are real, as discussed in Sec. 2.1.2. Here, Aj 6= Bj; the two coefficients

being equal implies that they are TE or TM which is impossible for a finite-cladding

fiber (Snyder and Love, 1983).The advantage of the second form is its similarity

to the weakly guided OAM states as well as the convenience of fewer parameters.

The disadvantage is in mode order bookkeeping, as Eq. (10.2a) has three different

subscripts to keep track of. We use the form in Eq. (10.2a) - Eq. (10.2d) for the

remainder of the chapter. We can calculate the expectation value of the OAM-per-

photon for a spin-orbit aligned mode as:

〈l〉 = A2
l+1 × l +B2

l+1 × (l + 2) (10.3)

And similarly for the anti-aligned modes. The degree to which the modes are coupled

is directly indicated by the ratio of A to B. In the weak guidance approximation,

Bj = 0∀j, and El,a and El,aa correspond exactly to OAM states.

Most of the methods described in Chap. 5 rely on making a single OAM state with

uniform polarization. For instance, an SLM and QWP can create l = 5, σ̂+, which

is sufficient to excite the l = 5 mode in gen3 or gen4. However, in this case, such
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excitation will excite both E5,a and E3,aa to varying degrees, and there is no way for

a single uniformly polarized OAM state to excite only one mode in the SOC regime.

Two SLMs which independently tailor two OAM beams, which are then stitched

together with a PBS before being passed through a QWP could in principle be used

to tailor these SOC states (Maurer et al., 2007), but this would require high-precision

path-length matching.

Instead, we utilize the spin-to-orbit conversion effect of q-plates . The basic ex-

perimental system is sketched in Fig. 10·2. To excite SOC modes, an SLM creates a

Figure 10·2: Proposed coupling system for exciting SOC modes in
gen2 fiber

free-space OAM state of topological charge l which is linearly polarized. This beam

is sent through a QWP at angle θ0 with respect to the incident beam’s polarization,

and is then sent through a q = 1/2 plate. The free space beam immediately after

passing through the q-plate can be written as (see Eq. (5.14)):

Ψ = NGl(r)
{
σ̂+ei(l−1)φei(α0+θ0)[cos(θ0) + sin(θ0)]+

σ̂−ei(l+1)φe−i(α0+θ0)[cos(θ0)− sin(θ0)]
}

(10.4)

i.e.

Ψ = NGl(r)
{
ξσ̂+ei(l−1)φ + ησ̂−ei(l+1)φ

}
(10.5)
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for

ξ = ei(α0+θ0)[cos(θ0) + sin(θ0)] (10.6a)

η = e−i(α0+θ0)[cos(θ0)− sin(θ0)] (10.6b)

The angle θ0 controls the weights of the l− 1 and l+ 1 components in the free space

beam, but it also induces a phase difference between the two components, in addition

to the phase shift imparted by the q-plate if it is mounted at a non-zero angle with

respect to the horizontal (α0 6= 0). The input coupling crosstalk suppression between

two modes of the same j will be determined entirely by the ability to match ξ and η

to a given A,B. The ratio of power coupled into an anti-aligned mode of a given j,

compared to the power coupled into an aligned mode of the same j, is:

Paa,j
Pa,j

=

∣∣∣∣Ajξ −Bjη

Ajη +Bjξ

∣∣∣∣2 (10.7)

Any dephasing between ξ and η clearly could prevent the ratio in Eq. (10.7) from

going to zero (or infinity). We solve this issue by realizing the q = 1/2 plate by

using a q = −1/2 plate followed by a half-wave plate. The half-wave plate induces an

angle-dependent phase shift between σ̂− and σ̂+ which can be used to make ξ and η

purely real. However, we note that the angle of the HWP is also a function of mode

order, and must be carefully adjusted in-situ.

This phase-compensation could also be performed by rotating the q-plate , al-

though this would require centering the q-plate perfectly on the center of the rotation

mount, which is practically challenging. We also note that phase compensation could

be required for other reasons:

• There is no guarantee that the fiber under test will be exactly in the focal plane

of the input coupling lens. Thus, the two free space OAM modes may experience

different Guoy phases as they are focused by the coupling lens (Saleh and Teich,
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2007). Although the OAM superposition created in Fig. 10·2 is a propagating

mode of the fiber under test, it is not a propagating mode of free space.

• As the two different free space OAM states diffract at different speeds, they

may encounter different radial positions on the coupling lens, and thus pick

up slightly different phases due to the different glass thickness. Moreover, the

quality of the lens (aberrations or lack thereof) will change as a function of

radius, with Seidel aberrations tending to be worse near the lens edge (Wyant

and Creath, 1992).

A possible additional complication is that the two constituent beams will originally

have identical ring-shapes, but this may not be true in the fiber plane, i.e., if the

coupling lens Fourier Transforms the free space beam, the two states will map to

slightly different sizes, thus changing their relative weights after input coupling. This

can be compensated with QWP setting. The best method for alignment is thus in-situ

characterization, preferably with time of flight.

The radial envelope, Gj, may be controlled with a lens or axicon on the SLM. Using

a combination of SLM and q-plates the beam leaving the q-plate can be a radius of

size scaled to match the fiber modes, and of relative weight and sign between the

OAM superposition controlled by rotating a QWP and a HWP.

10.2 Experimental Results

We have 4 fibers in gen2 which should support a bevvy of stable modes. For reasons

discussed in Sec. 10.3 gen2-1 was the most successful fiber, and results presented in

this section are from gen2-1.

The details of gen2-1 are reviewed in Fig. 10·3. Modes below dominant l = 3 have

nearest neighbors which are different mode orders, due to the strong vector splitting.

Modes of order l = 4 and higher have nearest neighbors of the same dominant |l|.
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Lower order modes, due to higher overlap with the air glass interface, more strongly

display the spin-orbit coupling effect, as indicated in Fig. 10·3 (d). For a given

dominant |l|, the SOaa mode features stronger SOC than the SOa mode, due to

being of a lower vector order.

Figure 10·3: (a) Index profile and fiber end facet image (inset) (b)
∆neff between El,a and its nearest neighbor (c) Polarization distri-
butions for spin-orbit coupled E4,aa (top) and, closer to integer-l, E9,a

(bottom) (d) Simulated difference between dominant |l| and ensemble
average l, quantifying the spin-orbit coupling effect

First, we attempt coupling without a q-plate , which should excite a combination

of modes of the same j. Using the system in Fig. 10·4, we excite modes in gen2 using

an SLM and QWP only and measure the time of flight response after 10m, such that

contributions from in-fiber mode coupling should be minimized. E6,aa is shown in

Fig. 10·4 (b) as a representative example. A strong parasitic peak at -11.6dB relative

to the desired mode appears in the time bin corresponding to E4,a (i.e. the SOa mode

of the same j which shares an OAM component). When the fiber mode is imaged,

we observe power in both σ̂− and σ̂+ polarization bins, although the power in σ̂+ is

considerably weaker than that in σ̂−.

We quantitatively study the level of SOC in gen2-1 by performing output pro-

jection measurements on one of each of the degenerate mode sets, as indicated in

Fig. 10·5. Although only one SLM is illustrated schematically, we use two in series to

mitigate differential input coupling loss across all mode orders, due to the large set
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Figure 10·4: (a) Excitation and characterization system for “stan-
dard” OAM modes in the gen2 fibers (b) time of flight response for
E6,aa (c) Output mode image projected into RCP and LCP

of l guided by the fiber, and the aspect ratio of the gen2-1 fiber. The fiber features a

thin (3µm) ring far away (9µm) from the geometric center of the fiber. Both SLMs

display a lens and an axicon phase, in addition to a helical phase. A similar system

was proposed by (Vaity et al., 2014) to excite modes in an air core fiber, although the

authors of that paper never quantitatively determined mode purity. Additionally, we

find that we can increase the coupling efficiency with the choice of helical phases. For

instance, in attempting to create l = 6 at the fiber facet, we can choose to have the

two SLMs display, in series, l = 1 and l = 5, l = 2 and l = 4, or l = 3 and l = 3. This

choice impacts the radial overlap at the fiber end facet slightly, and can be optimized

for coupling efficiency.

The input coupling to the fiber under test is optimized using time of flight to

extinguish parasitic peaks in the nearest-neighbor mode orders. It is observed that the

∆l = 2 peak, as in Fig. 10·4 (b), cannot be minimized by changing fiber position. The

output coupling is aligned first by power into the SMF, and optimized by observing the
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time of flight spectrum into the SMF. The fiber input is then changed to an adjacent

mode order, such that the input and output are set for different mode orders, and the

signal corresponding to power in the undesired mode which was transmitted through

the fiber under test is minimized. For each input state, power is measured in all fiber

modes using all possible projection settings. The degenerate states are then summed

together in power to study relative powers in different mode groups. The input is

then varied to excite one mode from each of the 2-fold degenerate modal subspaces,

and the fiber transmission matrix is thus mapped. The results are shown in Fig. 10·5

(b) and (c). The mode orders with l ≤ 3 strongly couple within the test fiber because

Figure 10·5: (a) Experimental setup for measuring the extent of the
SOC effect by output projection (b) Output projection measurement
- each column is independently normalized to itself. Blue negative
slope diagonal indicates coupling to in-fiber nearest neighbor, black
off-diagonals indicate coupling to nearest different mode order, which
could be due to imperfect mode excitation or in fiber coupling, and
the white, negative slope off-diagonal indicates parasitic input coupling
due to the SOC effect (c) Summary of the performance along the three
trend lines from (b)
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the difference in effective index between mode orders (which could be coupled by

bend perturbations) is small, and these mode orders are not shown. The in-fiber

nearest neighbors are suppressed to 17dB or better, indicating that in-fiber mode

coupling between nearly degenerate vector modes is suppressed, as desired. There

is an exceptional measurement for E4,aa which we believe to be due to alignment

error in the system, confirmed by later measurements. Adjacent mode orders are

suppressed to at least 15dB. However, coupling between mode orders separated by

∆l = 2, those mode orders connected by SOC, are only suppressed by -7.6dB in the

worst case. Although some of the higher order states are better, with up to about

-17dB of suppression, it is critical to note that this is a fundamental effect which will

occur in these fibers, and which will intrinsically limit mode purity and thereby data

rate/system performance if the source of error (input coupling) is not addressed.

We repeat the measurement with the system including q-plates for SOC mode ex-

citation as discussed in Sec. 10.1. The mode excitation system is shown in Fig. 10·6.

The SLMs are chosen for a given mode order, and the lens/axicon parameters op-

timized for maximum coupling. The QWP and HWP are aligned in-situ, using the

time of flight response of the test fiber to optimize for mode purity. The ∆l = 2 par-

asitic peak, as in Fig. 10·4, is here suppressed below 20dB. At the output, the fiber is

imaged with an axicon, which maps diffraction angles to different radial positions in

the far field. Since the fiber mode is made up of two different free space OAM modes

of different order, and thus different diffraction angle, they are mapped onto rings of

different size in the far field, as shown experimentally in Fig. 10·6 (c).

As before, we map out the fiber transmission matrix using output projection. The

system is depicted in Fig. 10·7. Light from a pulsed laser at 1550nm with pulse width

appx 5ps is passed through the SLM and q-plate combination to create the correct

combination of free space OAM states to match the SOC modes in the fiber under
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Figure 10·6: (a) Experimental setup for exciting SOC modes and
analyzing beam content (b) Time of flight response for E6,aa; note the
lack of content in E4,a. (c) Free space images of E6,aa after being passed
through a CPBS and imaged with an axicon. The laser power has been
changed between images to avoid camera saturation

Figure 10·7: Experimental apparatus for SOC mode output projec-
tion experiment

test. The input QWP and HWP are aligned using time of flight as feedback, in

order to suppress undesired parasitic peaks. Similarly, the QWP and HWP at the

output are aligned to suppress undesired peaks in the detection (i.e. peaks which

are identifiable as modes other than the mode we are attempting to detect). This

is achieved via performing time of flight on the SMF output. For each mode order

launched, the axicon and lens parameters are optimized on the SLMs at input and

output. It is observed that changing the parameters alters the input coupling by 1-2

dB between l = 4 and l = 9. Significant changes in input coupling loss appear for
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l ≤ 2.

We again map out the fiber transmission matrix by launching one state from

each degenerate subspace, and measuring output projections into all guided modes of

interest in the fiber. The modes are propagated 10m in fiber, while the fiber is laid

out in loops of radius appx 0.25m. The results are shown in Fig. 10·8. Unlike Fig. 10·5

Figure 10·8: (a) Transmission matrix using SLMs and qplates to
excite SOC fiber modes (b) Numerical results corresponding to the
diagonals and off-diagonals of interest in (a)

which shows a strong off-diagonal due to SOC ∆l = 2 content, the transmision matrix

in Fig. 10·8 is predominantly diagonal, with a plot of the subset of mode groups of

interest in Fig. 10·8 (b). Each desired mode of interest is separated from its in-

fiber nearest neighbors by > 19.7 ± 0.5dB, and all modes are separated from other

modes of the same j by > 17.6± 0.5dB, with an average suppression of 20.6dB. The

strongest parasitic mode in each case is typically a mode of ∆l = 1, arising from

imperfect coupling at the input/output. We expect the system to be very alignment

sensitive, as the incident beam will need to strike 5 optical elements at their centers

of symmetry: SLM1, SLM2, the q-plate , the coupling lens, and the fiber itself. We

have seen in experiments with q-plates that if a beam strikes the short-focal length

aspheric lenses typically used in these experiments off-center, polarization-dependent
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crosstalk can result. Similarly, at the output, the beam needs to strike 4 optical

elements at their center of symmetry: the q-plate , the SLM, the output coupling

lens, and the SMF. There are thus several sources of possible ∆l = 1 in both the

input and output coupling systems. Distributed coupling along the fiber length could

also result in ∆l = 1 mode content; however, at fiber lengths of 10m, we expect this

coupling to be smaller than 20dB.

We have thus demonstrated that the SOC phenomenon can be overcome by in-

telligent mode excitation; moreover, we do not see strong distributed mode coupling

between SOC modes of the same j despite the fact that the modes share an OAM

component. Likely this coupling is weak because the modes are strongly dephased, be-

ing different by two scalar mode orders. This implies that the SOC modes can indeed

be used as a possible basis for data transmission or fiber devices. The fiber demon-

strated supports 24 stable modes, a 12× increase in capacity over standard SMF.

This design class of fiber has two novel features: (1) it reveals a novel eigenbasis of

fiber modes shown to be stable over device lengths and which have no counterparts

in free space or weakly guiding fibers and (2) unlike previous OAM fiber designs

in which long-length propagation has been demonstrated, the elimination of higher

radial orders actually increases fabrication tolerances, especially for maintaining air

hole size during draw. We expect that even at lengths of 10m, such fibers may find

application in low differential modal gain amplifiers (Jung et al., 2016), or intermodal

nonlinear optics (Demas et al., 2015b).

10.3 Limitations

There are two limitations to the measurements in Sec. 10.2, which prevented trans-

mission at longer lengths, and transmission of more modes.

The first limitation is the high loss of the fiber under test. Loss was measured by
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cutback from 1100m to a few m, and found to be between 18.3 and 18.6dB/km for

l = 4 through l = 8, and 20.6dB/km for l = 9. This loss could have three contributors:

scattering off of the air glass interface due to surface roughness, absorption due to

water in the fiber (Keiser, 2011), and scattering due to the high-index ring to glass

cladding interface (Lines, 1984). We can detect loss due to the presence of water

by performing cutback using a wide bandwidth source. These data are shown in

Fig. 10·9. Compared with SMF, all of the fabricated air core fibers have a noticeable

Figure 10·9: Transmission loss for several different generations of air
core fiber and SMF. Sample length specified in the legend.

loss around 1380nm due to an OH absorption bond (Stone and Walrafen, 1982). This

is likely due to a stage in the manufacturing process where the preform is appended to

a glass rod to aid in the draw process, but the two are fused together in the presence

of hydrogen and oxygen, such that water can impregnate the preform. The fusing was

performed in the presence of nitrogen for the gen4 fiber, and in addition the preform

was purged before the draw, resulting in a significantly reduced water concentration.

However, there is also the possibility that water diffuses into the fiber from the end

facet as the fiber is exposed to the laboratory atmosphere, which would be worse for

the gen2 fibers, which have larger air holes.
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We may expect interfacial scattering due to surface roughness to be worse for gen2

compared with gen3 and gen4, because the surface area of the inside of the air hole

is significantly larger. We expect that interfacial scattering between the guiding ring

and the cladding to be commeasurate with that in the earlier fibers, which we know

can be as low as 0.8dB/km (assuming that the entirety of loss in gen4 is due to this

scattering).

One future experiment to be performed is to place the gen2 fiber in an oven to

purge it of its parasitic water concentration, before repeating cutback and transmis-

sion measurements. This would distinguish between contributions to its loss from

water and those from interfacial scattering, which we do not expect to be changed

due to exposure to heating at a few hundred degrees.

The second limitation encountered in these experiments is mode coupling between

mode orders separated by ∆l = 1. From previous fibers, we could expect that the

Figure 10·10: Time of flight response for E5,a and E5,aa in after 50m
of gen2-1. Excitation is performed without a q-plate, ths the parasitic
∆l = 2 content

l = 0 through perhaps l = 2 mode orders would be badly corrupted by such coupling
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because their vector splittings were large relative to the scalar mode order splittings.

However, in experiments using longer lengths of gen2 fibers, ∆l = 1 cross coupling

was found to be much stronger than anticipated. For instance, consider the time

of flight responses for the |l| = 5 modes in Fig. 10·10 over 50m of gen2-1 (excited

without a q-plate , resulting in ∆l = 2 content). The shelf at approximately -25dB

between the dominant peaks and a time of 0.8ns represents distributed coupling in

the fiber to |l| = 4, while the next shelf represents coupling either secondary coupling

from l = 4 to l = 3, or direct coupling from l = 5 to l = 3. The blob between 0.4

and 0.6ns contains mode coupling among the l = 0 through l = 3 modes. When

integrated, the mode coupling between l = 5 and l = 4 is only -13dB suppressed from

that in the main peak. Such coupling is weaker for higher orders since ∆neff between

mode orders increases as l increases. It is worse for comparable mode orders for the

gen2-2 and gen2-3 fibers, as the ring volume is larger, thus supporting more modes

and compressing them in neff . Moreover, the lower order modes show a continuous

response in time domain up to l = 4, indicative of complete mode coupling. Gen2-

4 shows worse performance for the same mode orders, likely because, although the

neff performance is nearly identical to gen2-1, the fiber is OD105 instead of OD125,

thus making it less resilient to bend perturbations. The measured coupling between

adjacent mode orders, for the SOaa modes, is shown in Table 10.1 in dB scale, for

a sample length of 50m. We cannot measure the coupling between l = 5 and l = 4

Table 10.1: Inter-mode-order coupling in gen2 fibers over 50m (in
dB).

Fiber l = 9 to l = 8 8 to 7 7 to 6 6 to 5 5 to 4

gen2-1 -15 -15 -12.8 -14.3 -13.1

gen2-3 -12 -11.2 -12 -10.3 ??

gen2-4 -12.1 -11.9 -10.1 -9 -7.2
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in gen2-3 due to the fact that l = 4 is strongly coupled in a distributed fashion to

lower order modes. Switching from 50m to 10m, we expect the in-fiber crosstalk to

decrease by about 7dB. (Thus, our assertion that the mode purity numbers specified

in Sec. 10.2 are likely due to imperfect input coupling.)

However, the mode coupling is not solely a function of neff . The neffdifference

between l = 8 and l = 9 in gen2-1 is 3× 10−3. We may make a direct comparison to

the l = 3 and l = 2 modes in the gen3a fiber, which are separated by 3.1 × 10−3 in

neff . Both the gen2 and gen3 fibers are hard coated with OD ≈ 125µm, and have

nominally the same mechanical properties. Although l = 3 and l = 2 are not stable

in gen3, we should be able to directly compare the mode coupling between adjacent

mode orders. The time of flight response, shown in Fig. 10·11 is drastically different,

Figure 10·11: (a) Time domain response when E9,aa and E9,a are
launched and transmitted through 50m of gen2-1 (b) time domain re-
sponse when l = 3 is launched and transmitted through 50m of gen3a

with the l = 8 and l = 9 modes showing -15dB of distributed coupling between them,

while no mode coupling between l = 3 and l = 2 in gen3a is visible above the noise

floor of the oscilloscope, with a worst case crosstalk of approximately -25dB.

This behavior is not (immediately) explainable by perturbation theory, which

indicates that, to first order, the coupling induced by a bend between modes 1 and 2,
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separated in l by ∆l = 1, from Eq. (3.12) and Eq. (3.13) should be proportional to:

κ1,2 ∝
∫
F1(r)F2(r)J1(Krθ)rdrdφ (10.8)

Where Fj are the mode envelopes, K is a constant depending on material parameters

and the wavelength of light, which should not be substantially different for gen2 and

gen3, and θ is the bend angle. Although J1 is oscillatory, for small bend angles, such

as a fiber wrapped around a 16cm diameter spool coated in foam, we can approximate

that θ is small, and thus Eq. (10.8) approximately reduces to:

κ1,2 ∝ θ

∫
r × F1(r)F2(r)rdrdφ (10.9)

That is, the coupling is proportional to the radial center of mass of the modes. Ap-

proximating using the center of the ring guiding regions, this radial center of mass

should be approximately 5.5µm for gen3a and 10.5µm for gen2-1, an increase by a

factor of 2. Thus, we might reasonably expect that bend-induced coupling between

adjacent mode orders to be about 3dB worse in gen2-1. Instead, it is worse by at

least an order of magnitude.

Comparisons with gen2-2 and gen2-3 do not enable additional information, as both

the ring radius and ∆neffhave changed. One possibility for the higher-than-expected

mode coupling is that the fiber preform itself was misshapen and slightly asymmetric,

resulting in higher intrinsic coupling. However, the only way of testing this is with

a new fiber. Understanding this mode coupling is critical, not only because it limits

the length we can propagate SOC states in gen2-1, but also because it will inform the

ultimate limit to the number of modes supported by the thin-ring class of fibers.
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10.4 Future Fiber Design Considerations

One of the questions this thesis seeks to answer is: what is the ultimate limitation

in the number of states supportable by the class of air core fibers? We specifically

consider only one guiding region (without invoking multiple ring-cores, etc), although

if the ring guiding region could be replicated in a multi-core fashion, it would increase

the transmission capacity linearly with the number of cores. We have demonstrated

propagation of 24 SOC states, stable over 10m. Previous work has claimed 36 states

over very short lengths and without quantified mode purities (Brunet et al., 2014b).

Likely, the fiber in the work by Brunet et. al. has modal characteristics similar to

the fiber we have shown, given the similarity in refractive index structure.

One could imagine a very thin ring waveguide, with sharp enough index gradients

to achieve a ∆neff> 10−4 for a multitude of states, perhaps with even more states

than gen2 by increasing the mode volume of the guiding ring. However, the ultimate

limitation will be provided by the refractive index contrast of the fiber. As all of the

guided modes have to fall in neff between the refractive index of the guiding ring and

the refractive index of the cladding, having more guided mode orders implies that

the mode orders will fall closer together in neff if the index contrast is unchanged.

Supposing that we are only interested in device length fibers (10m) and that the

results from gen2-1 are not indicative of an issue with the preform, but, for reasons

as-yet not understood, imply that ∆l = 1 coupling is stronger than anticipated in

thin ring fibers. Thus we need a separation of approximately 3× 10−3 between mode

orders for stable modes. A refractive index step of ∆n = 50 × 10−3 is technically

challenging but feasible with the MCVD process. The best case, which itself may

not be possible, is for each mode order to be equally spaced in neff , which would

allow for 16 stable mode orders, or 62 stable modes, including TE, TM, and the two

l = 0 OAM modes. We have seen, repeatedly, that the lower l mode orders tend to
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bunch together, and stronger confinement will lead to more near-degeneracies due to

stronger polarization splitting, meaning that the limit for a thin ring fiber made in

an MCVD process is likely smaller; we conjecture that the limit is closer to 40 stable

modes.

Increasing the number of modes beyond this would require increasing the refrac-

tive index contrast. One method would be to draw the fiber from other glasses.

For instance, SF57 (Dense flint glass from Schott) can achieve a refractive index of

approximately 1.8 at 1550nm (see Schott glass catalog; or refractiveindex.info). How-

ever, the loss is also substantial, at around 30% /m. Alternatively, an air cladding

could be added, as in photonic crystal fiber (Wadsworth et al., 2003). One such fiber

supporting 26 modes has been proposed (Hu et al., 2016). It is conceivable that using

such enormous index contrast could lead to waveguides supporting 50 or 100 stable

modes.

An alternative strategy would be to aim for a fiber with a higher density of states

for the same index contrast, but only use half of the mode orders, effectively leaving

OAM “guardbands” around the desired channels. This would have the advantage of

requiring a less-precise MUX, and may make fiber design easier. But, it would have a

higher effective loss for the desired channels, since power would leak out of the desired

channels and into neighboring modes at a higher rate due to a small ∆neff . It may

also, for the same reason, have significantly worse MPI than a fiber in which mode

coupling is suppressed, since second-coupling instances will be more likely, and will

still cause the data-carrying channel to deteriorate.

10.5 Summary

Using a combination of SLMs and q-plates we have excited SOC modes in gen2-1

air core fiber. By means of output projection measurements, the fiber’s transmission
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matrix has been measured at 24m. We have demonstrated stable transmission of 24

modes, to approximately -18dB in crosstalk, with the dominant source of impurity

typically being neighboring mode orders, which we expect were parasitically excited

due to imperfect input coupling. Although there is distributed coupling in the fiber,

we expect that, based on the measured crosstalk level compared with results at 50m,

the dominant source of crosstalk is from impure excitation. The mode purity for

both in-fiber nearest neighbors and modes of the same total angular momentum was

approximately 20dB.

We have demonstrated, for the first time, stable propagation of SOC eigenstates

in an optical fiber. These modes have no counterpart in paraxial free space optics

or weakly guiding fibers, and are a physically distinct mode type bridging the space

between the weakly-guided OAM states, which have spatially invariant polarization,

and the TE and TM modes, which are the polarization eigenstates of the cylindrical

interface comprising the waveguide.

We were limited in both distance and mode number by in-fiber coupling between

mode orders with ∆l = 1. This coupling was stronger than expected, given the neff

difference between mode orders (Maruyama et al., 2015) and is a serious concern for

fiber design going forward. We were also limited by high fiber loss, which we at least

partially attribute to a high water concentration in the fiber. We also note that the

earlier air core fibers (gen1 and gen3) are lossier than gen4, indicating that further

fabrication improvements are likely.

It is also worth considering what we have gained by going to the SOC regime,

and at what cost. Assuming the loss issue is solvable and that the increased mode

coupling is due to fiber imperfections which can be solved, we have gained a factor

of 2 in mode count and a more reliable fabrication, due to the lack of m = 2 modes,

meaning that the fiber’s performance is less sensitive to the radius of the air core.
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The cost is a more complicated experiment setup, greater difficulty cleaving the fiber

(due to a larger inner ring radius), and, if multicore OAM fibers are of interest one

day, a larger waveguide footprint. The difficulty in input coupling could be overcome

with either photonic lanterns or a tree of fused fiber couplers, but both technologies

are at present immature. The cleaving issue is entirely practical, but could prove

challenging to overcome in bulk. The issue of arranging SOC or OAM fibers for

multicore transmission is an interesting one; it may be that the optimum strategy is

to shrink the individual waveguides to allow for move waveguides to fit into the core

lattice. This topic, to my knowledge, has not been studied in detail, and may be of

interest to scientists attempting to leverage the advantages of OAM and SOC modes

for telecommunications.
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Chapter 11

Summary and Outlook

In this chapter, we summarize significant results obtained in this thesis, and consider

future directions for OAM and SOC fiber research.

11.1 Summary of Results

We have studied the problem of OAM states in air core optical fibers. Several fibers

have been designed and fabricated (Chap. 6), and input coupling (Chap. 5) and

characterization (Chap. 4) methods have been described. We find that OAM modes in

the weakly guided regime can be supported by well designed fibers, and can propagate

over km length scales with low intermodal crosstalk (Chap. 8). We have also shown,

both mathematically (Chap. 2) and by experiment (Chap. 7), that such modes are

carriers of photonic angular momentum, and are not simply an alternative basis set

for fiber vector modes constructed for convenience. High-l states are of particular

interest; just as spinning tops become more stable in the face of small perturbations

as the tops spin faster, higher order OAM states are observed to become more stable

as their l increases.

We have performed transmission experiments using a record number (12) of OAM

modes in a single fiber (Chap. 9), and shown that all states, across multiple wave-

lengths, can be transmitted under the SD-FEC threshold using QPSK modulation

at 10GBaud/s. Although the we were prevented from testing the full WDM com-

patibility of our system due to alignment drift, pessimistic approximations indicate
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that our system could transmit at 10.56 Tbit/s, with a spectral efficiency of approx-

imately 7.04bits/s/Hz, within a factor of two of the current record holder for SMF

transmission spectral efficiency.

We have found that as the waveguide confinement becomes stronger due to a

thin ring and an air core, second order polarization effects transform the guided fiber

modes from weakly guided OAM states to Spin-Orbit Coupled modes of well-defined

total angular momentum, which have no analog in free space paraxial beams. We

have demonstrated excitation and transmission of 24 such modes over 10m, a suitable

length for devices, and shown suppression both of modes of the same j and in-fiber

nearest neighbors in neff to approximately 20dB. This is the first demonstration of

controlled excitation and transmission of SOC fiber modes, and enables further study

of the class of thin-ring air core fiber.

11.2 Outlook

Here we consider possible applications of OAM or SOC modes.

11.2.1 OAM in Telecommunications

It is not yet clear that SDM will be adopted in any form for long-haul communica-

tions. When fiber optics supplanted coaxial cable for long haul communications, the

advantages were enormous and apparent (Miller et al., 1973):

1. Fiber (and its associated source and detector technology) had the potential for

at least an order of magnitude improvement in data rate. “In the longer range

future, it seems clear that gigabit rates on individual fibers will soon become

technically feasible...”

2. Fiber had lower, and less frequency-dependent, loss.
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3. Fiber allowed for smaller cables, smaller bends, and its performance was not

temperature dependent.

4. Fiber had the potential for “graceful growth”: “the electronics can be changed

on an installed fiber to increase its communication capacity.” Thus, improve-

ments in sources and modulation/demodulation electronics could be applied to

existing fibers, unlike in the electrical domain where an increased modulation

frequency might necessitate a new coaxial cable design.

Moving from SMF to SDM in any form offers an improvement only in point # 1,

and the improvement is multiplicative in the number of modes. Consider the current

record holders for capacity within SMF (Qian et al., 2012) and any fiber (Puttnam

et al., 2015) - both “hero” experiments made use of incredibly large wavelength band-

widths (9.25THz for Qian and 10THz for Puttnam), higher order modulation formats

(128-ary PD-QAM for Qian, 64-ary PD-QAM for Puttnam), and the difference in data

rate is essentially the number of cores (a gain of 21.2× with 22 cores). Increasing the

number of channels by N requires N more transmitters and receivers, regardless of

whether SMF is used. The question becomes whether it is cost effective to invest in

multi-core fibers and SMF to multi-core fan-outs, rather than just lay more SMF.

The cost of implementing large-scale MIMO is more onerous, as the MIMO com-

plexity scales as the number of channels squared, increasing system cost and latency

(Saridis et al., 2015). Simply increasing the number of channels in a single core and

expecting more advanced DSP to unwind the entire coupling matrix is not an efficient

way to increase capacity.

At current, it is not forseeable that OAM or SOC modes will be used for long haul

communications due to the high (compared to SMF) fiber loss, and 10dB lengths on

the order of 5.5km (Chap. 8). For data center applications, the utility of such modes

will depend on the cost and ease of implementation of MUX/DEMUX devices (Lam
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et al., 2014), which is yet to be determined.

(Uncoupled) Multi-core fibers ignore one fundamental degree of freedom for in-

creasing capacity: β, and are not intrinsically different from using N SMFs. In this

way, they are inefficient, as they utilize the degree of “space” but do not utilize the

degree of “modes” and thus do not increase capacity per “active” area of the fiber.

The most efficient SDM transmission modality may be few-mode multi-core fibers -

fibers with multiple cores, such that each core has multiple, but few, modes (Saridis

et al., 2015; Soma et al., 2016). This leverages the capacity gains in both multi-

core and MIMO modalities, including a less fabrication-sensitive MUX within each

few-mode core, without intractably large MIMO. Even this will likely remain in the

laboratory domain unless significant transmission gains are proved possible.

11.2.2 OAM-based Fiber Devices

One arena which could employ OAM or SOC modes is fiber devices. We have already

demonstrated theoretically that manufacturing a low (0.5dB) differential modal gain

(DMG) fiber amplifier using 12 OAM modes is possible (Kang et al., 2015), and a

proof of concept supporting only one mode order has been fabricated (Jung et al.,

2016). Although the MUX remains challenging, a core-pumped (or cladding pumped)

amplifier based on SOC fiber, supporting 24 (or so) modes with lower differential

mode gain, could yield savings in equipment cost and power efficiency (Krummrich

and Akhtari, 2016).

A second possibility is the deployment of OAM fibers for fiber sensing. OAM fibers

provide the only known framework for co-propagation of multiple, stable modes (as

opposed to LP mode groups), which could allow for measurement of the effects of

physical phenomena (stress, strain, temperature) on several modes at once (Weng

et al., 2016). For instance, consider the discussion in Sec. 7.4. In a system composed

of q-plate - OAM fiber - q-plate , torsion could be sensed through polarization rotation.
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Moreover, the system would be j-times more sensitive than SMF, up to j = 8, and

the ability to measure the effect of torsion on multiple modes simultaneously could

resolve ambiguities present in a system where a measurement is made only on one

mode. For example, if the output polarization from an SMF is observed to rotate by

80 degrees, it is not clear whether the polarization in the fiber has actually rotated by

80 degrees or 260 degrees, unless multiple measurements are taken as the polarization

rotates. If, however, a j = 8 mode is observed to rotate by 80 degrees, observation

of a j = 6 mode, which could be performed simply by rotating a waveplate as in

Sec. 5.4, would distinguish the two, since the second mode would be rotated by 60

degrees, or 195 degrees. Ideally the OAM modes in question would be non-integer

multiples of each other, to avoid rotation ambiguities.

11.2.3 OAM and Nonlinear Optics

Intermodal nonlinear optics is emerging as a field of interest for creating lasers at novel

colors, or enabling wideband frequency conversion (Demas et al., 2015b). Multimode

waveguides offer more paths for momentum conservation (phase matching) within a

fiber due to the variety of available wave vectors. In addition, conservation of angular

momentum provides a selection rule for available pathways (Vaziri et al., 2002).

In fibers, OAM supercontinuum generation has been demonstrated experimentally

(Prabhakar et al., 2016), and wideband frequency conversion via Bragg scattering has

been shown in theory (Tai et al., 2016). However, the role and utility of OAM in fiber

nonlinear optics remains largely unexplored, and may be an area of considerable

future research.

11.2.4 Quantum Key Distribution and Entanglement Preservation

OAM beams have received attention for high-dimensional entanglement (Vaziri et al.,

2002) and rotation-invariant Quantum Key Distribution (Vallone et al., 2014). For
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these reasons, fibers which can transmit OAM states and OAM states pairs are useful

for long range quantum communications. Typically, quantum communications involve

the ability to send entangled states of the form |1〉, |0〉, |1〉 + |0〉, and |1〉 − |0〉 to

complete a set of two mutually unbiased bases (Barnett, 2009). For OAM states,

|1〉 and |0〉 can be sent using the two degenerate states of a given l, which we know

are preserved under many perturbations, but being able to send their combination

involves maintaining a phase relationship between the two degenerate states, which

is more easily scrambled, at least for high-l, due both to fiber twist and to geometric

effects (Sec. 3.2.3, Sec. 7.4).

SMF preserves entanglement, but is extremely sensitive to external perturbations

in terms of maintaining polarization. PM fiber maintains two polarizations (but

not their combinations), but breaks entanglement since it does not preserve indistin-

guishability. Preliminary results with high-l states in the air core fiber indicate that

fiber transmission over 10m preserves entanglement, preserves |1〉 and |0〉 (i.e. the two

SOa or SOaa modes of a given l), but is extremely sensitive to external perturbations

for the combined states.

It is possible that some mid-low l state, such as l = 2 and l = 3, may be high

enough in l to avoid degenerate state coupling, but low enough to avoid significant

phase walk off due to geometric effects. If such a fiber is successful, we envision

quantum key distribution experiments with such fibers.

11.3 Conclusion

We have observed experimentally both advantages and disadvantages of OAM modes.

Whether or not OAM modes are implemented for an SDM strategy, the design free-

dom afforded by the restructuring of a fiber’s density of states, the ability to excite

and propagate stable modes, and the resilience of OAM modes to many perturba-
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tions will likely result in their use in some form, whether that be sensing, multimode

amplification, or nonlinear frequency conversion. We expect to see many interesting

results utilizing OAM or SOC states in the years to come.

So say we all
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Appendix A

Perturbation Theory Derivation of

Spin-Orbit Coupled States

The full vector wave equation for the transverse part of the electric field of guided

fiber modes, derived from Maxwell’s Equations assuming no free charges or currents

and a non-magnetic material, is given by:

[
∇2

t + n2k2
]
Et +∇t

[
Et · ∇tln(n2)

]
= β2Et (A.1)

Meanwhile, the equation describing the scalar (LP) fiber modes is given by:

(
∇2
t + n2k2

)
Ψ = β̃2Ψ (A.2)

Here we use a β̃ to denote the value of β in the scalar picture as opposed to the vector

picture.

The vector mode can be approximately obtained from the LP modes by treating

the term ∇t [Et · ∇tln(n2)] perturbatively. The first order correction, found via de-

generate perturbation theory, breaks the four-fold LP degeneracy (Snyder and Love,

1983).

LPL →


HEo

L+1

HEe
L+1

EHo
L−1

EHe
L−1

 = FL(r)


x̂cos(Lφ)− ŷsin(Lφ)
x̂sin(Lφ) + ŷcos(Lφ)
x̂cos(Lφ) + ŷsin(Lφ)
x̂sin(Lφ)− ŷcos(Lφ)

 (A.3)

We drop radial subscripts for brevity. At this point, the HE/EH modes are not

degenerate. Note that, explicitly, L denotes LP mode order, and would be the OAM
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carried by each of these modes if they were weakly-guided (sufficiently described by

first order perturbation theory) and written as OAM modes instead of HE/EH. It

is not the HE/EH mode order.

The second order correction requires calculating the overlap between these vector

modes and the vector modes of a different L. In order to compute these overlaps, we

write the perturbative operator acting on a state a as:

P |a〉 ≡ ∇t

[
a · ∇tln(n2)

]
(A.4)

It can be shown by using Green’s Theorem that the inner product of a second state,

b, with the above can be written as (Snyder and Love, 1983):

〈b|P |a〉 = −
∫
dA (∇t · b)

[
a · ∇tln(n2)

]
(A.5)

For a circularly symmetric waveguide, only the radial component of a is captured

by Eq. (A.5). This can be computed for each HE/EH mode as:

HE/EHL · ∇tln(n2) =
∂ln(n2)

∂r
FL(r)


cos[(L+ 1)φ]
sin[(L+ 1)φ]
cos[(L− 1)φ]
sin[(L− 1)φ]

 (A.6)

The transverse divergence of each mode must also be calculated. Using

∂

∂x
= cos(φ)

∂

∂r
− 1

r
sin(φ)

∂

∂φ
(A.7a)

∂

∂y
= sin(φ)

∂

∂r
+

1

r
cos(φ)

∂

∂φ
(A.7b)
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We find that the divergences are:

∇t ·HE/EHL =


[F ′L(r)− FL(r)L

r
]cos[(L+ 1)φ]

[F ′L(r)− FL(r)L
r
]sin[(L+ 1)φ]

[F ′L(r) + FL(r)L
r
]cos[(L− 1)φ]

[F ′L(r) + FL(r)L
r
]sin[(L− 1)φ]


(A.8)

Investigation of Eq. (A.6) and Eq. (A.8) reveals that the overlap between an even

and an odd mode will always be zero, as expected, and between modes of the same L,

the only nonzero overlap is between a mode and itself. However, there is a nonzero

overlap between the HEe
L mode and the EHe

L+2 mode, that is, between the EH and

HE modes of the same cylindrical mode order. Using the abbreviations:

R1(L,L− 2) = π

∫
rdr FL(r)F ′L−2(r)

∂ln(n2)

∂r
(A.9a)

R2(L,L− 2) = π(L− 2)

∫
dr FL(r)FL−2(r)

∂ln(n2)

∂r
(A.9b)

and using second order (nondegenerate) perturbation theory (Das, 2012), the new

fiber modes are:

HE
e/o
L = |HEe/o

L 〉WG −
R1(L,L+ 2) +R2(L,L+ 2)

β̃2
L+2 − β̃2

L

|EHe/o
L+2〉WG (A.10a)

EH
e/o
L = |EHe/o

L 〉WG −
R1(L,L− 2)−R2(L,L− 2)

β̃2
L−2 − β̃2

L

|HEe/o
L−2〉WG (A.10b)

that is, the new vector modes are combinations of the old vector modes of the same

cylindrical mode order, but different Cartesian mode order. Since each of these,

when written as a combination to create the OAM basis, carries a different OAM, it

is evident that the modes in Eq. (A.10a) and Eq. (A.10b), when written as angular

momentum states, will be in an OAM superposition state. �
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Full Derivation of Angular Momentum of

Fiber Modes

Starting from the definition:

〈ΦAM〉 =
1

2c2

∫ ∫
dA r ×Re (E×H∗) (B.1)

noting that

r = xx̂ + yŷ + zẑ = rr̂ + zẑ (B.2)

and using the abbreviation

fk = εklmRe(x̂kElH
∗
m) (B.3)

where x̂k are cylindrical unit vectors with subscripts denoting (r, φ, z) and εklm is the

Levi-Civita tensor, the function inside the integral in Eq. (B.1) can be written as:

r̂(−zf2)− φ̂(rf3 − zf1) + ẑ(rf2) (B.4)

Using the rotationally symmetric basis of Eq. (2.7), it is clear that fk has no azimuthal

dependence, since the only azimuthal dependence on all parts of E and H is eijφ. The

integral in Eq. (B.1) is performed over the transverse plane, where:∫ ∫
dA r̂ =

∫ ∫
dA φ̂ = 0 (B.5)
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by parity. If the basis set of Eq. (2.6) is chosen, the non-ẑ components also vanish by

parity, as the Er, Ez, Hφ and Eφ, Hr, Hz field components all have the same azimuthal

function (Snyder and Love, 1983), either sin(jφ) or cos(jφ), meaning when multiplied

by r̂, their azimuthal dependence will integrate to zero by cosine/sine orthogonality

relations for differing frequency arguments. Thus, the only remaining component is

ẑrf2, which, when written out in terms of E and H components, is Eq. (2.22):

〈ΦAM〉z = − 1

2c2

∫ ∫
dA rRe (ErH

∗
z − EzHr∗) (B.6)

Using the relations in equations Eq. (2.23) through Eq. (2.26):

Hz =
1

iωµr

[
∂ (rEφ)

∂r
− ∂Er

∂φ

]
(B.7a)

iωµHt = [∇t × (ẑEz) + iβẑ× Et] (B.7b)

Ez =
i

β

[
∇t · Et + (Et · ∇t) ln(n2)

]
(B.7c)

and assuming that |Ez| << |Et|, which allows us to drop terms which scale as E2
z ,

we arrive at Eq. (2.27):

〈ΦAM〉z = − 1

2c2

∫ ∫
dA Re

[
−(±j)
ωµ

(
ErE

∗
r + EφE

∗
φ

)
+

i

ωµ

(
Er
∂(rE∗φ)

∂r
+ E∗φ

∂(rEr)

∂r

)
+

ir

ωµ
E∗φ (Et · ∇t) ln(n2)

]
(B.8)

Consider the integral of the middle term in equation Eq. (B.8):

i

ωµ

∫ ∫
dA

(
Er
∂(rE∗φ)

∂r
+ E∗φ

∂(rEr)

∂r

)
(B.9)

Substituting from the basis functions in Eq. (2.7) OR Eq. (2.6), the radial part of
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this integral becomes: ∫
dr

(
rψr

∂(rψφ)

∂r
+ rψφ

∂(rψr)

∂r

)
(B.10)

We cannot directly use integration by parts, since ψr is not continuous. The function

Ξ = n2ψr, however, is continuous. We can rewrite:∫
dr

(
rΞ

n2

∂(rψφ)

∂r
+ rψφ

∂(rΞ/n2)

∂r

)
(B.11)

Expanding the second derivative term:∫
dr

(
rΞ

n2

∂(rψφ)

∂r
+
rψφ
n2

∂(rΞ)

∂r
+ r2ψφΞ

∂(1/n2)

∂r

)
(B.12)

The last term in Eq. (B.12) can be rewritten as:

r2ψφΞ
∂(1/n2)

∂r
= −r2ψφ

Ξ

n2

1

n2

∂n2

∂r
= −r2ψφψr

∂ln(n2)

∂r
(B.13)

Which exactly cancels the last term in Eq. (B.9)

The function n2 is not continuous. However, to a good approximation, the function

1/n2 is continuous, since 1
x+δ
≈ 1

x
. Thus, we make the approximation that:∫

dr

(
rΞ

n2

∂(rψφ)

∂r
+
rψφ
n2

∂(rΞ)

∂r

)
≈ 1

n2

∫
dr

(
rΞ
∂(rψφ)

∂r
+ rψφ

∂(rΞ)

∂r

)
(B.14)

Using integration by parts, and the fact that ψφ and Ξ are continuous:∫
dr rψφ

∂

∂r
(rΞ) = r2Ξψφ

∣∣∣∣∞
0

−
∫
rΞ

∂

∂r
(rψφ) (B.15)

The middle term in Eq. (B.11) is zero, because both ψr (Ξ) and ψφ are finite at the

origin, and must decay to zero faster than 1/r as r →∞. Thus:∫
dr rψφ

∂

∂r
(rΞ) = −

∫
rΞ

∂

∂r
(rψφ) (B.16)
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and Eq. (B.14) is strictly zero, reducing Eq. (B.8) directly to Eq. (2.28).

The r̂ and φ̂ components of the linear momentum flux are equal to zero for the

same reason as the r̂ and φ̂ components of the angular momentum flux. To simplify

the ẑ component of the linear momentum flux (Eq. (2.29)):

〈Φp〉z =
1

2c2

∫ ∫
dA Re

(
ErH

∗
φ − EφH∗r

)
(B.17)

Using Eq. (B.7b), Eq. (B.17) becomes:

〈Φp〉z =
1

2c2

∫ ∫
dA Re

[
β

ωµ

(
|Er|2 + |Eφ|2

)
− 1

ωµ

(
Er
∂E∗z
∂r

+
ij

r
EφE

∗
z

)]
(B.18)

We now show that the right hand two terms are zero. They can be rewritten as:

Er
∂E∗z
∂r

+
ij

r
EφE

∗
z = Et · ∇tE

∗
z = ∇t · (EtE∗z )− E∗z (∇t · Et) (B.19)

Using Eq. (B.7c), and dropping terms which scale as E2
z , we find Eq. (B.19) simplifies

to:

∇t · (EtE∗z ) + E∗zEt · ∇ln(n2) (B.20)

Using linearity of the divergence operator, and inserting the angular momentum basis

functions, this becomes:

∇t · (r̂ψrψz) +∇t ·
(
φ̂ψφψz

)
+ ψzψr

∂ln(n2)

∂r
(B.21)

The integral over dA of the middle term in Eq. (B.21) is zero; since the arguments are

continuous and have continuous partial derivatives, the area integral can be trans-

formed into a contour integral around the fiber, with the curve a large distance away

from the fiber, such that the field values are zero along the curve. The first term can
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be transformed using the same change of variables as in Eq. (B.14), Ξ = Er n
2, into:

∇t · (r̂ψrψz) = −ψzψr
∂ln(n2)

∂r
+

1

n2
∇ · (r̂Ξψz) (B.22)

The first term here evidently cancels the final term in Eq. (B.21). The second term is

also zero by Green’s theorem - the transverse plane can be broken into smaller regions

where n is continuous, i.e. the core and the cladding of a step index fiber. For the

core, the normal vector of the curve everywhere will be φ̂, so the line integral there

is zero by orthogonality. For the cladding (or any other annulus), the manjority of

the curve also has the φ̂ as a normal vector. There will be two segments of the curve

‘closing’ the annulus, which will be a small anglular distance δφ separated from each

other. Since Ξ and ψz are not a function of angle, the line integral over the outgoing

and incoming parts of the integral will exactly cancel. Thus, Eq. (B.22) is exactly

zero, reducing the linear momentum flux to Eq. (2.30):

〈Φp〉z =
β

2c2ωµ

∫ ∫
dA ψ2

r + ψ2
φ (B.23)

�
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Appendix C

Air Core to Air Core Splice Program

In order for air core fibers to be practically useful, they should be spliceable. Fiber

breaks are bound to happen, and the ability to combine two distinct fibers with

low loss is critical. This presents a problem, since at a high enough temperature

the air core itself will collapse (in the same way that a preform is collapsed before

a conventional fiber is drawn). Thus, to successfully splice two air core fibers, the

splice must be made “cold,” that is, at lower currents than usual. A splicer program

to splice two air core fibers is iteratively designed using microscope images of the

spliced fibers as feed back for whether the air hole has partially collapsed, totally

collapsed, or remains intact.

Additionally, the fibers need to be coaligned very well during the splice. We have

seen in Chap. 5 that for pure mode excitation, the incident OAM beams need to be

aligned into the fiber with precision of ∼ 100nm. The fibers need to be aligned to

similar precision or else ∆l crosstalk can easily occur at the splice point.

The following is a splice program used with an Ericsson FSU 995 FA to splice

gen4 air core fibers. The fibers should be cleaved with angles 0.3 degrees or less and

mounted into the splicer. Fiber alignment should be performed by hand with purity

measured by time of flight, as the splicer does not have necessary precision to center

the two fibers to low crosstalk; allowing the machine to freely splice often results in

inter−l crosstalk worse than -6dB. Moreover the splice yield is low, no better than

1/4 if crosstalk of −15dB is tolerated, since the splicer will still pull the two fibers
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back before splicing them together - the motion of pulling back and pushing forward

can cause lateral misalignment. Higher precision splicers could alleviate this issue,

and there is no reason that, in principle, the entire process could not be automated.

Prefusion Current 5mA
Gap 30µm

Overlap 5µm
Fuse Time 1 0.3s

Current 1 10mA
Fuse Time 2 0.6s

Current 2 10.5mA
Fuse Time 3 0.8s

Current 3 10.5mA
Left MFD 15µm

Right MFD 15µm
Set Center +255

AoA Current 0
Early Prefuse 0

Align Accuracy 0.01µm
Loss Shift 0

Auto Arc Center No
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