1,382 research outputs found

    Model reduction of controlled Fokker--Planck and Liouville-von Neumann equations

    Full text link
    Model reduction methods for bilinear control systems are compared by means of practical examples of Liouville-von Neumann and Fokker--Planck type. Methods based on balancing generalized system Gramians and on minimizing an H2-type cost functional are considered. The focus is on the numerical implementation and a thorough comparison of the methods. Structure and stability preservation are investigated, and the competitiveness of the approaches is shown for practically relevant, large-scale examples

    Towards deterministic subspace identification for autonomous nonlinear systems

    Get PDF
    The problem of identifying deterministic autonomous linear and nonlinear systems is studied. A specific version of the theory of deterministic subspace identification for discrete-time autonomous linear systems is developed in continuous time. By combining the subspace approach to linear identification and the differential-geometric approach to nonlinear control systems, a novel identification framework for continuous-time autonomous nonlinear systems is developed

    A note on modeling some classes of nonlinear systems from data

    Get PDF
    We study the modeling of bilinear and quadratic systems from measured data. The measurements are given by samples of higher order frequency response functions. These values can be identified from the corresponding Volterra series of the underlying nonlinear system. We test the method for examples from structural dynamics and chemistry

    Video Compressive Sensing for Dynamic MRI

    Full text link
    We present a video compressive sensing framework, termed kt-CSLDS, to accelerate the image acquisition process of dynamic magnetic resonance imaging (MRI). We are inspired by a state-of-the-art model for video compressive sensing that utilizes a linear dynamical system (LDS) to model the motion manifold. Given compressive measurements, the state sequence of an LDS can be first estimated using system identification techniques. We then reconstruct the observation matrix using a joint structured sparsity assumption. In particular, we minimize an objective function with a mixture of wavelet sparsity and joint sparsity within the observation matrix. We derive an efficient convex optimization algorithm through alternating direction method of multipliers (ADMM), and provide a theoretical guarantee for global convergence. We demonstrate the performance of our approach for video compressive sensing, in terms of reconstruction accuracy. We also investigate the impact of various sampling strategies. We apply this framework to accelerate the acquisition process of dynamic MRI and show it achieves the best reconstruction accuracy with the least computational time compared with existing algorithms in the literature.Comment: 30 pages, 9 figure
    corecore