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Abstract— The problem of identifying deterministic au-

tonomous linear and nonlinear systems is studied. A

specific version of the theory of deterministic subspace

identification for discrete-time autonomous linear systems

is developed in continuous time. By combining the sub-

space approach to linear identification and the differential-

geometric approach to nonlinear control systems, a novel

identification framework for continuous-time autonomous

nonlinear systems is developed.

Index Terms— Subspace identification, nonlinear identi-

fication, autonomous systems

I. Introduction

Building models of dynamical systems from observed
measurements is an ubiquitous task in applications,
particularly in model-based simulation, prediction and
control of dynamical systems. In mathematical system
theory this modelling task goes under the name of
system identification. System identification methods
are referred to as linear and nonlinear, depending on
the model sought.

Prediction error methods and subspace identification
methods broadly constitute the classical approaches to
linear system identification [1–5]. The former revolves
around the minimization of a prediction error criterion
and is widely recognized as the state of the art for
the identification of single-input single-output linear
systems. The latter is coordinate-free and based on
geometric arguments which draw upon linear real-
ization theory. Subspace identification methods natu-
rally deal with multi-input multi-output linear systems,
and allow to identify such systems directly in state-
space form [3–5]. By contrast, to identify multi-input
multi-output linear systems, prediction error methods
typically require the solution of computationally de-
manding non-convex optimisation problems [1, 2]. In
addition, subspace identification methods use tools of
numerical linear algebra, which make them intrinsi-
cally reliable from a numerical point of view.

Subspace identification methods for discrete-time lin-
ear systems form nowadays a well-established field of
research [3–5]. Different approaches have been used
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to develop continuous-time counterparts of subspace
identification methods [6–8]. However, the characterisa-
tion of their applicability to general nonlinear systems
is still an open problem. A dedicated discrete-time sub-
space identification framework for linear parameter-
varying systems and for bilinear state-space systems
has been developed in [9]. Subspace identification
methods for discrete-time bilinear systems subject to
white noise inputs have also been developed in [10, 11].
Hammerstein-Wiener systems constitute another class
of state-space nonlinear systems to which subspace
identification methods have been extended [12–14].
Least squares support vector machines have been com-
bined with the subspace identication approach to iden-
tify Hammerstein systems in [15]. Recently, subspace
identification methods have been implemented in prac-
tical applications, particularly in the modelling of me-
chanical systems [16, 17]. Finally, an interesting attempt
to identify general nonlinear systems has been pro-
posed in [18]. Therein, embedding techniques arising
in the study of chaotic time-series have been combined
with subspace identification methods. However, the ini-
tially adopted geometric approach is abandoned when
neural networks are used to estimate the input-output
mapping which describes the system to be identified.
The reader is referred to [19, 20], and references therein,
for in-depth discussions on the latest developments in
nonlinear system identification.

The goal of this work is to propose a theoreti-
cal framework for the identification of deterministic
continuous-time autonomous nonlinear systems. This
framework combines the philosophy of subspace iden-
tification methods [3–5], which represent a conceptu-
ally simple and numerically reliable way to identify
linear systems, and the differential geometric approach
to nonlinear systems [21, 22], which has significantly
impacted the theory and applications of nonlinear
control systems. Our strategy is to proceed as fol-
lows. A continuous time version of a specific subspace
identification method for deterministic discrete-time
autonomous linear systems is first derived. Then, a
novel identification framework for continuous-time au-
tonomous nonlinear systems is obtained by combining
the subspace approach to linear identification and the
differential-geometric approach to nonlinear systems.

The scope of this work is conceptual. The results con-
cerning nonlinear systems boil down to the linear ones
if specialized to the class of linear systems. Nonethe-
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less, the study of the nonlinear systems complements
the study of the linear ones: while in the linear case it
is often possible to provide stronger statements, certain
phenomena or issues only occur in the nonlinear case,
and do not have special interest (or meaning) in the
linear one. This paper can be considered as a first pre-
liminary step toward the development of a nonlinear
enhancement of subspace identification methods.

The remainder of this paper is organized as follows.
Section II defines essential notation. Section III con-
tains the formulation of the continuous-time nonlinear
identification problem for autonomous systems. In Sec-
tion IV subspace identification methods for determin-
istic linear systems are developed in continuous-time.
The main results are presented in Section V, where the
differential geometric approach to nonlinear systems is
combined with the modus operandi of subspace iden-
tification methods to solve the identification problem
posed. Conclusions and future directions of research
are given in Section VI.

II. Notation and preliminaries

The mathematical notation used is standard. R,
Rn and Rp⇥m denote the set of real numbers, of n-
dimensional vectors with real entries, and of p ⇥ m-
dimensional matrices with real entries, respectively.
The symbol A† is used to denote the Moore-Penrose
inverse of the real matrix A 2 Rp⇥j.

The projection of the row space of the matrix
A 2 Rp⇥j on the row space of the matrix B 2 Rq⇥j

is given by A/B = APB, where the matrix PB 2 Rj⇥j,
defined as PB = BT(BBT)†B, denotes the projection
matrix into the row space of the matrix B. The projec-
tion of the row space of the matrix A 2 Rp⇥j onto
the orthogonal complement of the row space of the
matrix B 2 Rq⇥j is given by A/B? = AP?

B , where the
matrix P?

B 2 Rj⇥j, defined as P?
B = I � PB, denotes

the projection matrix into the orthogonal complement
of the row space of the matrix B.

The singular value decomposition of a matrix
A 2 Ri⇥j of rank n > 0 is given by

A = USVT = U1S1VT
1 ,

where U = [U1 U2 ] 2 Ri⇥i and V = [V1 V2 ] 2 Rj⇥j

are orthogonal matrices such that U1 2 Ri⇥n, U2 2
Ri⇥(n�i), V1 2 Rj⇥n, V2 2 Rj⇥(j�n), and S 2 Ri⇥j is a
block diagonal matrix of the form

S =



S1 0
0 0

�

2 Ri⇥j,

with S1 2 Rn⇥n a positive definite diagonal matrix.
The elements on the main diagonal of S are called the
singular values of A.

The notation y(k)(t), with k a positive integer, is used
to denote the k-th order derivative of the function y,
provided it exists.

The Lie derivative of the smooth function h along
the smooth vector field f is defined as L f h = ∂h

∂x f , and
the functions Lk

f h, with k a non-negative integer, are
defined recursively as Lk

f h = L f (Lk�1
f h), with L0

f h =
h. If the smooth function h is vector-valued, the Lie
derivative is defined component-wise. The differential
of a smooth mapping l is denoted by dl.

III. Problem formulation

Consider a continuous-time, autonomous, nonlinear
system described by equations of the form1

ẋ = f (x), y = h(x), (1)

in which x(t) 2 Rn and y(t) 2 Rl denote the un-
known state and the measured output of the system,
respectively. Assume, without loss of generality, that
the state of the system evolves on an open set X ✓ Rn

containing the (unknown) initial condition x0 2 Rn

for all2 t � 0.
The continuous-time nonlinear identification prob-

lem for autonomous systems is to determine the (un-
known) dimension n of the system (1) and the (un-
known) system mappings f : X ! X and h : X ! Rl ,
from a given finite sequence {y(tk)}M

k=0 of observed
output measurements, with {tk}M

k=0 a strictly increasing
finite sequence of time instants and t0 � 0.
Remark 1. A global solution to the identification prob-
lem posed above may not exist. While linear systems
behave globally in the same way as they behave locally,
it is not necessarily possible to establish global dy-
namical properties for most nonlinear systems. Without
additional assumptions on the nonlinear system (1), the
description of its dynamics may be determined only in
a neighbourhood of the (unknown) initial condition.
Our analysis has therefore a local nature. In other
words, we restrict our goal to finding the behaviour
of the system mappings only in a sufficiently small
open neighbourhood containing the (unknown) initial
condition. M
Remark 2. There exist infinitely many nonlinear systems
able to produce the output generated by system (1).
More specifically, the system

ċ = f
t

(c), y = h
t

(c), (2)

with mappings

f
t

(c) =



∂t

∂x
f (x)

�

x=t

�1(c)
,

h
t

(c) = [ h(x) ]x=t

�1(c) ,

1The mappings f and h are assumed to be smooth, i.e. C•.
2Similar considerations can be performed when the state of the

system is only defined on a real interval of the form [0, tmax), with
tmax > 0.
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and t a (local) diffeomorphism3 defined on X , has the
same output behavior as the system (1). For this reason,
the system mappings f and h cannot be uniquely
identified from a set of output measurements without
additional assumptions. To remove this shortcoming,
any state-space realization of the system (1) of the
form (2) is considered acceptable. In other words, the
solution of the posed identification problem is only
determined up to a (local) diffeomorphism. M

Subspace identification methods make extensive use
of structured matrices. Below, we define two structured
matrices employed in the sequel. Let

Yi,j(t)=

2

6

6

6

4

y(t) y(1)(t) . . . y(j�1)(t)
y(1)(t) y(2)(t) . . . y(j)(t)

...
...

. . .
...

y(i�1)(t) y(i)(t) . . . y(i+j�2)(t)

3

7

7

7

5

2Rli⇥j, (3)

Xj(t)=
⇥

x(t) x(1)(t) . . . x(j�1)(t)
⇤

2Rn⇥j, (4)

denote the output matrix and the state matrix at time
t � 0, respectively. Throughout the paper, the sub-
scripts “i” and “j” represent the number of block rows
and the number of columns, respectively. In addition,
the time argument t is considered to be a fixed non-
negative real number. The abbreviations Yi,j and Xj are
thus used, so that certain formulas are easier to read.

To solve the identification problem some assump-
tions on the system and the corresponding matrices are
needed.

Let O denote the observation space of system (1), i.e.
the linear space over R of functions on X , defined as

O(x) = span
n

Lk
f hs(x), s 2 [1, l], k � 0

o

, x 2 X .

The observation space O defines the observability
codistribution

dO(x) = span {dl(x), l 2 O} , x 2 X .

System (1) is said to satisfy the observability rank
condition at x0 2 X if dO(x0) = n [22].
Assumption 1. The observability rank condition is sat-
isfied for each x 2 X .

Assumption 1 guarantees that the system is locally
observable at any point x 2 X . Assumption 1 can
be regarded as a direct nonlinear counterpart of the
standard observability assumption made in subspace
identification, as it coincides with the linear notion of
observability when the system is linear.
Assumption 2. The user-defined positive integers i and
j are such that n < i  j.

Assumption 2 is needed to ensure that the system
mappings can be (locally) determined. Typically, the
positive integers i and j are such that j is much larger

3A smooth bijection t is a diffeomorphism if its inverse map t

�1

is also smooth.

than i and such that all the available information is
used. Note that this assumption requires an upper
bound on n to be known. In practice, since no algorithm
is able to produce an upper bound of n, it is necessary
to assume an upper bound a priori.
Assumption 3. The rank condition rank(Xj) = n holds
for almost every4 t � 0.

Assumption 3 can be interpreted as a controllability
assumption. This condition implies that the columns of
Xj span the n-dimensional state space.

IV. Subspace identification for autonomous

linear systems

In this section basic conventions and standard con-
cepts of subspace identification for discrete-time au-
tonomous linear systems are developed in continuous-
time. From a theoretical point of view there are no
significant differences between the discrete-time and
the continuous-time linear frameworks. This is be-
cause discrete-time and continuous-time linear systems
are described by formally identical matrix equations.
Nonetheless, to motivate our approach and to highlight
the peculiarities of the nonlinear case, it is instructive
to illustrate a version of the continuous-time subspace
identification framework for linear systems. With the
exception of minor modifications, the approach pro-
posed below is borrowed from [5] and adapted to the
continuous-time scenario. Different subspace identifi-
cation methods for continuous-time linear systems can
be found in [6–8].

Consider a continuous-time, autonomous, linear sys-
tem described by equations of the form

ẋ = Ax, y = Cx, (5)

in which x(t) 2 Rn and y(t) 2 Rl , respectively. Au-
tonomous linear systems can be regarded as a special
class of systems of the form (1) in which the mappings
f and h are linear functions of the state. For this
class of systems, the output matrix Yi,j admits the
decomposition

Yi,j = GiXj, (6)

in which

Gi =

2

6

6

6

4

C
CA

...
CAi�1

3

7

7

7

5

2 Rli⇥n,

denotes the extended observability matrix and, without
loss of generality, the state matrix can be written as

Xj =
⇥

x(t) Ax(t) . . . Aj�1x(t)
⇤

.

4A property is fulfilled for almost every t � 0, if the set where the
property does not hold has a Lebesgue measure equal to zero.
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By Assumption 3 the matrix Xj is full rank5. Thus, by
observability of the system, equation (6) implies that
the dimension of the system n coincides with the rank
of the output matrix Yi,j, and, thus, that the column
space of the extended observability matrix Gi coincides
with that of the output matrix Yi,j. This fact allows
to recover the dimension of the system n, and the
column space of Gi from the output matrix Yi,j, which
only requires measurements of the output y(t) and its
higher order derivatives. Consider the singular value
decomposition

Yi,j = U1S1VT
1 ,

in which S1 2 Rn⇥n is a full rank diagonal matrix. The
dimension of the system n is given by the number of
non-zero singular values in the singular value decom-
position above. In addition, the column space of the
matrix U1 coincides with that of the output matrix Yi,j
and, hence, that of the extended observability matrix
Gi. Thus, the relation

U1 = G1T =

2

6

6

6

4

CT
CT(T�1 AT)

...
CT(T�1 AT)i�1

3

7

7

7

5

=

2

6

6

6

4

CT
CT AT

...
CT Ai�1

T

3

7

7

7

5

holds for some non-singular matrix T 2 Rn⇥n which
represents an unknown similarity transformation. The
matrix CT can be determined from the first l rows of
U1. The matrix AT can be computed by solving the
overdetermined linear system6

U1 AT = U1,

which has a unique solution owing to Assumption 2.
The original system matrices A and C are equivalent
(up to a similarity transformation) to the estimated
system matrices AT and CT .

The construction of the output matrix Yi,j described
above requires the evaluation of a large number of
high-order time derivatives of the output signal y(t).
These are typically not available as measured data in
most practical cases. For this reason, in continuous-time
linear identification, specially designed filters are often
used to filter the output signal and approximate their
high-order time derivatives [24, 25]. To alleviate this
issue, the time invariance property can be exploited.
More precisely, equation (6) also holds if the output

5Controllability is a generic property [23]: if a pair of matrices
(A, B) 2 Rn⇥n ⇥ Rn⇥m is considered as a point in a finite-
dimensional space, the set of controllable pairs is open and dense in
the whole space. Thus, it is not restrictive to assume the controllabilty
of the pair (A, x(t)), which, in turn, implies that the state matrix Xj
is full rank. Note also that if the pair (A, x(0)) is controllable, then
the pair (A, x(t)) is controllable for all t � 0 finite.

6The symbols U1 and U1 are used to denote U1 without the first l
rows and the last l rows, respectively.

matrix and the state matrix are defined as

Yi,j =

2

6

6

6

4

y(t0) y(t1) . . . y(tj�1)
y(1)(t0) y(1)(t1) . . . y(1)(tj�1)

...
...

. . .
...

y(i�1)(t0) y(i�1)(t1) . . . y(i�1)(tj�1)

3

7

7

7

5

2Rli⇥j,

Xj =
⇥

x(t0) x(t1) . . . x(tj�1)
⇤

2Rn⇥j,

where the time instants {tk}
j�1
k=0 are all positive and

distinct. With these modifications, in view of Assump-
tion 2, the number of time derivatives of output mea-
surements required for the construction of the output
matrix Yi,j is drastically reduced.

Strategies similar to one described above have been
combined with dedicated filtering techniques to de-
sign subspace identification algorithms for continuous-
time linear systems in [6–8]. The approaches proposed
in these works are undoubtedly suitable for practical
implementation. However, at present, none of them
has a clear and direct counterpart for nonlinear sys-
tems. By contrast, matrices of the form (3) and (4)
allow to develop a subspace identification framework
for nonlinear systems, as discussed in Section V. For
this reason, we temporarily disregard the problem of
approximating the required high-order time derivatives
of the output signal. Throughout the paper, these quan-
tities are assumed to be reliably obtainable from the
observed finite sequence {y(tk)}M

k=0 of output measure-
ments. An in-depth discussion of the issue of comput-
ing the derivatives of continuous-time variables which
are known only through their time samples is given
in [26]. The analysis of practical concerns, such as the
effective sampling of the needed signals or the use of
ancillary filtered versions of these signals, is the subject
of ongoing research.

V. Subspace identification for autonomous

nonlinear systems

As seen in the previous section, identifying au-
tonomous linear systems boils down to solving a sim-
ple realization problem. By contrast, identifying non-
linear systems described by autonomous differential
equations with output represents a nontrivial task.

Consider an autonomous nonlinear system with out-
put described by equations of the form (1). To study the
posed identification problem define the block Hankel
matrix

Hi,j(x)=

2

6

6

6

6

6

4

h(x) L f h(x) . . . Lj�1
f h(x)

L f h(x) L2
f h(x) . . . Lj�2

f h(x)
...

...
. . .

...
Li�1

f h(x) Li
f h(x) . . . Li+j�2

f h(x)

3

7

7

7

7

7

5

2Rli⇥j,

(7)
for all x 2 X . If the matrix Hi,j is evaluated along
the solutions of the system (1), one obtains the output
matrix Yi,j. Thus, the matrix Hi,j is assumed to be
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known at some fixed point x 2 X . Note that all the
entries of the matrix Hi,j belong to the observation
space of the system.

An important question now is whether a singular
value decomposition of the matrix Hi,j(x), with x 2 X ,
allows to retrieve useful information about the system
to be identified, just as in the linear case. Unfortunately,
as explained below, the answer is negative for the
vast majority of nonlinear systems. To illustrate this
point, it is instructive to consider the case in which the
observation space of system (1) is finite-dimensional.

A. Preliminary discussion
Suppose system (1) has a finite-dimensional observa-

tion space. A necessary and sufficient condition for a
system to have a finite-dimensional observation space
is to be immersed into a linear observable system7. By
definition, this amounts to saying that there exists a
(sufficiently) smooth mapping y : X ! RN , satisfying
y(0) = 0, and real matrices F 2 RN⇥N and H 2 Rl⇥N ,
such that the pair (F, H) is observable, which verify the
conditions

∂y

∂x
f (x) = Fy(x), h(x) = Hy(x). (8)

Simple computations show that the conditions above
imply that

Lk
f h(x) = HFk

y(x)

for each integer k � 0. Using this fact, it is immediate
to verify that the matrix Hi,j(x), with x 2 X , admits
the factorization

Hi,j = GiXj, (9)

where

Gi =

2

6

6

6

4

H
HF

...
HFi�1

3

7

7

7

5

and

Xj =
⇥

y(x) Fy(x) . . . Fj�1
y(x)

⇤

denote the extended observability matrix and the state
matrix associated to the linear system

ẋ = Fx, y = Hx, (10)

in which the original system (1) is immersed, respec-
tively. The well-defined restriction of the linear system
(10) to the manifold described by x = y(x), in turn,
yields a copy of the dynamics of the nonlinear system
(1). More precisely, the conditions (8) imply that the
manifold M = {(x, x) 2 X ⇥ RN : x = t(x)} is
invariant under the flow of the augmented system

ẋ = f (x), ẋ = Fx, (11)

7See [21, Chapter 8] for the definition of immersion of a system
into another system and related results.

and that the output response produced by the system
(1), when its initial state is x0 2 X , can also be pro-
duced by the system (10) if the latter is set in the initial
state y(x0) 2 RN . Equation (9) shows that the output
matrix Hi,j decomposes into a linear combination of the
rows of the state matrix Xj, determined by the extended
observability matrix Gi. If the matrix Xj is full rank8,
by observability of the pair (F, H), equation (9) implies
that the column space of Gi coincides with that of
Hi,j. This implies that, in general, no information about
the original system (1) can be retrieved by computing
a singular value decomposition of the output matrix
Yi,j when the observation space is finite-dimensional.
By contrast, with this approach, one estimates the ob-
servability subspace of the linear system (10) in which
the nonlinear system (1) is immersed. To illustrate this
point consider the following academic example.
Example 1. Consider the nonlinear system described by
equations of the form

ẋ = f (x), y = h(x), (12)

in which the state is x(t) = (x1(t), x2(t), x3(t)) 2 R3,
the output is y(t) 2 R, the system mappings are
defined as

f (x) =
⇥

x3
2 x3 0

⇤T , h(x) = x1,

for all x 2 R3, and the initial condition of the state
is x(0) = x0 2 R3 \ {0}. The system satisfies the
observability rank condition at any point of R3 except
for the origin. Thus, the following considerations hold
as long as the state of the system evolves away from
the origin.

The nonlinear system (12) can be immersed in a
five-dimensional observable linear system. To see this
consider the mapping y : R3 ! R5, defined as

y(x) =
⇥

x1 x3
2 3x2

2x3 6x2x3 6x3
⇤T ,

for each x 2 R3. By defining the auxiliary variable
x = y(x), it is easy to see that the dynamics of the
nonlinear system (12) can be described by a (nilpotent)
linear realization of the form

ẋ = Fx, y = Hx, (13)

if the initial condition is set to x(0) = y(x0) 2 R5 \ {0},
and the constant matrices F 2 R5⇥5 and H 2 R1⇥5 are
chosen, for example, as

F =

2

6

6

6

6

4

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

3

7

7

7

7

5

,

H =
⇥

1 0 0 0 0
⇤

.

8Similarly to the linear case, assuming that the pair (F, y(x)) is
controllable is not restrictive, because controllability is a generic
property.
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This shows that, in a 5-dimensional space, the nonlinear
system (12) can be seen as an observable nilpotent
linear system. Note, however, that the linear realization
(13) yields more output trajectories than the nonlinear
realization (12). In other words, only certain initial
conditions of the linear system (13) yield the state
trajectories produced by the nonlinear system (12).

A direct consequence of the structure of system (12)
is that by computing the singular value decomposition
of the associated output matrix Yi,j, one is only able to
estimate the observability subspace of the (nilpotent)
five-dimensional linear system in which it is immersed.

N
From the discussion above we conclude that the

blind application of subspace identification methods
developed for autonomous linear systems may prove
inconclusive or even misleading when identifying au-
tonomous nonlinear systems. Therefore, this task must
be addressed using a different approach, which is
discussed in the rest of this section.

B. Main results

To achieve the goal of identifying the autonomous
nonlinear system (1) consider the following lemma.
Lemma 1. Let X be an open subset of Rn. Let h, l

be smooth functions and f , q be smooth vector fields
defined on X . Define, recursively, the smooth functions
r

q

k , with k a positive integer, as

r

q

k(x) =
k�1

Â
q=0

Lk�1�q
f L[ f ,q]L

q
f h(x), (14)

with r

q

1(x) = L[ f ,q]h(x), for all x 2 X . If

l = L
q

h,

then
Lk

f l = L
q

Lk
f h + r

q

k ,

with k a positive integer.

Proof. The proof of this lemma follows directly from an
induction argument and from the well-known identity
[21, Chapter 1]

L[ f ,q]h = L f L
q

h � L
q

L f h.

The property stated in Lemma 1 is instrumental to
prove the followings result.
Theorem 1. Consider the nonlinear system (1). Assume
that there exist smooth vector fields {qk}

j�1
k=0 defined on

X such that the condition

Lk
f h = L

qk h, (15)

is satisfied for each k 2 [0, j � 1]. Let

Hi(x) =

2

6

6

6

4

h(x)
L f h(x)

...
Li�1

f h(x)

3

7

7

7

5

2 Rli,

Qj(x) =
⇥

q0(x) q1(x) . . . qj�1(x)
⇤

2Rn⇥j,

R
q0...qj�1
i,j (x)=

2

6

6

6

6

4

0 0 . . . 0
r

q0
1 (x) r

q1
1 (x) . . . r

qj�1
1 (x)

...
...

. . .
...

r

q0
i�1(x) r

q1
i�1(x) . . . r

qj�1
i�1 (x)

3

7

7

7

7

5

2Rli⇥j,

for each x 2 X . Then, the mapping Hi,j, defined as in
(7), admits the decomposition

Hi,j = dHiQj + R
q0...qj�1
i,j . (16)

Proof. The claim is a direct consequence of Lemma 1.

Equation (16) establishes an important decomposi-
tion. It shows that the mapping Hi,j decomposes into
a linear combination of the rows of the mapping Qj,
determined by the coefficient dHi, and an additional
term R

q0...qj�1
i,j . To simplify the notation, the superscripts

“q” and “q0 . . . qj�1” representing the vector fields used

to construct the mappings r

q

k and R
q0...qj�1
i,j are dropped,

if clear from the context, so that certain formulas are
easier to read.

Before proceeding further with the analysis some
additional assumptions on system (1) and the corre-
sponding matrices are required.
Assumption 4. The output function h of system (1) is
linear, i.e. h = Cx, for all x 2 X .

Assumption 4 guarantees that the output function h
is (locally) reconstructible from its differential dh. Note
that, owing to the (local) observability assumption on
the system, Assumption 4 is not restrictive.
Assumption 5. The intersection of the subspaces
spanned by the rows of the matrices Qj(x) and Ri,j(x)
contains only the zero vector, for almost every x 2 X .

Note that the assumptions stated above are always
verified when the system is linear.

Assumption 5 ensures that the following rank prop-
erty holds.
Lemma 2. Consider system (1) and equation (16). Under
the assumptions stated above, the rank condition

rank(dHiQj) = rank(dHiQj/R?
i,j), (17)

holds for each x 2 X .

Proof. The claim can be proved by applying elementary
inequalities concerning the dimension of the intersec-
tion of linear spaces [27, Proposition 1.2].
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The rank condition (17) allows to solve the identifi-
cation problem posed. It implies that the the rank of
the matrix dHiQj does not change if it is projected on
the row space of the matrix R?

i,j.
The main advantage of introducing the decomposi-

tion (16) is as follows. Post-multiplying both sides of
such equation by the projection matrix PR?

i,j
yields

Hi,j/R?
i,j = dHiQj/R?

i,j, (18)

where the identity Ri,jPR?
i,j
= 0 has been used to elimi-

nate the second term of the right-hand side. Assume for
the moment that the matrix Qj is full rank, and recall
that, by the observability assumption on the system, the
matrix dHi is full rank. Thus, by combining (17) and
(18), we conclude that the rank of the matrix Hi,j/R?

i,j
is equal to the dimension of the system n, and, thus,
its column space coincides with that of dHi. Note,
however, that the matrix Hi,j/R?

i,j does not require only
measured data to be computed, as the matrix R?

i,j is
unknown. Leaving aside the problem of determining
the matrix R?

i,j, which for the moment is assumed to be
known, consider the singular value decomposition

Hi,j/R?
i,j = U1S1VT

1 ,

in which S1 2 Rn⇥n is a full rank diagonal matrix.
The dimension of the system n is given by the num-
ber of non-zero singular values in the singular value
decomposition above. In addition, the column space of
the matrix U1 coincides with that of the output matrix
Hi,j/R?

i,j and, hence, that of the matrix dHi. Thus, the
relation U1 = dHiT holds for some non-singular matrix
T 2 Rn⇥n which represents the inverse of the Jacobian
matrix of an unknown (local) diffeomorphism. More
precisely, if we denote by t such (local) diffeomorphism
and let T = ∂t

�1

∂c

, the relation above can be rewritten
as

U1 = dHi
∂t

�1

∂c

=

2

6

6

6

4

dh
dL f h

...
dLi�1

f h

3

7

7

7

5

∂t

�1

∂c

=

2

6

6

6

4

dh
t

dL f
t

h
t

...
dLi�1

f
t

h
t

3

7

7

7

5

.

The function h
t

can be determined from the first l rows
of U1. The mapping f

t

can be computed (at the point
x 2 X in which the matrix Hi,j/R?

i,j is evaluated) by
solving the overdetermined linear system

U1 f
t

= U1,

which has a unique solution owing to Assumption 2.
The original system mappings f and h are equivalent
(up to a local diffeomorphism) to the obtained sys-
tem mappings f

t

and h
t

. In general, these mappings
are only a local solution of the identification problem
posed.

C. A special case
Consider now the question of finding a full rank

matrix Qj, the columns of which satisfy the condition
(15). Consider the system (1) and define recursively the
vector fields qk, with k a non-negative integer, as

qk(x) =
∂qk�1

∂x
f (x), (19)

with q0(x) = x, for all x 2 X . Observe that
qk(x(t)) = x(k)(t), for all t � 0. Along the solutions of
the system (1), the vector fields defined above coincide
with the state of the system x(t) and its successive time
derivatives, and, thus, the matrix Qj coincides with
the state matrix Xj. Under the stated assumptions, any
vector field qk defined as in (19), with k a non-negative
integer, satisfies the condition (15) and the matrix Qj
must be full rank for almost every x 2 X .

D. On the matrix R?
i,j

We complete this section discussing the issue of
determining the matrix Hi,j/R?

i,j, since in general the
matrix R?

i,j is unknown. Although the remainder term
Ri,j cannot be distinguished from the product dHiQj
because only the output matrix Yi,j (i.e. Hi,j at some
point x(t) 2 X ) is measured, its structure is fixed
once the structure of the underlying system is fixed.
With additional assumptions or prior knowledge on the
system, the structure of R?

i,j can be therefore assumed
known and used to find the matrix Hi,j/R?

i,j. To illus-
trate this point consider the following example.
Example 2. Consider a nonlinear system described by
equations of the form (1), with x(t) 2 R, y(t) 2 R,
system mappings defined as

f (x) = a1x + a2x2, h(x) = cx, (20)

for all x 2 R, a1, a2, c 2 R \ {0}, and initial condition
x(0) = x0 2 R \ {0}. The system satisfies the observ-
ability rank condition at any point of R3 except for the
origin. Thus, the following considerations hold as long
as the state of the system evolves away from the origin.

A direct computation shows that

R2,3 =



0 0 0
0 0 2ca2(a1x + a2x2)2

�

,

which, in turn, allows to obtain

P?
R2,3

=

2

4

1 0 0
0 1 0
0 0 0

3

5 .

Therefore, the system to be identified can be one-
dimensional and specified by mappings of the form
(20) only if by multiplying the output matrix Y2,3 by
the projection matrix P?

R2,3
derived above one obtains a

rank one matrix Y2,3/R?
2,3. If that is the case, the system

mappings f and h can be found with the procedure
proposed in this section. N

7



Remark 3. If the system (1) is linear, i.e. its dynamics
are described by equations of the form (5), equation (6)
can be obtained by evaluating (16) along the trajectories
of the system. Note that in the linear case the term
Ri,j is always zero, since [ f , qk] = [Ax, Akx] = 0
for each non-negative integer k. It can be concluded
that the former decomposition can be seen as a direct
nonlinear counterpart of the latter and, to some extent,
the remainder term Ri,j can be interpreted as a measure
of the nonlinearity of the system. M
Remark 4. The construction of the output matrix Yi,j
requires the evaluation of a large number of high-order
time derivatives of the input and the output signals.
As discussed in the linear case, the time invariance
property can be exploited to alleviate this issue in the
linear case. Since the coefficient matrix Gi is constant,
the time invariance property allows to obtain a matrix
equation formally identical to (6) with a reduced num-
ber of high-order time derivatives of the output signal.
Although the class of autonomous nonlinear systems
is also time-invariant, in general, it is not possible to
adopt the same strategy to reduce the number of high-
order time derivatives of the output signal. The reason
for this is that the mapping dHi depends explicitly on
the state of the system. M

VI. Summary and future directions

The problem of deterministic identification for au-
tonomous linear and nonlinear systems has been stud-
ied. The main results of a version of discrete-time
subspace identification for autonomous linear systems
have been developed in continuous time. A novel iden-
tification framework for continuous-time autonomous
nonlinear systems has been obtained by combining
the subspace approach to linear identification and the
differential-geometric approach to nonlinear control
systems.

A number of questions and research directions are
left open. Implementative aspects, such as effectively
sampling the needed quantities or the use of time-
delayed signals should be investigated. Finally, the
significance for both theory and applications of the
proposed nonlinear identification framework should be
evaluated on real-world examples.
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