127 research outputs found

    On the practical use of physical unclonable functions in oblivious transfer and bit commitment protocols

    Get PDF
    In recent years, PUF-based schemes have been suggested not only for the basic tasks of tamper-sensitive key storage or the identification of hardware systems, but also for more complex protocols like oblivious transfer (OT) or bit commitment (BC), both of which possess broad and diverse applications. In this paper, we continue this line of research. We first present an attack on two recent OT and BC protocols which have been introduced by Brzuska et al. (CRYPTO, LNCS 6841, pp 51–70, Springer 2011). The attack quadratically reduces the number of CRPs which malicious players must read out to cheat, and fully operates within the original communication model of Brzuska et al. (CRYPTO, LNCS 6841, pp 51–70, Springer 2011). In practice, this leads to insecure protocols when electrical PUFs with a medium challenge-length are used (e.g., 64 bits), or whenever optical PUFs are employed. These two PUF types are currently among the most popular designs of so-called Strong PUFs. Secondly, we show that the same attack applies to a recent OT protocol of Ostrovsky et al. (IACR Cryptol. ePrint Arch. 2012:143, 2012), leading to exactly the same consequences. Finally, we discuss countermeasures. We present a new OT protocol with better security properties, which utilizes interactive hashing as a substep and is based on an earlier protocol by Rührmair (TRUST, LNCS 6101, pp 430–440, Springer 2010). We then closely analyze its properties, including its security, security amplification, and practicality

    PUF Modeling Attacks on Simulated and Silicon Data

    Get PDF
    We discuss numerical modeling attacks on several proposed strong physical unclonable functions (PUFs). Given a set of challenge-response pairs (CRPs) of a Strong PUF, the goal of our attacks is to construct a computer algorithm which behaves indistinguishably from the original PUF on almost all CRPs. If successful, this algorithm can subsequently impersonate the Strong PUF, and can be cloned and distributed arbitrarily. It breaks the security of any applications that rest on the Strong PUF's unpredictability and physical unclonability. Our method is less relevant for other PUF types such as Weak PUFs. The Strong PUFs that we could attack successfully include standard Arbiter PUFs of essentially arbitrary sizes, and XOR Arbiter PUFs, Lightweight Secure PUFs, and Feed-Forward Arbiter PUFs up to certain sizes and complexities. We also investigate the hardness of certain Ring Oscillator PUF architectures in typical Strong PUF applications. Our attacks are based upon various machine learning techniques, including a specially tailored variant of logistic regression and evolution strategies. Our results are mostly obtained on CRPs from numerical simulations that use established digital models of the respective PUFs. For a subset of the considered PUFs-namely standard Arbiter PUFs and XOR Arbiter PUFs-we also lead proofs of concept on silicon data from both FPGAs and ASICs. Over four million silicon CRPs are used in this process. The performance on silicon CRPs is very close to simulated CRPs, confirming a conjecture from earlier versions of this work. Our findings lead to new design requirements for secure electrical Strong PUFs, and will be useful to PUF designers and attackers alike.National Science Foundation (U.S.) (Grant CNS 0923313)National Science Foundation (U.S.) (Grant CNS 0964641

    Physically Uncloneable Functions in the Stand-Alone and Universally Composable Framework

    Get PDF
    In this thesis, we investigate the possibility of basing cryptographic primitives on Physically Uncloneable Functions (PUF). A PUF is a piece of hardware that can be seen as a source of randomness. When a PUF is evaluated on a physical stimulus, it answers with a noisy output. PUFs are unpredictable such that even if a chosen stimulus is given, it should be infeasible to predict the corresponding output without physically evaluating the PUF. Furthermore, PUFs are uncloneable, which means that even if all components of the system are known, it is computational infeasible to model their behavior. In the course of this dissertation, we discuss PUFs in the context of their implementation, their mathematical description, as well as their usage as a cryptographic primitive and in cryptographic protocols. We first give an overview of the most prominent PUF constructions in order to derive subsequently an appropriate mathematical PUF model. It turns out that this is a non- trivial task, because it is not certain which common security properties are generally necessary and achievable due to the numerous PUF implementations. Next, we consider PUFs in security applications. Due to the properties of PUFs, these hardware tokens are good to build authentication protocols that rely on challenge/response pairs. If the number of potential PUF-based challenge/response pairs is large enough, an adversary cannot measure all PUF responses. Therefore, the at- tacker will most likely not be able to answer the challenge of the issuing party even if he had physical access to the PUF for a short time. However, we show that some of the previously suggested protocols are not fully secure in the attacker model where the adversary has physical control of the PUF and the corresponding reader during a short time. Finally, we analyze PUFs in the universally composable (UC) framework for the first time. Although hardware tokens have been considered before in the UC framework, designing PUF-based protocols is fundamentally different from other hardware token approaches. One reason is that the manufacturer of the PUF creates a physical object that outputs pseudorandom values, but where no specific code is running. In fact, the functional behavior of the PUF is unpredictable even for the PUF creator. Thus, only the party in possession of the PUF has full access to the secrets. After formalizing PUFs in the UC framework, we derive efficient UC-secure protocols for basic tasks like oblivious transfer, commitments, and key exchange

    Design and Evaluation of FPGA-based Hybrid Physically Unclonable Functions

    Get PDF
    A Physically Unclonable Function (PUF) is a new and promising approach to provide security for physical systems and to address the problems associated with traditional approaches. One of the most important performance metrics of a PUF is the randomness of its generated response, which is presented via uniqueness, uniformity, and bit-aliasing. In this study, we implement three known PUF schemes on an FPGA platform, namely SR Latch PUF, Basic RO PUF, and Anderson PUF. We then perform a thorough statistical analysis on their performance. In addition, we propose the idea of the Hybrid PUF structure in which two (or more) sources of randomness are combined in a way to improve randomness. We investigate two methods in combining the sources of randomness and we show that the second one improves the randomness of the response, significantly. For example, in the case of combining the Basic RO PUF and the Anderson PUF, the Hybrid PUF uniqueness is increased nearly 8%, without any pre-processing or post-processing tasks required. Two main categories of applications for PUFs have been introduced and analyzed: authentication and secret key generation. In this study, we introduce another important application for PUFs. In fact, we develop a secret sharing scheme using a PUF to increase the information rate and provide cheater detection capability for the system. We show that, using the proposed method, the information rate of the secret sharing scheme will improve significantly

    Solving the software protection problem with intrinsic personal physical unclonable functions.

    Full text link
    • …
    corecore