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Abstract In recent years, PUF-based schemes have been
suggested not only for the basic tasks of tamper-sensitive
key storage or the identification of hardware systems, but
also for more complex protocols like oblivious transfer (OT)
or bit commitment (BC), both of which possess broad and
diverse applications. In this paper, we continue this line
of research. We first present an attack on two recent OT
and BC protocols which have been introduced by Brzuska
et al. (CRYPTO, LNCS 6841, pp 51–70, Springer 2011).
The attack quadratically reduces the number of CRPs which
malicious players must read out to cheat, and fully operates
within the original communication model of Brzuska et al.
(CRYPTO, LNCS 6841, pp 51–70, Springer 2011). In prac-
tice, this leads to insecure protocols when electrical PUFs
with a medium challenge-length are used (e.g., 64 bits), or
whenever optical PUFs are employed. These two PUF types
are currently among the most popular designs of so-called
Strong PUFs. Secondly, we show that the same attack applies
to a recent OT protocol of Ostrovsky et al. (IACR Cryp-
tol. ePrint Arch. 2012:143, 2012), leading to exactly the
same consequences. Finally, we discuss countermeasures.
We present a new OT protocol with better security prop-
erties, which utilizes interactive hashing as a substep and is
based on an earlier protocol by Rührmair (TRUST, LNCS
6101, pp 430–440, Springer 2010). We then closely analyze
its properties, including its security, security amplification,
and practicality.
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1 Introduction

Today’s electronic devices are mobile, cross-linked and per-
vasive, which makes them an accessible target for adver-
saries. The well-known protective cryptographic techniques
all rest on the concept of a secret binary key: they presup-
pose that devices store a piece of digital information that
is, and remains, unknown to an adversary. It turns out that
this requirement is difficult to realize in practice. Physi-
cal attacks such as invasive, semi-invasive or side-channel
attacks carried out by adversaries with one-time physical
access to the devices, as well as software attacks like applica-
tion programming interface (API) attacks, viruses or Trojan
horses, can lead to key exposure and security breaks. As
Ron Rivest emphasized in his keynote talk at CRYPTO 2011
[25], merely calling a bit string a “secret key” does not make
it secret, but rather identifies it as an interesting target for the
adversary.

Indeed, one main motivation for the development of phys-
ical unclonable functions (PUFs) was their promise to better
protect secret keys. A PUF is an (at least partly) disordered
physical system P that can be challenged with so-called
external stimuli or challenges c, upon which it reacts with
corresponding responses r . Contrary to standard digital sys-
tems, these responses depend on the micro- or nanoscale
structural disorder of the PUF. It is assumed that this disor-
der cannot be cloned or reproduced exactly, not even by the
PUF’s original manufacturer, and that it is unique to each
PUF. Any PUF P thus implements a unique and individual
function fP that maps challenges c to responses r = fP (c).
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The tuples (c, r) are called the challenge–response pairs
(CRPs) of the PUF.

Due to its complex internal structure, a PUF can avoid
some of the shortcomings of classical digital keys. It is usu-
ally harder to read out, predict, or derive PUF responses than
to obtain digital keys that are stored in non-volatile mem-
ory. The PUF responses are only generated when needed,
which means that no secret keys are present permanently
in the system in an easily accessible digital form. Finally,
certain types of PUFs are naturally tamper sensitive: their
exact behavior depends on minuscule manufacturing irreg-
ularities, often in different layers of the IC, and remov-
ing or penetrating these layers will automatically change
the PUF’s read-out values. These facts have been exploited
in the past PUF research for different PUF-based secu-
rity protocols. Prominent examples include identification
[10,24], key exchange [24], and various forms of (tam-
per sensitive) key storage and applications thereof, such
as intellectual property protection or read-proof memory
[12,15,35].

In recent years, the use of PUFs in more advanced cryp-
tographic protocols together with formal security proofs
has been investigated. In these protocols, usually a PUF-
type known as Strong PUFs is employed [12,27,31,32].1

These PUFs have a very large challenge set and a freely
accessible challenge–response interface. They are used sim-
ilar to a “physical random oracle”, which is transferred
between the parties, and which can be read out exactly
by the very party who currently holds physical posses-
sion of it. Their input–output behavior is assumed to be
so complex that its response to a randomly chosen chal-
lenge cannot be predicted numerically and without direct
physical measurement, not even by a person who had phys-
ical access to the PUF at earlier points in time. In 2010,
Rührmair [26] showed that oblivious transfer (OT) can be
realized between two parties by physically transferring a
PUF in this setting. He observed that via the classical reduc-
tions of Kilian [14], this implies PUF-based bit commit-
ment and PUF-based secure multi-party computations. In
the same year, the first formal security proof for a PUF pro-
tocol was provided by Rührmair, Busch and Katzenbeisser
[27]. They presented definitions and a reductionist security
proof for PUF-based identification protocols. At CRYPTO
2011 Brzuska et al. [2] adapted Canetti’s universal com-
position (UC) framework [4] to include PUFs. They gave
PUF-based protocols for oblivious transfer (OT), bit com-
mitment (BC) and key exchange (KE) and proved them to

1 Strong PUFs have sometimes also been referred to as physical random
function [10] in the literature. We emphasize that the Weak/Strong PUF
terminology, which was originally introduced by Guajardo et al. [12],
is not to be understood in a judgmental or pejorative manner.

be secure in their framework. Just recently, Ostrovsky et al.
[20] revisited the use of PUFs in the UC framework, dis-
cussing new protocols and attack models. An overview of
the area of PUFs and related structures has been given by
Rührmair et al. [28].

The investigation of advanced cryptographic settings for
PUF makes sense even from the perspective of a pure prac-
titioner: first, it clarifies the potential of PUFs in theory, a
necessary prerequisite before this potential can be unleashed
in commercial applications without risking security failures.
Secondly, BC and OT protocols are extremely versatile cryp-
tographic primitives, which allow the implementation of such
diverse tasks as zero-knowledge identification, the enforce-
ment of semi-honest behavior in cryptographic protocols,
secure multi-party computation (including online auctions
or electronic voting), or key exchange. If these tasks shall
be realized securely in practice by PUFs, a theoretical inves-
tigation of the underlying primitives—in this case BC and
OT—is required first.

In this paper, we continue this line of research, and revisit
the use of PUFs in OT and BC protocols. Particular empha-
sis is placed on the achievable practical security if some
well-known PUFs (like electrical PUFs with 64-bit challenge
lengths or optical PUFs) are used in the protocols. We start by
observing an attack on the OT and BC protocols of Brzuska et
al. [2,3] which quadratically reduces the number of responses
that a malicious player must read out to cheat. It works fully
in the original communication model of Brzuska et al. and
makes no additional assumptions. As we show, the attack
makes the protocols insecure in practice if electrical PUFs
with medium bitlengths around 64 bits are used, and gener-
ally if optical PUFs are employed. This has a special rele-
vance since the use of optical PUFs for their protocols had
been explicitly proposed by Brzuska et al. (see Sect. 8 of [3]).
Secondly, we investigate countermeasures against our attack,
and show that interactive hashing can be used to enhance the
security of PUF-based OT and BC protocols.

Our work continues the recent trend of a formalization of
PUFs, including the formalization of PUF security features
[1,2,7,20,27,32], cryptanalyses of PUF protocols [29,30],
more detailed investigations of non-trivial communication
settings [7,20], and formal security proofs [2,7,20,27]. This
trend will eventually lay the foundations for future PUF
research, and seems indispensible for a healthy long-term
development of the field. It also combines protocol design
and practical security analyses in a novel manner.

Organization of this paper. In Sect. 2 we present the pro-
tocols of Brzuska et al. [2] to achieve a self-contained treat-
ment. Section 3 gives our quadratic attack. Section 4 dis-
cusses its practical effect. Section 5 shows the applicability
of our attack to a recent OT protocol by Ostrovsky et al. [20].
Section 6 discusses one particular countermeasure. Section 7
gives a new, PUF-based protocol for OT based on interactive
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hashing, and analyzes its security. We conclude the paper in
Sect. 8.

2 The protocols of Brzuska et al.

Our aim in this paper is to present a quadratic attack on
two recent PUF protocols for OT and BC by Brzuska et al.
[2,3] and to discuss its practical relevance. To achieve a self-
contained treatment, we will now present these two protocols.
To keep our exposition simple, we will not use the full UC
notation of [2], and will present the schemes mostly without
error correction mechanisms, since the latter play no role in
the context of our attack.

The protocols use two communication channels between
the communication partners: a binary channel, over which
all digital communication is handled. It is assumed that this
channel is non-confidential, but authenticated. And secondly
an insecure physical channel, over which the PUF is sent. It
is assumed that adversaries can measure adaptively selected
CRPs of the PUF while it is in transition over this channel.

2.1 Oblivious transfer

The OT protocol of [2] implements one-out-of-two string
oblivious transfer. It is assumed that in each subsession
the sender Pi initially holds two (fresh) bitstrings s0, s1 ∈
{0, 1}λ, and that the receiver Pj holds a (fresh) choice bit b.

Brzuska et al. generally assume in their treatment that after
error correction and the application of fuzzy extractors, a PUF
can be modeled as a function PUF : {0, 1}λ → {0, 1}rg(λ).

We use this model throughout this paper, too. In the subse-
quent protocol of Brzuska et al., it is furthermore assumed
that rg(λ) = λ, i.e., that the PUF implements a function
PUF : {0, 1}λ→ {0, 1}λ (compare [2,3]).

Protocol 1 PUF-based oblivious transfer ([2], slightly sim-
plified description)

External parameters: The protocol has a number of
external parameters, including the security parameter λ, the
session identifier sid, a number N that specifies how many
subsessions are allowed, and a pre-specified PUF-family P ,
from which all PUFs which are used in the protocol must be
drawn.

Initialization phase: Execute once with fixed session
identifier sid:

1. The receiver holds a PUF which has been drawn from the
family P .

2. The receiver measures l randomly chosen CRPs c1, r1,

. . . , cl , rl from the PUF, and puts them in a list L :=
(c1, r1, . . . , cl , rl).

3. The receiver sends the PUF to the sender.

Subsession phase: Repeat at most N times with fresh
subsession identifier ssid:

1. The sender’s inputs are two strings s0, s1 ∈ {0, 1}λ, and
the receiver’s input is a bit b ∈ {0, 1}.

2. The receiver chooses a CRP (c, r) from the list L at ran-
dom.

3. The sender chooses two random bitstrings x0, x1 ∈
{0, 1}λ and sends x0, x1 to the receiver.

4. The receiver returns the value v := c⊕ xb to the sender.
5. The sender measures the responses r0 and r1 of the PUF

that correspond to the challenges c0 := v⊕ x0 and c1 :=
v ⊕ x1.

6. The sender sets the values S0 := s0⊕r0 and S1 := s1⊕r1,
and sends S0, S1 to the receiver.

7. The receiver recovers the string sb that depends on his
choice bit b as sb = Sb⊕r . He erases the pair (c, r) from
the list L.

Comments. The protocol implicitly assumes that the
sender and receiver can interrogate the PUF whenever they
have access to it, i.e., that the PUF’s challenge–response
interface is publicly accessible and not protected. This
implies that the employed PUF must possess a large num-
ber of CRPs. Using a PUF with just a few challenges does
not make sense: the receiver could then create a full look-up
table for all CRPs of such a PUF before sending it away in
Step 3 of the initialization phase. This would subsequently
allow him to recover both strings s0 and s1 in Step 6 of
the protocol subsession, as he could obtain r0 and r1 from
his look-up table. Similar observations hold for the upcom-
ing protocol 2. Indeed, all protocols discussed in this paper
require PUFs with a large number of challenges and pub-
licly accessible challenge–response interfaces. These PUFs
are usually referred to as physical random functions [9] or
simply as Strong PUFs in the literature [12,27,31,32].

Furthermore, please note that no physical transfer of the
PUF is envisaged during the subsessions of the protocol.
According to the model of Brzuska et al., an adversary
only has access to it during the initialization phase, but not
between the subsessions. This protocol use has some simi-
larities with a stand-alone usage of the PUF, in which exactly
one PUF-transfer occurs between the parties.

2.2 Bit commitment

The second protocol of [2] implements PUF-based bit com-
mitment (BC) by a generic reduction to PUF-based OT.
The BC sender initially holds a bit b. When the OT pro-
tocol is called as a subprotocol, the roles of the sender and
receiver are reversed: the BC sender acts as the OT receiver,
and the BC receiver as the OT sender. The details are as
follows.
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Protocol 2 PUF-based BC via PUF-based OT ([2], slightly
simplified description)

Commit phase:

1. The BC sender and the BC receiver jointly run an OT
protocol (for example Protocol 1).

(a) In this OT protocol, the BC sender acts as OT receiver
and uses his bit b as the choice bit of the OT protocol.

(b) The BC receiver acts as OT sender. He chooses two
strings s0, s1 ∈ {0, 1}λ at random, and uses them as
his input s0, s1 to the OT protocol.

2. When the OT protocol is completed, the BC sender has
learned the string v := sb. This closes the commit phase.

Reveal phase:

1. To reveal bit b, the BC sender sends the string (b, v) (with
v = sb) to the BC receiver.

Comments. The security of the BC protocol is inherited
from the underlying OT protocol. Once this protocol is bro-
ken, the security of the BC protocol is also lost. This will be
relevant in the upcoming sections.

3 A quadratic attack on Protocols 1 and 2

We will now discuss a cheating strategy in Protocols 1 and
2. Compared to an attacker who exhaustively queries the
PUF for all of its m possible challenges, we describe an
attack on Protocols 1 and 2 which reduces this number to√

m. As we will argue later in Sect. 4, this has a particularly
strong effect on the protocol’s security if an optical PUF is
used (as has been explicitly suggested by [3]), or if elec-
trical PUFs with medium challenge lengths of 64 bits are
used.

Our attack rests on the following lemma.

Lemma 3 Consider the vector space ({0, 1}λ,⊕), λ ≥ 2,
with basis B = {a1, . . . , a�λ/2�, b1, . . . , b	λ/2
}. Let A be
equal to the linear subspace generated by the vectors in BA =
{a1, . . . , a�λ/2�}, and let B be the linear subspace generated
by the vectors in BB = {b1, . . . , b	λ/2
}. Define M := A∪B.
Then it holds that:

(i) Any vector z ∈ {0, 1}λ can be expressed as z = a ⊕ b
with a, b ∈ M, and this expression (i.e., the vectors a
and b) can be found efficiently (i.e., in at most poly(λ)

steps).

(ii) For all distinct vectors x0, x1, v ∈ {0, 1}λ there is an
equal number of combinations of linear subspaces A and
B as defined above for which x0⊕v ∈ A and x1⊕v ∈ B.

(iii) M has cardinality |M | ≤ 2× 2	λ/2
.

Proof (i) Notice that any vector z ∈ {0, 1}λ can be
expressed as a linear combination of all basis vectors:
z = ∑

ui ai + ∑
v j b j , i.e., z = a ⊕ b with a ∈ A

and b ∈ B. This expression is found efficiently using
Gaussian elimination.

(ii) Without loss of generality, since x0, x1 and v are dis-
tinct vectors, we may choose a1 = x0 ⊕ v = 0 and
b1 = x1 ⊕ v = 0. The number of combinations of linear
subspaces A and B is independent of the choice of a1 and
b1 (notice that if x0 = x1 but v = x0, then the number of
combinations is twice as large).

(iii) The bound follows from the construction of M and the
cardinalities of A and B, which are |A| = 2�λ/2� and
|B| = 2	λ/2
. ��

An example. Let us give an example to illustrate the prin-
ciple of Lemma 3. Consider the vector space ({0, 1}λ,⊕)

for an even λ, and choose as subbases BA0 = {e1, . . . , eλ/2}
and BB0 = {eλ/2+1, . . . , eλ}, where ei is the unit vector of
length λ that has a one in position i and zeros in all other
positions. Then the basis BA0 spans the subspace A0 that
contains all vectors of length λ whose second half is all zero,
It then follows immediately that every vector z ∈ {0, 1}λ can
be expressed as z = a ⊕ b with a ∈ A0 and b ∈ B0, or,
saying this differently, with a, b ∈ M and M := A0 ∪ B0. It
is also immediate that M has cardinality |M | ≤ 2× 2λ/2.

Relevance for PUFs. The lemma translates into a PUF
context as follows. Suppose that a malicious and an honest
player play the following game. The malicious player gets
access to a PUF with challenge length λ in an initialization
period, in which he can query CRPs of his choice from the
PUF. After that, the PUF is taken away from him. Then, the
honest player chooses a vector z ∈ {0, 1}λ and sends it to
the malicious player. The malicious player wins the game if
he can present the correct PUF responses r0 and r1 to two
arbitrary challenges c0 and c1 which have the property that
c0 ⊕ c1 = z. Our lemma shows that to win the game with
certainty, the malicious player does not need to read out the
entire CRP space of the PUF in the initialization phase; he
merely needs to know the responses to all challenges in the
set M of Lemma 3, which has a quadratically reduced size
compared to the entire CRP space. This observation is at the
heart of the attack described below.

To make the attack hard to detect for the honest player, it
is necessary that the attacker chooses random subspaces A
and B, and does not use the above trivial choices A0 and B0

all the time. This fact motivates the random choice of A and
B in Lemma 3. The further details are as follows.
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The attack. As in [2,3], we assume that the PUF has got
a challenge set of {0, 1}λ. Given Lemma 3, the OT receiver
(who initially holds the PUF) can achieve a quadratic advan-
tage in Protocol 1 as described below.

First, he chooses uniformly random linear subspaces A
and B, and constructs the set M , as described in Lemma 3.
While he holds possession of the PUF before the start of the
protocol, he reads out the responses to all challenges in M .
Since |M | ≤ 2×2	λ/2
, this is a quadratic improvement over
reading out all responses of the PUF.

Next, he starts the protocol as normal. When he receives
the two values x0 and x1 in Step 3 of the protocol, he computes
two challenges c∗0 and c∗1 both in set M such that

x0 ⊕ x1 = c∗0 ⊕ c∗1 .

According to Lemma 3(i), this can be done efficiently (i.e.,
in poly(λ) operations). Notice that, since the receiver knows
all the responses corresponding to challenges in M , he in
particular knows the two responses r∗0 and r∗1 that correspond
to the challenges c∗0 and c∗1.

Next, the receiver deviates from the protocol and sends
the value v := c∗0⊕ x0 in Step 4. For this choice of v, the two
challenges c0 and c1 that the sender uses in Step 5 satisfy

c0 := c∗0 ⊕ x0 ⊕ x0 = c∗0

and

c1 := c∗0 ⊕ x0 ⊕ x1 = c∗0 ⊕ c∗0 ⊕ c∗1 = c∗1 .

By Lemma 3(ii), Alice cannot distinguish the received
value v in Step 4 from any random vector v. In other words,
Alice cannot distinguish Bob’s malicious behavior (i.e., fab-
ricating a special v with suitable properties) from honest
behavior. As a consequence, Alice continues with Step 6 and
transmits S0 = s0 ⊕ r∗0 and S1 = s1 ⊕ r∗1 . Since Bob knows
both r∗0 and r∗1 , he can recover both s0 and s1. This breaks
the security of the protocol.

Please note the presented attack is simple and effective:
it fully works within the original communication model of
Brzuska et al. [2,3]. Furthermore, it does not require labo-
rious computations of many days on the side of the attacker
(as certain modeling attacks on PUFs do [31]). Finally, due
to the special construction we proposed, the honest players
will not notice the special choice of the value v, as the latter
shows no difference from a randomly chosen value.

Effect on bit commitment (Protocol 2). Due to the reduc-
tionist construction of Protocol 2, our attack on the oblivious
transfer scheme of Protocol 1 directly carries over to the bit
commitment scheme of Protocol 2 if Protocol 1 is used in it as
a subprotocol. Using the attack, a malicious sender can open
the commitment in both ways by reading out only 2× 2	λ/2

responses (instead of all 2λ responses) of the PUF. On the
other hand, it can be observed easily that the hiding property

of the BC Protocol 2 is unconditional, and is not affected by
our attack.

4 Practical consequences of the attack

What are the practical consequences of our quadratic attack,
and how relevant is it in real-world applications? The situa-
tion can perhaps be illustrated via a comparison to classical
cryptography. What effect would a quadratic attack have on
schemes like RSA, DES and SHA-1? To start with RSA, the
effect of a quadratic attack here is rather mild: the length of
the modulus must be doubled. This will lead to longer com-
putation times, but restore security without further ado. In
the case of single-round DES, however, a quadratic attack
would destroy its security, and the same holds for SHA-1.
The actual effect of our attack on PUF-based OT and BC
has some similarities with DES or SHA-1: PUFs are finite
objects, which cannot be scaled in size indefinitely due to
area requirements, arising costs, and stability problems. This
will also become apparent in our subsequent discussion.

4.1 Electrical integrated PUFs

We start our discussion by electrical integrated PUFs, and
take the well-known Arbiter PUF as an example. It has been
discussed in theory and realized in silicon mainly for chal-
lenge lengths of 64 bits up to this date [10,11,16,34]. Our
attack on such a 64-bit implementation requires the read-out
of 2× 232 = 8.58× 109 CRPs by the receiver. This read-out
can be executed before the protocol (i.e., not during the proto-
col), and will hence not be noticed by the sender. Assuming a
MHz CRP read-out rate [16] of the Arbiter PUF, the read-out
takes 8.58× 103 s, or less than 144 min.

Please note that the attack is independent of the crypto-
graphic hardness of the PUF, such as its resilience against
machine learning attacks. For example, a 64-bit, 8-XOR-
Arbiter PUF (i.e., an Arbiter PUF with eight parallel standard
64-bit Arbiter PUFs whose single responses are XORed at the
end of the structure) is considered secure in practice against
all currently known machine learning techniques [31]. Nev-
ertheless, this type of PUF would still allow the above attack
in 144 min.

Our attacks therefore enforce the use of PUFs with a
challenge bitlength of 128 bits or more in Protocols 1 and
2. Since much research currently focuses on 64-bit imple-
mentations of electrical PUFs, publication and dissemina-
tion of the attack seems important to avoid their use in
Protocols 1 and 2. Another aspect of our attack is that
it motivates the search for OT and BC protocols that are
immune, and which can safely be used with 64-bit imple-
mentations. The reason is that the usage of 128-bit PUFs dou-
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bles the area consumption of the PUF and negatively affects
costs.

4.2 Optical PUFs

Let us now discuss the practical effect of our attack on
the optical PUF introduced by Pappu [23] and Pappu et al.
[24]. The authors use a cuboid-shaped plastic token of size
1 cm ×1 cm ×2.5 mm, in which thousands of light scatter-
ing small spheres are distributed randomly. They analyze the
number of applicable, decorrelated challenge–response pairs
in their set-up, arriving at a figure of 2.37×1010 [24]. Brzuska
et al. assume that these challenges are encoded in a set of the
form {0, 1}λ, in which case λ = 	log2 2.37 × 1010
 = 35.
If this number of 235 is reduced quadratically by virtue of
Lemma 3, we obtain on the order of 2 × 218 = 5.2 × 105

CRPs that must be read out by an adversary to cheat. It is
clear that even dedicated measurement set-ups for optical
PUFs cannot realize the MHz rates of the electrical example
in the last section. But even assuming mild read-out rates of
10 or 100 CRPs per second, we still arrive at small read-out
times of 5.2×104 or 5.2×103 s, respectively. This is between
14.4 h (for 10 CRPs per second) or 87 min (for 100 CRPs
per second). If a malicious receiver holds the PUF for such a
time frame before the protocol starts (which is impossible to
control or prevent for the honest players), he can break the
protocol’s security.

Can the situation be cleared by simply scaling the opti-
cal PUF to larger sizes? Unfortunately, also an asymptotic
analysis of the situation shows the same picture. All vari-
able parameters of the optical PUF [17,23,24] are the x–y-
coordinate of the incident laser beam and the spatial angle �

under which the laser hits the token. This leads to a merely
cubic complexity in the three-dimensional diameter d of the
cuboid scattering token.2 Given our attack, this implies that
the adversary must only read out O(d1.5) challenges to cheat
in Protocols 1 and 2. If only the independent challenges are
considered, the picture is yet more drastic: as shown in [37],
the PUF has at most a quadratic number of independent chal-
lenges in d. This reduces to a merely linear number of CRPs
which the adversary must read out in our attack. Finally,
we remark that scaling up the size of the PUF also quickly
reaches its limits under practical aspects: the token consid-
ered by Pappu et al. [23,24] has an area of 1 cm × 1 cm. To
slow down the quadratic attack merely by a factor of 10, a
token of area 10 cm × 10 cm would have to be used. Such a
token is too large to even fit onto a smart card.

2 Please note in this context that the claim of [3] that the number of
CRPs of an optical PUF is super-polynomial must have been made
erroneously or by mistake; our above brief analysis shows that it is at
mostly cubic. The low-degree polynomial amount of challenges of the
optical PUF is indeed confirmed by the entire literature on the topic,
most prominently [23,24,37].

Overall, this leads to the conclusion that optical PUFs like
the ones discussed in [17,23,24] cannot be used safely with
the Protocols 1 and 2 in the face of our attack. Due to their
low-degree polynomial CRP complexity, and due to practi-
cal size constraints, simple scaling of the PUFs constitutes
no efficient countermeasure. This distinguishes the optical
approach from the electrical case of the last section. This
observation has a particular relevance, since Brzuska et al.
had explicitly suggested optical PUFs for the implementation
of their protocols (see Sect. 8 of [3]).

5 Applicability to an OT-protocol of Ostrovsky et al.

Ostrovsky et al. re-examined the use of PUFs in the UC-
framework in [20], introducing several new protocols. One
of these is an unconditional (i.e., no other assumptions than
the security of the PUF are made) OT-procotol for so-called
“honest” [20] or “good” [7] PUFs, which is described in Fig. 3
of their paper [20]. We provide it as Protocol 9 in Appendix 8.

Protocol 9 differs from Brzuska et al.’s Protocol 1 in a
number of steps. The main reason is that it aims for security
in a different UC-simulator model, the so-called oblivious
query model. To achieve this new type of security, Ostrovsky
et al. use several “random” OT protocols as “subroutines” in
their scheme, which are combined in the end to achieve one
secure OT protocol.

Still, it can be observed that all of these “random” OT
protocols use the same basic OT mechnism as Brzuska
et al., and employ the very same PUF sidR. This makes our
previous attack applicable to Ostrovsky et al.’s protocol, too.
Due to the exact construction of the protocol, the details are
slightly more involved, as we will see below.

The attack. As in Sect. 3, we assume without loss of gener-
ality that the PUF has got a challenge set of {0, 1}λ (compare
[2,3,20]). Given knowledge of Lemma 3, the receiver can
cheat with a quadratic advantage in Protocol 9 as follows.

As in Sect. 3, he uniformly chooses random linear sub-
spaces A and B and constructs the set M , as in Lemma 3.
Next, he reads out the responses of sidR to all challenges in
M . As before, this constitutes a quadratic improvement over
reading out the responses to all possible challenges.3

Now, when the sender in Step 3(a) of the protocol transfers
the value pairs x0

i , x1
i for 1 ≤ i ≤ 2k, the receiver computes

3 In practice, the receiver could either gain sufficient time for this read-
out by delaying the protocol in Step 2. Please note in this context that it
is part of the UC-model that malicious parties and adversaries can delay
messages and the protocol arbitrarily, and that there are no time bounds
on the protocol. A practically viable alternative is that the receiver pro-
duces the PUF sidR already prior to the start of the protocol, giving
him sufficient time to apply all challenges in M . The latter approach is
exactly equivalent to the situation in Protocol 1.
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for each 1 ≤ i ≤ 2k two challenges e0
i , e1

i ∈ M such that

x0
i ⊕ x1

i = e0
i ⊕ e1

i .

It was shown in Lemma 3 that he can do so efficiently. Next,
the receiver deviates maliciously from the protocol: in Step
3(b), for 1 ≤ j ≤ 2k, he sets the values

vi := xbi
i ⊕ e0

i .

This choice of the vi implies that the values q̂δ
i j

, which the
sender computes in the second item of Step 5, for all δ ∈
{0, 1} and 1 ≤ j ≤ k will take the following form:

q̂δ
i j
= vi j ⊕ xδ

i j
= xbi

i j
⊕ e0

i j
⊕ xδ

i j
=

{
e0

i j
, for δ = bi j

e1
i j
, for δ = bi j

In particular, all values q̂δ
i j

lie in M . Therefore the receiver

knows all responses of sidR to the queries q̂δ
i j

. Let us call

these responses r δ
i j

.

The fact that he knows all r δ
i j

now allows the receiver to
complete his malicious strategy in Step 6 of the protocol. He
sets

sti j ← FuzRep(p
bi j
i j

, rbi
i j

)

and

st ′i j
← FuzRep(p

1⊕bi j
i j

, r1⊕bi
i j

),

and recovers both strings s0, s1 by computing

sb =
k⊕

j=1

(mb
i j
⊕ sti j ) and s1⊕b =

k⊕

j=1

(m1⊕b
i j
⊕ st ′i j

),

thus breaking the security of the protocol.

The presented attack is again simple and effective: it fully
works within the original communication model of Ostro-
vsky et al. [20]. Furthermore, it does not require laborious
computations of several days on the side of the attacker
(as certain modeling attacks on PUFs do [31]). Finally,
due to the special construction we proposed, the honest
players will not notice the special choice of the value v,
as the latter shows no difference from a randomly chosen
value.

Practical consequences. Even though the above attack
differs in its details, it has exactly the same practical
consequences as the previous attack of Sect. 3, and the dis-
cussion of Sect. 4 applies in a completely analog manner.

In a nutshell, Protocol 9 becomes insecure if Pappu’s opti-
cal PUF [23,24] is used. Provided that the receiver is pre-
pared to invest read-out times of 14.4 h (at read-out speeds
of 10 CRPs per second) or of 87 min (at read-out speeds
of 100 CRPs per second), he can break the protocol with
probability one. Regarding the scaling of the optical PUF,
the same arguments as in Sect. 4.2 apply: scaling makes

little sense from a practical perspective, since the optical
PUF will quickly grow very large for any type of practi-
cal applications like smart cards. It is has a limited impact
from an asymptotic perspective, also, since the number of
CRPs grows only low-degree polynomial in the size of the
PUF.

Furthermore, Protocol 9 becomes insecure if XOR Arbiter
PUFs or comparable electrical PUFs of bitlength 64 are
employed: A read-out time of 144 min at the customary CRP
read-out frequency of 1 MHz then suffices to break the proto-
col. The attack is regardless of the cryptographic hardness of
the PUF, or of its resilience against machine learning attacks
[31], and only relates to the size of its challenge space. The
details are again similar to our discussion in Sect. 4.1.

To restore the security of Protocol 9, the use of an electrical
PUF with challenge length 128 or larger seems necessary.
This doubles PUF area and costs, and motivates the search for
OT and BC protocols that can be used with 64-bit electrical
PUFs.

6 A potential countermeasure: additional PUF transfers
and time constraints?

Can we bind the time in which the malicious player has got
access to the PUF to prevent our attack? The current Pro-
tocols 1 and 2 obviously are unsuited to this end; but could
there be modifications of theirs which have this property?
A simple approach seems the introduction of one additional
PUF transfer from the sender to the receiver in the initializa-
tion phase. This assumes that the sender initially holds the
PUF, transfers it to the receiver, and measures the time period
within which the receiver returns the PUF. The (bounded)
period in which the receiver had access to the PUF can then
be used to derive a bound on the number of CRPs the receiver
might know. This could be used to enforce security against a
cheating receiver. Please note that a long, uncontrolled access
time for the sender is no problem for the protocol’s security,
whence it suffices to concentrate on the receiver.

On closer inspection, however, there are significant prob-
lems with this approach. , which prevent its practical applica-
tion. In general, each PUF transfer in a protocol is very costly.
If executed via physical delivery over long distances between
arbitrary parties, it might cost days. One PUF transfer per
protocol seems acceptable, since it is often executed auto-
matically and for free, for example by consumers carrying
their bank cards to cash machines. But having two such trans-
fers in one protocol, as suggested above, will most often ruin
a protocol’s practicality.

A second issue is that binding the adversarial access time
in a tight manner by two consecutive PUF transfers is very
difficult. How long will one physical transfer of the PUF
take? 1 day? If the adversary can execute this transfer a few
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hours faster and can use the gained time for executing mea-
surements on the PUF, our countermeasure fails. The same
holds if the adversary carries out the physical transfer himself
and can measure the PUF while it is in transit.

In summary, enforcing a tight time bound on the receiver’s
access time by two PUF transfers or also by other measures
will be impossible in almost any applications. The above idea
may thus be interesting as a theoretical concept for future
PUF protocol design, but cannot be considered a general,
practically relevant countermeasure.

7 New protocols based on interactive hashing

Let us now discuss a second and more effective countermea-
sure: the employment of interactive hashing (IH) as a substep
in OT protocols. As we will show, protocols based on IH can
achieve better security properties than Protocol 1. The idea
of using IH in the context of PUFs has been suggested first by
Rührmair in [26]. The following approach is a simplified ver-
sion of his original scheme. We also give (for the first time)
a security analysis of the protocol. Via the general reduction
of BC to OT presented in Protocol 2, our construction for OT
can also be used to implement PUF-based BC.

7.1 Interactive hashing as a security primitive

Interactive hashing (IH) is a two-player security primitive
suggested by [19,22]. It has been deployed as a protocol
tool in various contexts, including zero-knowledge proofs,
bit commitment and oblivious transfer (see references in [19].
The following easily accessible and application-independent
definition of IH has been given in [5]; for more a formal
treatment see [33].

Definition 4 (Interactive hashing (IH) [5]) Interactive hash-
ing is a cryptographic primitive between two players, the
sender and the receiver. It takes as input a string c ∈ {0, 1}t
from the sender, and produces as output two t-bit strings,
one of which is c and the other c′ = c. The output strings are
available to both the sender and the receiver, and satisfy the
following properties:

1. The receiver cannot tell which of the two output strings
was the original input. Let the two output strings be
c0, c1, labeled according to lexicographic order. Then if
both strings were a priori equally likely to have been the
sender’s input c, then they are a posteriori equally likely
as well.

2. When both participants are honest, the input is equally
likely to be paired with any of the other strings. Let c be
the sender’s input and let c′ be the second output of inter-
active hashing. Then provided that both participants fol-

low the protocol, c′ will be uniformly distributed among
all 2t − 1 strings different from c.

3. The sender cannot force both outputs to have a rare prop-
erty. Let G be a subset of {0, 1}t representing the sender’s
“good set”. Let G be the cardinality of G and let T = 2t .
Then if G/T is small, the probability that a dishonest
sender will succeed in having both outputs c0, c1 be in G
is comparably “small”.

One standard method to implement IH is by virtue of a
classical technique by Naor et al. [19]. To achieve a self-
contained treatment, we describe this technique in a variant
introduced by Crepeau et al. [5] below. In the protocol below,
let c be a t-bit string that is the input to sender in the inter-
active hashing. All operations take place in the binary field
F2.

Protocol 5 Interactive hashing [5]

1. The receiver chooses a (t − 1)× t matrix Q uniformly at
random among all binary matrices of rank t − 1. Let qi

be the i-th query, consisting of the i-th row of Q.
2. For 1 ≤ i ≤ t − 1 do:

(a) The receiver sends query qi to the sender.
(b) The sender responds with vi = qi · c.
(c) Given Q and v ∈ {0, 1}t−1 (the vector of the sender’s

responses), both parties compute the two values of
c ∈ {0, 1}t consistent with the linear system Q·c = v.
These solutions are labeled c0, c1 according to lexi-
cographic order.

The following theorem, which is taken from [5,33], tells
us about the security of the above scheme. It relates to the
security Definition 4.

Theorem 6 (Security of Protocol 5) Protocol 5 satisfies all
three information theoretic security properties of Defini-
tion 4. Specifically, for Property 3 of Definition 4, it ensures
that a dishonest sender can succeed in causing both out-
puts to be in the “good set” G with probability at most
15.6805× G/T , where G = |G| and T = 2t .

Protocol 5 uses t rounds of interaction. Note that interac-
tive hashing is unconditionally secure in the sense that it does
not require additional set-up or computational assumptions.

7.2 Oblivious transfer protocol

We now present a PUF-based oblivious transfer proto-
col that uses IH as a substep. It bears some similarities
with an earlier protocol of Rührmair [26] in the sense
that it also uses interactive hashing, but is slightly sim-
pler.

123



J Cryptogr Eng (2013) 3:17–28 25

Protocol 7 PUF-based 1-out-of-2 oblivious transfer with
interactive hashing

1. The sender’s input are two strings s0, s1 ∈ {0, 1}λ and
the receiver’s input is a bit b ∈ {0, 1}.

2. The receiver chooses a challenge c ∈ {0, 1}λ uniformly
at random. He applies c to the PUF, which responds r .
He transfers the PUF to the sender.

3. The sender and receiver execute an IH protocol, where
the receiver has input c. Both get outputs c0, c1. Let i be
the value where ci = c.

4. The receiver sends b′ := b ⊕ i to the sender.
5. The sender applies the challenges c0 and c1 to the PUF.

Denote the corresponding responses as r0 and r1.
6. The sender sends S0 := s0 ⊕ rb′ and S1 := s1 ⊕ r1−b′ to

receiver.
7. The receiver recovers the string sb that depends on his

choice bit b as Sb⊕r = sb⊕rb⊕b′ ⊕r = sb⊕ri⊕r = sb.

7.3 Security and practicality analysis

We start by a security analysis of Protocol 7 in the so-called
“stand alone, good PUF model”, which was introduced by
van Dijk and Rührmair in [7]. In this communication model,
the following two assumptions are made: (i) the PUF proto-
col is executed only once, and the adversary or malicious
players have no access to the PUF anymore after the end of
the protocol; (ii) the two players do not manipulate the used
PUFs on a hardware level. We stress that whenever these
two features cannot be guaranteed in practical applications, a
number of unexpected attacks apply, which spoil the security
of the respective protocols. Even certain impossibility results
can be shown under these circumstances; see [7] for details.

In the following analysis in the stand alone, good PUF
model, we assume that the adversary has the following capa-
bilities:

1. He knows a certain number of CRPs of the PUF, and has
possibly used them to build an (incomplete) predictive
model of the PUF. To model this ability, we assume that
there is a proper subset S � C of the set of all challenges
C such that the adversary knows the correct responses to
the challenges in S with probability one. The cardinality
of S depends on the previous access times of the adversary
to the PUF and the number of CRPs he has collected
from other sources, for example protocol eavesdropping.
It must be estimated by the honest protocol users based
on the given application scenario. Usually |S| � |C |.

2. Furthermore, we assume that the adversary can correctly
guess the response to a uniformly and randomly chosen
challenge c ∈ C\S with probability at most ε, where
the probability is taken over the choice of c and over the

adversary’s random coins. Usually ε will be significantly
smaller than one. To name two examples: in the case of
a well-designed electrical PUF with single-bit output, ε

will be around 0.5; in the case of a well-designed optical
PUF [23,24] with multi-bit images as outputs, ε can be
extremely small, for example smaller than 2−100. Again,
the honest protocol users must estimate ε based on the
circumstances and the employed PUF.

Assuming the above capabilities and using Theorem 6,
the probability that the receiver can cheat in Protocol 7 is
bounded above by

15.6805× |S|/|C | + ε,

a term that will usually be significantly smaller than one.
Under the presumption that this cheating probability of the

receiver is indeed smaller than one, the security of Protocol 7
can be further amplified by using a well-known result by
Damgard et al. (see Lemma 3 of [6]):

Theorem 8 (OT-amplification [6]) Let (p, q)-WOT be a 1-
2-OT protocol where the sender with probability p learns
the choice bit c and the receiver with probability q learns the
other bit b1−c. Assume that p+q < 1. Then the probabilities
p and q can be reduced by running k (p, q)-WOT protocols
to obtain a (1− (1− p)k, qk)-WOT protocol.

In the case of our OT protocol 7 it holds that p = 0,
whence the technique of Damgard et al. leads to an efficient
security amplification, and to a (0, qk)-WOT protocol. The
PUF does not need to be transferred k times, but one PUF
transfer suffices. We remark that the probability amplifica-
tion according to Theorem 8 is not possible with Protocol 1
after our quadratic attack, since the attack leads to a cheating
probability of one for the receiver, i.e., p + q ≥ 1 in the
language of Theorem 8.

Let us quantatively illustrate the security gain of Proto-
col 7 over Protocol 1 via a simplified back-of-the-envelope
calculation: we argued earlier that via our quadratic attack, a
malicious receiver who has read out 2 × 218 CRPs from an
optical PUF can cheat with probability 1 (= with certainty)
in Protocol 1. Let us compare this to the case that an opti-
cal PUF is used in the IH-based Protocol 7. Let us assume
that the adversary has collected the same number of CRPs
(= 2×218 CRPs) as in the quadratic attack, and that the (multi-
bit) response of the optical PUF on the remaining CRPs is
still hard to preduct, i.e., it cannot be predicted better than
with probability ε ≤ 2−100. Then by Theorem 6 and by our
above analysis, the adversary’s chances to break Protocol 7
are merely around 15.6805×219×2−35+2−100 ≈ 0.00024.
This probability can then be exponentially reduced further via
Theorem 8.

On the downside, however, the IH Protocol 5 has a round
complexity that is linear (i.e., equal to λ− 1) in the security
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parameter λ. This is relatively significant for the optical PUF
(where λ = 35) and electrical PUFs with medium bitlengths
(where λ = 64). One possible way to get around this prob-
lem is to use the constant round interactive hashing scheme
by Ding et al. [8]. However, this scheme has slightly worse
security guarantees than the IH scheme of Theorem 6.

To summarize the discussion in this subsection, interactive
hashing can restore the security of PUF-based OT protocols
even for small-sized PUFs with 64-bit challenge lengths and
for optical PUFs in the stand alone, good PUF model. Via
the general reduction of BC to OT given in Protocol 2, this
result can be used to securely implement PUF-based BC in
this model, too.

However, the use of IH leads to an increased number of
communication rounds that is about equal to the (binary)
challenge length of the PUF, i.e., around 64 rounds for the
integrated PUFs with 64 bit challenges, and around 35 rounds
for optical PUFs of size 1 cm2 [24]. It must be decided on
the basis of the concrete application scenario whether such
a number of rounds is acceptable. If not, then a variant of
interactive hashing introduced by Ding et al. [8] can easily
be employed, which only involves a constant number (to be
precise: four) rounds of communication.

8 Summary and conclusions

We revisited PUF-based OT and BC protocols, including the
recent schemes of Rührmair from Trust 2010 [26], Brzuska
et al. from Crypto 2011 [2,3], and Ostrovsky et al. [20]. We
placed special emphasis on the security which these protocols
achieve in practice, in particular when they are used in con-
nection with the well-known optical PUFs and 64-bit elec-
trical PUFs. Our analysis revealed several interesting facts.

First of all, we described a simple and efficient method by
which the OT and BC protocol of Brzuska et al. and the OT
protocol by Ostrovsky et al. can be attacked with probabil-
ity one in practice if electrical PUFs with 64-bit challenge
lengths are used, or whenever optical PUFs are employed.
Since much research focuses on 64-bit implementations of
electrical PUFs [10,11,16], and since Brzuska et al. had
explicitly suggested optical PUFs for the implementation of
their protocols (see Sect. 8 of [3]), the publication and dis-
semination of our quadratic attack seems important to avoid
their use in Protocols 1, 2 and 9. Please note that our attack is
independent of the cryptographic hardness of the PUF, and
is merely based on its challenge size.

Secondly, we discussed an alternative class of protocols
for oblivious transfer that are based on interactive hashing
techniques. They are inspired by an earlier OT protocol of
Rührmair [26]. We argued that these protocols lead to better
security in practice. They can be used safely with 64-bit elec-
trical PUFs. When used with optical PUFs, they lead to better

security than the protocols of Brzuska et al., but the security
margins are tighter than in the 64-bit case. In both cases, a
well-known result by Damgard, Kilian and Savail [6] can be
used to reduce the cheating probabilities exponentially.

Our discussion once more shows that PUFs are quite
special cryptographic and security tools. Due to their finite
nature, asymptotic constants that might usually be hidden
in O(·)- and �(·)-notations become relevant in practice and
should be discussed explicitly. Furthermore, their specific
nature often allows new and unexpected forms of attacks.
One of the aims of our work is to bridge the gap between
PUFs in theory and applications; reconciling these two fields
seems a necessary prerequisite for a healthy long-term devel-
opment of the field. We hope that the general methods and
the approach of this paper can contribute to this goal.

Recommendations for protocols use and future work. Let
us conclude the paper with a condensed recommendation
for the practical implementation of PUF-based OT and BC
protocols, and by a discussion of future work. First, it is clear
from our results that the protocol of Brzuska et al. cannot be
used safely with optical PUFs a la Pappu (i.e., with non-
integrated optical PUFs of practically reasonable sizes), or
with electrical PUFs with challenge lengths around 64 bits.

Secondly, we showed that protocols based on interactive
hashing (IH) can achieve better security. These protocols can
be employed safely with optical PUFs and with electrical
PUFs of challenge length 64. Furthermore, Damgard et al.’s
[6] amplification technique can be applied to bring the cheat-
ing probabilities arbitrarily close to zero.

Nevertheless, we would like to stress once more to prac-
tical PUF users that this analysis only applies if the proto-
cols are employed in the stand alone, good PUF model (see
Sect. 7.3 and [7]). As soon as the features of this model cannot
be enforced in a given application (for example by certifying
a PUF, or by erasing PUF responses at the protocol end, see
[7]), certain new attacks apply. They break the security of
the presented IH-based protocol, as well as of the protocols
of Brzuska et al. and of Ostrovsky et al. that we discussed in
this publication. These attacks are not the topic of this work,
but have been described in all detail in [7].

Finally, if a PUF has challenge length of 128 bits or more,
it seems that the protocols of Brzuska et al. and Ostrovsky
et al. can be used safely (as long as we remain in the stand
alone, good PUF model, see above), even though we did not
prove this fact formally in this paper. Leading such a formal
proof constitutes an interesting topic for future research.
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Appendix: Unconditional oblivious transfer protocol for
honest PUFs by Ostrovsky et al.

We give below an OT protocol for honest PUFs by Ostro-
vsky et al. (see Fig. 3 of [20]). It is “unconditional” in the
sense that it only relies on PUFs, i.e., it does not use any
other assumptions besides PUFs. In agreement and corre-
spondence with the authors, a few minor typos have been
discussed and removed [21]. The most relevant of these typos
for our analysis is that in item 2 of Step 5, the PUF that is
queried must be sidR, and not “sidij”, as in [20] (note that
sidij is not defined in the protocol, which only uses the PUFs

sidS
ij

and sidR).

Protocol 9 Unconditional OT with honest PUFs [20]

Sender’s input: Strings s0, s1 ∈ {0, 1}n .
Receiver’s input: Bit b ∈ {0, 1}.

1. [(SuncOT ⇒ RuncOT): Sender PUF initialization] S
initializes 2k PUFs sidS

1 , …, sidS
2k and sends them R.

2. [(SuncOT ⇐ RuncOT): Receiver PUF initialization] R
initializes a PUF sidR. It uniformly chooses 2k queries
q1, . . . , q2k , and obtains responses a1, . . . , a2k . It sends
the PUF sidR to S.

3. [Cut-and-choose]

(a) (SuncOT ⇒ RuncOT) For 1 ≤ i ≤ 2k, sender uni-
formly selects a pair of challenges (x0

i , x1
i ) and sends

it to R.
(b) (SuncOT ⇐ RuncOT) For each 1 ≤ i ≤ 2k, receiver

does the following:
– select random bit bi ∈ {0, 1}.
– select random query di and let dai be the

response of the PUF sidS
i . Compute (dsti , dpi)←

FuzGen(dai ). If Parity(dsti ) = bi , repeat this
step. Else, continue.

– compute vi := xbi
i ⊕ qi .

For each 1 ≤ i ≤ 2k, receiver sends to sender
(vi , di , dpi ).

(c) (SuncOT ⇒ RuncOT) Sender selects a random subset
S ⊂ [2k] of size k and sends it to receiver.

(d) (SuncOT ⇐ RuncOT) For all j ∈ S, receiver sends
(q j , a j ) to sender, and also hands over the PUF sidS

j
to the sender.

(e) Sender makes the following checks for each j ∈ S:

– compute the response of PUF sidR on query q j to
obtain a∗j . If dis(aj, a∗j ) > dnoise, abort.

– If v j ⊕ q j = x0
j , set b∗j = 0; if v j ⊕ q j = x1

j , set
b∗j = 1; else abort.

– query the PUF sidS
j with d j to obtain response da∗j ;

if Parity(FuzRep(da∗j , dp j )) = b∗j , abort.

4. [(SuncOT ⇐ RuncOT): Receiver sends correction-bits]
Let i1, . . . , ik be the indices not in S. For 1 ≤ j ≤ k, the
receiver sends to sender the bit b′i j

= bi j ⊕ b.
5. [(SuncOT ⇒ RuncOT): Sender’s final message] Sender

prepares its final message as follows:

– For δ ∈ {0, 1}, choose random strings sδ
1, . . . , sδ

k such

that sδ =⊕k
j=1 sδ

j .

– For δ ∈ {0, 1}, for 1 ≤ j ≤ k, compute q̂δ
i j
= vi j ⊕

xδ
i j

, and let (stδi j
, pδ

i j
) be the response of PUF sidR

to the query q̂δ
i j

.

– For δ ∈ {0, 1} and 1 ≤ j ≤ k, set mδ
i j
= sδ

j⊕st
b′i j
⊕δ

i j
.

The sender sends (m0
i1
, m1

i1
), . . . , (m0

ik
, m1

ik
) and (p0

i1
,

p1
i1
), . . . , (p0

ik
, p1

ik
) to the receiver.

6. [Receiver’s final step] For i ≤ j ≤ k, receiver computes

sti j ← FuzRep(p
b′i j
i j

, ai j ). It outputs sb =⊕k
j=1(m

b
i j
⊕

sti j ).
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