21 research outputs found

    Data Hiding in Digital Video

    Get PDF
    With the rapid development of digital multimedia technologies, an old method which is called steganography has been sought to be a solution for data hiding applications such as digital watermarking and covert communication. Steganography is the art of secret communication using a cover signal, e.g., video, audio, image etc., whereas the counter-technique, detecting the existence of such as a channel through a statistically trained classifier, is called steganalysis. The state-of-the art data hiding algorithms utilize features; such as Discrete Cosine Transform (DCT) coefficients, pixel values, motion vectors etc., of the cover signal to convey the message to the receiver side. The goal of embedding algorithm is to maximize the number of bits sent to the decoder side (embedding capacity) with maximum robustness against attacks while keeping the perceptual and statistical distortions (security) low. Data Hiding schemes are characterized by these three conflicting requirements: security against steganalysis, robustness against channel associated and/or intentional distortions, and the capacity in terms of the embedded payload. Depending upon the application it is the designer\u27s task to find an optimum solution amongst them. The goal of this thesis is to develop a novel data hiding scheme to establish a covert channel satisfying statistical and perceptual invisibility with moderate rate capacity and robustness to combat steganalysis based detection. The idea behind the proposed method is the alteration of Video Object (VO) trajectory coordinates to convey the message to the receiver side by perturbing the centroid coordinates of the VO. Firstly, the VO is selected by the user and tracked through the frames by using a simple region based search strategy and morphological operations. After the trajectory coordinates are obtained, the perturbation of the coordinates implemented through the usage of a non-linear embedding function, such as a polar quantizer where both the magnitude and phase of the motion is used. However, the perturbations made to the motion magnitude and phase were kept small to preserve the semantic meaning of the object motion trajectory. The proposed method is well suited to the video sequences in which VOs have smooth motion trajectories. Examples of these types could be found in sports videos in which the ball is the focus of attention and exhibits various motion types, e.g., rolling on the ground, flying in the air, being possessed by a player, etc. Different sports video sequences have been tested by using the proposed method. Through the experimental results, it is shown that the proposed method achieved the goal of both statistical and perceptual invisibility with moderate rate embedding capacity under AWGN channel with varying noise variances. This achievement is important as the first step for both active and passive steganalysis is the detection of the existence of covert channel. This work has multiple contributions in the field of data hiding. Firstly, it is the first example of a data hiding method in which the trajectory of a VO is used. Secondly, this work has contributed towards improving steganographic security by providing new features: the coordinate location and semantic meaning of the object

    Haar-Wavelet-Based Just Noticeable Distortion Model for Transparent Watermark

    Get PDF
    Watermark transparency is required mainly for copyright protection. Based on the characteristics of human visual system, the just noticeable distortion (JND) can be used to verify the transparency requirement. More specifically, any watermarks whose intensities are less than the JND values of an image can be added without degrading the visual quality. It takes extensive experimentations for an appropriate JND model. Motivated by the texture masking effect and the spatial masking effect, which are key factors of JND, Chou and Li (1995) proposed the well-known full-band JND model for the transparent watermark applications. In this paper, we propose a novel JND model based on discrete wavelet transform. Experimental results show that the performance of the proposed JND model is comparable to that of the full-band JND model. However, it has the advantage of saving a lot of computation time; the speed is about 6 times faster than that of the full-band JND model

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Watermarking digital image and video data. A state-of-the-art overview

    Full text link

    Patch-based structural masking model with an application to compression

    Get PDF
    The ability of an image region to hide or mask a given target signal continues to play a key role in the design of numerous image processing and vision systems. However, current state-of-the-art models of visual masking have been optimized for artificial targets placed upon unnatural backgrounds. In this paper, we (1) measure the ability of natural-image patches in masking distortion; (2) analyze the performance of a widely accepted standard masking model in predicting these data; and (3) report optimal model parameters for different patch types (textures, structures, and edges). Our results reveal that the standard model of masking does not generalize across image type; rather, a proper model should be coupled with a classification scheme which can adapt the model parameters based on the type of content contained in local image patches. The utility of this adaptive approach is demonstrated via a spatially adaptive compression algorithm which employs patch-based classification. Despite the addition of extra side information and the high degree of spatial adaptivity, this approach yields an efficient wavelet compression strategy that can be combined with very accurate rate-control procedures.Peer reviewedElectrical and Computer Engineerin

    Comparative evaluation of video watermarking techniques in the uncompressed domain

    Get PDF
    Thesis (MScEng)--Stellenbosch University, 2012.ENGLISH ABSTRACT: Electronic watermarking is a method whereby information can be imperceptibly embedded into electronic media, while ideally being robust against common signal manipulations and intentional attacks to remove the embedded watermark. This study evaluates the characteristics of uncompressed video watermarking techniques in terms of visual characteristics, computational complexity and robustness against attacks and signal manipulations. The foundations of video watermarking are reviewed, followed by a survey of existing video watermarking techniques. Representative techniques from different watermarking categories are identified, implemented and evaluated. Existing image quality metrics are reviewed and extended to improve their performance when comparing these video watermarking techniques. A new metric for the evaluation of inter frame flicker in video sequences is then developed. A technique for possibly improving the robustness of the implemented discrete Fourier transform technique against rotation is then proposed. It is also shown that it is possible to reduce the computational complexity of watermarking techniques without affecting the quality of the original content, through a modified watermark embedding method. Possible future studies are then recommended with regards to further improving watermarking techniques against rotation.AFRIKAANSE OPSOMMING: ’n Elektroniese watermerk is ’n metode waardeur inligting onmerkbaar in elektroniese media vasgelê kan word, met die doel dat dit bestand is teen algemene manipulasies en doelbewuste pogings om die watermerk te verwyder. In hierdie navorsing word die eienskappe van onsaamgeperste video watermerktegnieke ondersoek in terme van visuele eienskappe, berekeningskompleksiteit en weerstandigheid teen aanslae en seinmanipulasies. Die onderbou van video watermerktegnieke word bestudeer, gevolg deur ’n oorsig van reedsbestaande watermerktegnieke. Verteenwoordigende tegnieke vanuit verskillende watermerkkategorieë word geïdentifiseer, geïmplementeer en geëvalueer. Bestaande metodes vir die evaluering van beeldkwaliteite word bestudeer en uitgebrei om die werkverrigting van die tegnieke te verbeter, spesifiek vir die vergelyking van watermerktegnieke. ’n Nuwe stelsel vir die evaluering van tussenraampie flikkering in video’s word ook ontwikkel. ’n Tegniek vir die moontlike verbetering van die geïmplementeerde diskrete Fourier transform tegniek word voorgestel om die tegniek se bestandheid teen rotasie te verbeter. Daar word ook aangetoon dat dit moontlik is om die berekeningskompleksiteit van watermerktegnieke te verminder, sonder om die kwaliteit van die oorspronklike inhoud te beïnvloed, deur die gebruik van ’n verbeterde watermerkvasleggingsmetode. Laastens word aanbevelings vir verdere navorsing aangaande die verbetering van watermerktegnieke teen rotasie gemaak

    DCT-Based Image Feature Extraction and Its Application in Image Self-Recovery and Image Watermarking

    Get PDF
    Feature extraction is a critical element in the design of image self-recovery and watermarking algorithms and its quality can have a big influence on the performance of these processes. The objective of the work presented in this thesis is to develop an effective methodology for feature extraction in the discrete cosine transform (DCT) domain and apply it in the design of adaptive image self-recovery and image watermarking algorithms. The methodology is to use the most significant DCT coefficients that can be at any frequency range to detect and to classify gray level patterns. In this way, gray level variations with a wider range of spatial frequencies can be looked into without increasing computational complexity and the methodology is able to distinguish gray level patterns rather than the orientations of simple edges only as in many existing DCT-based methods. The proposed image self-recovery algorithm uses the developed feature extraction methodology to detect and classify blocks that contain significant gray level variations. According to the profile of each block, the critical frequency components representing the specific gray level pattern of the block are chosen for encoding. The code lengths are made variable depending on the importance of these components in defining the block’s features, which makes the encoding of critical frequency components more precise, while keeping the total length of the reference code short. The proposed image self-recovery algorithm has resulted in remarkably shorter reference codes that are only 1/5 to 3/5 of those produced by existing methods, and consequently a superior visual quality in the embedded images. As the shorter codes contain the critical image information, the proposed algorithm has also achieved above average reconstruction quality for various tampering rates. The proposed image watermarking algorithm is computationally simple and designed for the blind extraction of the watermark. The principle of the algorithm is to embed the watermark in the locations where image data alterations are the least visible. To this end, the properties of the HVS are used to identify the gray level image features of such locations. The characteristics of the frequency components representing these features are identifying by applying the DCT-based feature extraction methodology developed in this thesis. The strength with which the watermark is embedded is made adaptive to the local gray level characteristics. Simulation results have shown that the proposed watermarking algorithm results in significantly higher visual quality in the watermarked images than that of the reported methods with a difference in PSNR of about 2.7 dB, while the embedded watermark is highly robustness against JPEG compression even at low quality factors and to some other common image processes. The good performance of the proposed image self-recovery and watermarking algorithms is an indication of the effectiveness of the developed feature extraction methodology. This methodology can be applied in a wide range of applications and it is suitable for any process where the DCT data is available

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field
    corecore