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ABSTRACT 

DATA HIDING IN DIGITAL VIDEO 

Abdullah Cay 

Old Dominion University, 2011 

Director: Dr. Dimitrie C. Popescu 

With the rapid development of digital multimedia technologies, an old method 

which is called steganography has been sought to be a solution for data hiding ap­

plications such as digital watermarking and covert communication. Steganography 

is the art of secret communication using a cover signal, e.g., video, audio, image etc., 

whereas the counter-technique, detecting the existence of such as a channel through 

a statistically trained classifier, is called steganalysis. 

The state-of-the art data hiding algorithms utilize features, such as Discrete Co­

sine Transform (DCT) coefficients, pixel values, motion vectors etc., of the cover 

signal to convey the message to the receiver side. The goal of embedding algorithm 

is to maximize the number of bits sent to the decoder side (embedding capacity) 

with maximum robustness against attacks while keeping the perceptual and statisti­

cal distortions (security) low. Data Hiding schemes are characterized by these three 

conflicting requirements: security against steganalysis, robustness against channel 

associated and/or intentional distortions, and the capacity in terms of the embedded 

payload. Depending upon the application it is the designer's task to find an optimum 

solution amongst them. 

The goal of this thesis is to develop a novel data hiding scheme to establish a 

covert channel satisfying statistical and perceptual invisibility with moderate rate 

capacity and robustness to combat steganalysis based detection. The idea behind 

the proposed method is the alteration of Video Object (VO) trajectory coordinates 

to convey the message to the receiver side by perturbing the centroid coordinates of 

the VO. Firstly, the VO is selected by the user and tracked through the frames by 

using a simple region based search strategy and morphological operations. After the 

trajectory coordinates are obtained, the perturbation of the coordinates implemented 

through the usage of a non-linear embedding function, such as a polar quantizer where 

both the magnitude and phase of the motion is used. However, the perturbations 

made to the motion magnitude and phase were kept small to preserve the semantic 



meaning of the object motion trajectory. 

The proposed method is well suited to the video sequences in which VOs have 

smooth motion trajectories. Examples of these types could be found in sports videos 

in which the ball is the focus of attention and exhibits various motion types, e.g., 

rolling on the ground, flying in the air, being possessed by a player, etc. Different 

sports video sequences have been tested by using the proposed method. Through the 

experimental results, it is shown that the proposed method achieved the goal of both 

statistical and perceptual invisibility with moderate rate embedding capacity under 

AWGN channel with varying noise variances. This achievement is important as the 

first step for both active and passive steganalysis is the detection of the existence of 

covert channel. 

This work has multiple contributions in the field of data hiding. Firstly, it is 

the first example of a data hiding method in which the trajectory of a VO is used. 

Secondly, this work has contributed towards improving steganographic security by 

providing new features: the coordinate location and semantic meaning of the object. 
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CHAPTER I 

INTRODUCTION 

Information hiding is the art of hiding a message signal in a host signal without 

any perceptual degradation to the host signal. Its roots can be traced back to an­

cient times. Various examples of early information hiding reported in history were 

primarily focused on military applications. 

With the rapid development of digital multimedia technologies and rapid progress 

in Internet, information hiding has gained momentum receiving attention from the 

research community. Its popularity can be attributable to advances in storage, re­

production, editing and distribution of digital multimedia which have associated 

pirating, copyright protection and illegal distribution problems. For instance, over 

the last decade, the movie industry has moved from analog to digital media, bringing 

DVD devices and distributing movies on DVD's to consumers at low cost. Due to il­

legal copying, the movie industry has become interested in techniques to prevent loss 

of profit due to these illegal activities. The digital watermarking techniques, which 

are just one instance of information hiding, have been proposed as a solution to the 

copyright protection problem. Other applications of different types of information 

hiding techniques are discussed in Section II.3. 

The simplest and most commonly used information hiding method is the Least 

Significant Bit (LSB) modification in which first ith LSB of the cover data is replaced 

with the secret data. An example of LSB based information hiding is illustrated in 

Fig. 1. Some widely used image steganograhic methods includes JSteg, F5, Outgess, 

etc. 

1.1 THESIS MOTIVATION A N D OBJECTIVES 

In this thesis, a method to embed a secret message in digital video sequences aiming 

at establishing a steganographic channel between two parties has been proposed. 

The overall goal behind devising such a data hiding algorithm is mainly for defense 

applications. The motivation of the thesis is discussed with an application example 

which shows the practicality of the research as follows. Imagine a scenario in which 

the sender, using the proposed method, embeds the data which could be a secret 

message, into a video sequence and posts it on a public Internet web page or sends it 
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a Original image: "Arctic hare" c. Five LSB of "Artie Hare" have e. Six LSB of "Artie Hare" have 
First LSB of "Artie Hare" has been replacedwith 5 MSB of F15. been replacedwith six Five MSB 
been replacedwith MSBofF15 ofF15. 

b. Extracted "F15" Image d Extracted "F15" Image f. Extracted "F15" Image 

FIG. 1: An Example of LBS Based Information Hiding (An Image in another Image) 
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as an attachment to an email. The video sequence could be previously known to both 

the sender and the receiver or be a newly recorded sequence by the sender. Since 

both sides know the embedding and decoding algorithm, the receiver can decode the 

embedded data by accessing the video sequence through the Internet from anywhere 

in the world. The benefits provided by the proposed method for this generic scenario 

are: 

1. There is no need for a dedicated communication channel or device between the 

two parties, 

2. Accessibility from anywhere utilizing Internet access, 

3. Very low probability of detection as establishing the covert channel arouses 

almost no suspicion. 

1.2 PROBLEM STATEMENT A N D OBJECTIVES 

In this thesis, the information hiding problem and its application in the field of digital 

video will be investigated. Specifically, the focus will be on a steganographic method 

aiming at sending a secret message using a digital video sequence as cover data to 

the receiving side. The proposed method will satisfy two major requirements which 

are the case for any steganographic application: 

1. Perceptual Invisibility 

2. Statistical invisibility 

These requirements are discussed in detail in a general context in Chapter II. 

1.3 THESIS ORGANIZATION A N D CONTRIBUTIONS 

This thesis is organized into seven Chapters. Chapter I introduces the problem state­

ment and objectives behind this work. Chapter II provides background for a reader 

on information hiding by presenting a general information hiding framework with 

relevant taxonomy and the state-of-the art techniques with some application exam­

ples. Chapter III is mainly dedicated to the polar quantization scheme which is used 

as a non-linear embedding function. In this chapter, detailed analysis of distortion 

and symbol error probability are carried out for different cases. Analytical results 
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with corresponding simulation results are also presented. Video Object (VO) track­

ing basics and tracking methods are discussed in detail in Chapter IV. The proposed 

method is presented in Chapter V. Chapter VI focuses on the experimental results 

and discussion on the results. And finally, the thesis concludes with Conclusion and 

Future Perspectives in Chapter VII. 

Note that the work in Chapter V was presented at [9] and the work in Chapter 

III was submitted for presentation at the IEEE Globecom2011 Conference. 

This disertation follows the style of ODU 
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CHAPTER II 

BACKGROUND 

This chapter is designed as a precursor to the proposed method helping the reader 

understand the fundamentals of information hiding. The general information hiding 

framework includes an Encoder, Channel and Decoder, forming the basis for different 

analytical approaches, such as information theoretic or game theoretic analysis, to a 

data hiding problem. 

In what follows, the information hiding framework components (embedding, de­

coding functions, channel etc.) together with different design constraints and some 

important information hiding application types will be presented. And finally, the 

so-called steganalysis, which is the countering mechanism, will also be defined and 

the distinction between two types which usually create confusion will be discussed 

briefly. 

II. 1 INFORMATION HIDING FRAMEWORK 

A generic information hiding framework is illustrated in Fig. 2. The information 

hiding process consists of an embedder E and a decoder D. The host data signal 

vector c E $tN is typically obtained from a host image, video or audio signal. When 

the host signal is assumed to be available at the decoder side, the method is called 

"non-blind" or "escrow" whereas the situation in which the host signal c is not 

available at the decoder side is called "blind" or "oblivious". Depending upon the 

application, the host signal could represent spatial, temporal or transform domain 

features of the host signal. 

Message set m is produced by the alphabet M. which can be encrypted and/or 

error correction encoded before embedding to further increase the security. Side 

information K, such as a cryptographic key or side information about the host signal, 

is assumed to be available to both the encoder and the decoder but not to the 

attacker. The role of the side information K is two fold. First, it may introduce 

randomness in information embedding locations through the use of look-up tables. 

Second, it can provide side information about the host data signal such as partial 

information about the host signal features, hash values of the host signal, location 

of the watermarks, cryptographic key and the seeds for modulating pseudo-noise 
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FIG. 2: A Generic Information Hiding Framework, a. Non-Oblivious Data Hiding 
b. Oblivious Data Hiding. 

sequences in spread spectrum systems [10]. At the information hiding stage, the 

host signal c, side information K and the message are passed through the embedding 

function E resulting in stego data s which can be defined by: 

s = E(c,m,K) (1) 

In the model, the embedder and the decoder may be linear or non-linear functions 

operating on scalar or vector variables, and are not necessarily inverses of each other. 

In the first category, the embedding methods in which embedding function E adds 

message sequence linearly to c and D decodes m from s by simple subtraction if 

c exists at the decoder, or otherwise by a correlation based detection called Type-

I. Addition can be performed in a specific domain, such as spatial or transform, 

or on specific features, such as transform domain coefficients, pixel values, texture, 

edge, motion vector, centroid coordinate etc. The Type-1 embedding and detection 

schemes are illustrated in Fig. 3. Considering the embedding of only one bit, the 

difference between stego data s and original cover data c is a function of b, i.e., 

c — s = f(b). Although it is possible to detect b directly from s, c can be considered 

as noise, knowledge of which will enhance the detection performance [11]. An example 

of Type-I embedding is the spread spectrum watermarking which has the embedding 

function of the form 

s[ = Q + b'alwl (2) 
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Channel 

Binary Message 

m=bi G {0,1} 

Cover Data (c) 
Video, Audio, Image etc. Noise 

Cover Data (c) 
Video, Audio, Image etc. 

FIG. 3: Linear Non-Oblivious Information Embedding and Detection. 

where c% are the host signal features, i.e. pixel values, transform coefficients etc, s[ 

are the marked coefficients and b' € (—1,-1-1) is the antipodal modulation mapping 

of m[i], the bit to be embedded, az is the gain which is used to adjust the embedding 

strength and wl is the spread spectrum signal obtained by using m-sequences. Reader 

should refer to Cox [12] and to Perez [13] for examples of Type-I embedding methods. 

In the second category, the embedding E and the decoding functions D are non­

linear. The embedding domain features are mapped by a function E to obtain s 

so that the relationship of b = E(c) is deterministically enforced. Contrary to the 

first type, the detector for this category does not require the knowledge of original 

cover data as the information regarding b is solely carried by s. Another important 

characteristic of non-linear methods is their ability to suppress noise due to the 

original content, or self-noise [14], and to encode one bit in a comparatively smaller 

number of cover data features, hence high capacity. A simple example is the so-called 

odd-even embedding, which is a special case of the look-up table (LUT) embedding 

which uses a LUT to determine mapping between cover data and the data to be 

embedded, where a quantized feature is enforced to an even number for binary "0" 

and an odd number for bit " 1 " . Another pioneering work for non-linear techniques 

is the quantization based data hiding methods. Chen et al. in [15] provide a more 

formal treatment of data hiding techniques that use the quantization index to embed 

bits (methods that force the quantized indices to take a desired value, depending on 

the information signal to be embedded) [14]. In recent data hiding literature, the 

data hiding methods employing quantization are referred to as Type-II methods. 

A key aspect of the design of QIM based information hiding methods involves the 
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choice of practical quantizer ensembles. One commonly used quantizer scheme, an 

extension of QIM, is the so-called dithered quantization, which has the characteristic 

that the quantization cells and reconstruction points of any given quantizer in the 

ensemble are shifted versions of the quantization cells and reconstruction points of 

any other quantizer in the ensemble [15]. The stego signal is generated by quantizing 

the host signal with the corresponding dithered quantizer as 

s = QA(c + Wm)-Wm (3) 

where QA is the high-dimensional base quantizer with step size A, and Wm is the 

watermark signal corresponding to message indexed by m, 1 < m < M, where each 

component Wmi, 1 < i < N of Wm is a representation from a set T € !R. 

For embedding one bit, m G {0,1}, in a real-valued sample, s e S , the dithered 

quantizers are defined as 

Ql(s) = Q(s-dl) + dl,i = 0,1 (4) 

where Q(s) = Around(s/A) and round() denotes rounding to nearest integer, d0 = 

—A/4 and d\ = A/4. The reproduction levels of quantizers Q0 and Qi forming two 

lattices A0 and Ai are shown in Fig. 4 where the lattices are defined as 

A0 = - A / 4 + AZ, 

Ax = A/4 + AZ 

where AZ is the set of integers. 

At the receiver side, one possible choice for the decoder is a minimum-distance 

decoder which finds the quantizer point closest and outputs the estimated message 

a sm = argmin || s — s \\. 
m 

The least-significant-bit (LSB) based embedding is another spatial domain non­

linear approach in which the LSB plane of the host signal is overwritten with the 

secret bit stream. For LSB based methods see [16, 17, 18, 19]. 

The output of the embedding module s should be perceptually similar to the 

original host signal c according to a perceptual distortion measure denoted by d(.,.) 

such that embedding function should satisfy the distortion constraint d(s,c) < d\, 

where d\ is the maximum allowable perceptual distortion beyond which distortions 

will be visible. This requirement is known as transparency or perceptual invisibility. 
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A rudimentary but common choice is the squared Euclidean metric which can be 

defined as 

d{s,c) =|| s-c ||2 (6) 

And finally, the stego data s is communicated to the receiver through a public 

channel which can be monitored by an active or passive steganalysist attempting 

to detect covert communication or to remove/modify the embedded information. 

Additionally the stego data may undergo common signal processing manipulations 

such as lossy compression, filtering, noise addition etc., which eventually result in 

distortion in the stego data [15]. All of the intentional or unintentional channel 

associated distortions should also be bounded by the distortion constraint d(s, s) < 

d2. 

II.2 INFORMATION HIDING CONSTRAINTS 

The resource of the communication between the embedder and the decoder is the 

distortion introduced to host signal during embedding [20]. In general, information 

hiding techniques are mostly evaluated by design criteria that conflict (see Fig.5). 

Additionally, the designers of information embedding algorithms are required to make 

proper trade-off between these criteria based on the the requirements of the specific 
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application. For instance, for an application specific minimum payload requirement 

and a maximum acceptable level of distortion criterion the designer tries to achieve 

robustness by tuning the distortion in a controllable fashion until the distortion 

requirement is met. 

II.2.1 Design Criteria 

Fidelity 

Fidelity is related to the distortion introduced by the embedding mechanism. The 

perceptual quality of the host signal should be preserved up to a certain level based 

on the distortion criterion. Referring back to generic framework in Fig. 2, this re­

quirement can be stated as c ~ s ~ s. Perceptual quality of the resultant stego 

signal will eventually be assessed by the human viewer whose visual system is much 

more complicated than any analytical distortion metric such as Peak Signal-to-Noise 

Ratio (PSNR), Ll5 L2 etc. Therefore, researchers generally incorporate HAS (Hu­

man Audiotory System) and HVS (Human Visual System) properties based on JND 

(Just Noticeable Differences) models into the embedding stage to satisfy perceptual 

quality requirements. Reader should refer to [21, 22, 23] for details of HAS/HVS 

based information embedding methods. 

Robustness 

The robustness of an information embedding scheme can be described as the ability 

of the detector to extract hidden message from the received stego data which might 

possibly have undergone some unintentional channel associated perturbations and/or 

intentional attacks (cropping, rotation, valumetric changes, frame dropping etc.) 

during transmission. In the general information hiding framework this constraint 

can be stated as m = D(s) = D(s). 

Capacity 

Capacity is the number of bits that can be hidden in a given host signal when the 

stego signal undergoes intentional and unintentional attacks in the channel that can 

be usually modeled by Gaussian probability distribution function. In [10] it is shown 

that the data hiding capacity is the value of mutual-information among the encoder, 

decoder and the attacker. The channel associated noise/attack is generally modeled 
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as additive noise but, in reality, the receiver may not know the exact attack channel 

model and the associated channel parameters. Thus it would be impossible to define 

capacity without defining robustness criterion [11]. 

In addition to the embedding capacity, another inherent problem discussed in 

[11] is the uneven embedding capacity in the host signal in which the amount of 

embedded data varies significantly from region to region. Wu et al. proposed shuffling 

embedding regions before an embedding operation as a solution to tackle the uneven 

embedding capacity problem. 

Security 

This requirement defines the cryptographic aspect of the information hiding problem 

by stating the inability of an unauthorized users to access, remove, read or write the 

hidden message. 

Statistical Invisibility 

The embedding mechanism should leak limited information under steganalysis to 

protect the existence of the hidden message against active or passive warden. This 

requirement is discussed in detail in Section II. 5 of this Chapter. 

Discussion 

There is a strong trade-off among these requirements which needs to be considered in 

the design phase. Fig. 5 illustrates conflicting relationships between design criteria. 

If the capacity is increased, this might yield perceptually visible degradations in the 

cover data. If robustness is needed by means of increasing embedding strength, this 

might also lead to visual artifacts. On the other hand, the capacity requirement is 

inversely related with robustness. It is clear that as the number of bits in the hidden 

message is increased, it will be more difficult to extract the hidden message without 

any bit error if an active warden launches attacks on the channel or even channel 

associated distortions such as noise exist. 

The optimum compromise between these requirements is application specific. 

While the number of hidden bits, in some applications, such as broadcast monitor­

ing, should be sufficient to differentiate all broadcasts from each other, some others, 

such as copyright protection, might require only one bit of hidden information, which 
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indicates the whether the multimedia has been tempered with or not. An informa­

tion embedding mechanism should be based on the balance between this trade-off to 

achieve the ultimate design goal. 

II.3 AN OVERVIEW OF INFORMATION HIDING APPLICATIONS 

The categorization of information hiding techniques is still an ongoing debate among 

research community due to its still being in infancy and broadening application 

domain. In this thesis, these applications are broadly classified into two categories 

as described in Section II.3.1 and II.3.2. 

II.3.1 Data Hiding or Steganography 

Steganography is defined as the art of hidden communication in which the goal is to 

conceal the presence of communication. It is an instance of data hiding in which the 

goal is to decode an embedded message with less probability of error. This can be 

considered as a decoding problem [24] which has borrowed theories from communica­

tion and information theories in defining the theoretical foundations such as finding 

the total information embedding capacity in a game-theoretic framework [10, 25, 26]. 

At this point it would be helpful for the reader to realize the distinction between 

classical cryptography and steganography. The goal in cryptography is to map plain 
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text into an unreadable cypher text using a secret key that is shared between the 

sender and the receiver. For an adversary to defeat the system, he or she must break 

the secret key by searching over the entire key-space which is a time consuming and 

complex undertaking. On the other hand, steganography offers security in a different 

manner in that it hides the existence of information exchange from the adversary. 

So the distinction between cryptography and steganography can be summarized as 

encryption protects the content of the message whereas steganography prevents dis­

covery of the existence of a communication. Using steganography in connection with 

the cryptography doubly protects the information. 

II.3.2 Digital Watermarking 

Digital watermarking refers to the embedding of secondary data within the host data. 

The embedded data, usually called watermarks, can be used for various purposes, 

each of which is associated with different robustness, security, and embedding capac­

ity requirements [11]. In this set up, the watermark data (copyright data) is known 

at the receiving end. The receiver is designed to verify reliably the existence (or non­

existence) of hidden data in the received data. Hence, this problem is a verification 

problem. Furthermore, the problem can be viewed as a hypothesis testing problem 

using tools from detection theory. Most of the proposed information hiding schemes 

in the literature fall under this category [24]. The principal advantage of digital wa­

termarking compared to other solutions such as encryption is its ability to associate 

secondary data with the host data in a seamless way. For example, compared with 

cryptographic encryptions, the embedded watermarks can travel with the host data 

and assume their protection functions even after decryption. With only the exception 

of visible watermarks, the watermark data are expected to be imperceptible [11]. 

Over the past two decades, numerous information embedding methods have been 

developed for applications such as authentication and temper detection, ownership 

protection, fingerprinting or labeling, copy control and cover communication. For 

different examples of applications, readers should refer to [27, 28, 29, 30, 31]. A 

brief description of some common applications and the associated design criteria are 

discussed below. 
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II.3.3 Applications 

Covert Communication: 

This application falls under stenography, providing different implementations for mil­

itary and intelligence areas. The goal is to hide the very presence of the transmission 

over the channel from an adversary. For this type of information hiding application, 

statistical as well as perceptual invisibility is more important than robustness as the 

active/passive wardens generally launch statistical attacks to verify the existence of 

secret communication. 

Ownership protection: 

A watermark labeling the ownership is embedded in the host signal. The watermark is 

expected to be robust against intentional attacks or unintentional channel associated 

perturbations to demonstrate the ownership. The detection should have as little 

ambiguity and false alarm as possible and the embedding capacity does not usually 

have to be high [11]. Protection of digital multimedia (digital audio clips, digital 

video etc.) is a common representative of this class of application. 

Authentication or Tamper Detection: 

To verify the authenticity of the host data, usually without the knowledge of the orig­

inal host, also called blind detection, secondary data is embedded in the host signal. 

Forging a valid authentication watermark in unauthorized or tampered host data is 

prevented [11]. These applications generally require high embedding capacity. Some 

example applications could include authentication of electronic business documents, 

medical records, military documents etc. 

Copy Control and Access Control: 

The embedded data represents certain copy control or access control policies. A 

detector is generally built-in in a recording/playback system. When detected, the 

policy is enforced by directing certain hardware or software actions, e.g. disabling 

recording. The robustness against removal and blind detection are the common 

requirements [11]. 
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Fingerprinting or labeling: 

The data is embedded for customer tracing type applications where the owner of the 

multimedia issues a user ID for each valid customer. In case of illegal copying the 

originator or recipients of a particular copy of the multimedia can be easily identified. 

This application requires robustness against removal. 

Annotation: 

The embedded data may describe a signature of the originator of the host signal. 

Robustness against attacks is not required whereas blind detection is required. 

II.3.4 Steganography versus Watermarking 

Data hiding and watermarking are different in the sense that watermarking is mainly 

a detection problem where the receiver has to decide whether or not a certain wa­

termark has been embedded in the host signal. On the other hand data hiding is 

a decoding/communication problem where the receiver assumes that the sender is 

transmitting some message and the goal is to decode the embedded bits. The latter 

problem is more difficult as there is no reference sequence for comparison. For wa­

termarking applications, the reference sequence that is being detected is available at 

the receiver [24]. 

II.4 PREVIOUS WORK IN DIGITAL VIDEO INFORMATION HID­

ING 

Having discussed the definitions and application specific requirements for information 

hiding in Section II.3, the state-of-the art information hiding methods developed for 

the digital video domain will be discussed next. The information embedding methods 

employing digital video can be classified into two broad categories: 

1. Compressed (Bitstream) Domain 

2. Raw-Video Domain 

Different methods that fall under these categories are given in detail below. 



16 

Compressed Bit-Stream 

In compressed (bit stream) domain information hiding, the host signal is in the form 

of bit stream that has been compressed by using a standard video codec (coder-

decoder) such as MPEG-1/2/4, H.264 AVC, etc. For this type of application, gen­

erally the quantized DCT coefficients or motion vectors (MV)s are utilized for in­

formation embedding. The classical and flexible approach is to partially decode the 

compressed video bit stream to extract the aforementioned features. The embedder 

should have access to compression specifics such as quantization parameters, Group 

Of Picture (GOP) structure, etc., to improve perceptual quality, robustness and 

capacity, and must ensure that the bit-stream obtained after embedding is a syn­

tactically valid bit-stream that can be decoded by the corresponding decoder [32]. 

The reader should refer to [30] for a brief survey on information hiding and different 

applications. 

Some examples of compressed video domain digital watermarking applications 

will be discussed next. Hartung et al. [33] proposed a compressed domain water­

marking method which partially decodes MPEG-2 coded video bit-stream to obtain 

the DCT coefficients of each frame and inserts a watermark in them. Their method 

includes drift compensation and rate control mechanism to adjust the bit rate. As 

another related compressed domain work, Langelaer et al. [34] have presented a video 

watermarking method which embeds data by manipulating some selected set of DCT 

coefficients based on the difference between a set of high frequency and low frequency 

DCT coefficients. 

Parallel with the developments in object based coding of video such as MPEG-

4, video watermarking methods aiming at protecting individual VOs have become 

popular. Some exemplary work in this context are the methods proposed in Alat-

tar [32] and Barni [21]. The rationale behind these methods is their ability, provided 

by the coding standard to a user, to access and manipulate individual VOs in the 

scene. Those methods can be considered as a solution to protecting the owner­

ship of VOs. Barni in [21] presented another example of compressed domain digital 

video watermarking in which the watermark is embedded in each VO by imposing 

a particular relationship between the DCT coefficients in the luminance blocks of 

pseudo-randomly selected macro blocks using a secret key. A masking parameter 

modulating the watermark amplitude is incorporated to limit the visual artifacts 

and to improve the robustness. In the decoding phase, the compressed watermarked 
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video bit-stream is decoded and the watermark is extracted using the secret key. 

In another compression domain method proposed by Alattar [32], the MPEG-4 

compressed bit stream partially decoded the embedded watermark. Their method 

includes a block-by-block local gain based on the motion vector (MV) data and the 

DCT coefficients to adjust the watermark strength. The spatial spread-spectrum 

watermark is embedded directly by modifying the DCT coefficients. To deal with 

watermark leakage into successive frames, they incorporated a drift compensation 

module. The detection is performed in the spatial domain via a linear correlator 

after establishing and maintaining detector synchronization. 

Another interesting application of data hiding is presented in Chen et al. [35], 

who proposed a QIM based data hiding method for error concealment of intra-coded 

frames in H.264/AVC. At the encoder side, the MV of a macroblock (MB) is encoded 

and imperceptibly embedded into another MB within the same frame. If an MB 

is found missing at the decoder, the embedded information is retrieved from the 

corresponding MB. 

In [36], Wong et al. propose a complete video quality preserving data hiding 

method where the information is embedded into a compressed video by simulta­

neously manipulating quantization scale (Mquant) and quantized DCT coefficients, 

which are the significant parts of Moving Picture Experts Group (MPEG) and H.26x-

based compression standards. Reverse Zerorun Length (RZL) is proposed for achiev­

ing high embedding efficiency. The problem of video bit-stream size increment caused 

by data embedding is also addressed, and two independent solutions are proposed to 

suppress this increment. 

Raw Video Domain 

Commonly used raw video domain methods employ various transforms as tools to 

provide features where the data is embedded via coefficient modification. In trans­

form domain methods, the host signal is transformed into a different domain such 

as Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), Discrete 

Wavelet Transform (DWT) and the data is embedded in selected coefficients by em­

ploying linear or non-linear embedding/decoding functions. One advantage of using 

transform domain information hiding is the ability to incorporate HVS properties 

into the embedding mechanisms as many of today's video coding standards use those 

properties in the transform domain. 



18 

Hartung et al. [33] proposed a spread spectrum watermarking technique where the 

data is embedded into the non-zero DCT coefficients of the cover video. The detection 

is done by means of a correlation based receiver in which the original cover video is not 

required. Swanson et al. proposed a wavelet based raw video watermarking scheme 

based on DWT [37]. They applied the DWT along the temporal axis, resulting in 

a multi resolution description of the frames which is then used for embedding. Wu 

et al. [11] introduced a DCT based multilevel embedding scheme in which low and 

mid-frequency DCT coefficients are used for data embedding. 

Another example of transform domain approach is presented by Mukherjee et 

al. [38]. They proposed a DWT based data hiding method in which hidden data 

is source-coded by vector quantization, and the indices obtained in the process are 

embedded in the host video using orthogonal transform domain vector perturbations 

constituting the channel codebook. 

Although transform and spatial domains have been utilized as the primary op­

erating domains for information embedding, there are some methods devised for 

information embedding in the temporal domain of the video [39, 40, 41, 42, 43, 44]. 

These methods are basically aimed at modifying selected subset of MVs to convey 

the data to the receiver side. The selection of MVs is based on their magnitude and 

direction and in some cases their position with respect to a reference grid [42]. For 

instance, Zhang et al. [43] proposed a video watermarking method that embedded 

information into selected MVs based on just the magnitude of motion vectors: Large 

vector magnitudes indicate fast moving objects in which case, human eyes cannot 

perceive motion vector perturbations. These distortions are much more perceivable 

for the smaller magnitude MVs. Key issues that have to be considered with MV 

alteration based schemes are: 

1. Whether or not the embedded data are still persistent after decompression in 

which case the motion information is no longer present. 

2. Effects of MV modification on the semantic meaning of the video sequence as 

these methods generally do not take into consideration the smoothness and 

semantic meaning of the motion at all, i.e. a semantic video object consists 

of several major segments having different movements where a single motion 

model cannot represent the whole object motion appropriately. 

Most of the video watermarking methods consider video frames as still images and 
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apply embedding schemes originally developed for image watermarking in a frame-by-

frame manner. In contrast the methods proposed in Koz [22], Degul [45] and Liu [46] 

take the temporal dimension of the video into account. Koz [22] exploited the tem­

poral dimension for video watermarking by means of utilizing temporal sensitivity of 

the HVS. The proposed method utilizes the temporal contrast thresholds of HVS to 

determine the maximum strength of the watermark, which still gives imperceptible 

distortion after watermark insertion. Liu et al. [46] proposed a new video watermark­

ing algorithm based on the 1D-DFT and the Radon transform. They introduced the 

1D-DFT along the temporal direction for watermarking. This enabled the robustness 

against video compression. The Radon transform-based watermark embedding and 

extraction produces the robustness against geometric transformations. 

II.5 STEGANALYSIS 

The term "steganalysis" refers to collection of techniques that are designed to detect 

secret communication. The overall idea is similar to the classical detection problem 

in the sense that distinguishing between cover data and stego data results in deciding 

on the existence or non-existence of the hidden message. The detection mechanism 

is based on the fact that hiding information in digital media alters some inherent 

statistics of the cover media which eventually results in degradation. The deviated 

perceptual and statistical properties of the stego data can be considered as indicators 

that can be utilized to prove the existence of a hidden message. Even if the presence 

of the hidden message is known, revealing its content is not always easy due to the 

usage of secondary encryption methods. It may also be unnecessary to decode the 

message. Once detected, rendering and corrupting the stego data will defeat the 

ultimate goal of steganography. 

In terms of detection and attacking the stego data the steganalysis can be classi­

fied into two categories. 

1. Passive Warden Steganalysis: Detect the existence or absence of a secret mes­

sage in an observed stego data or identify the type of embedding algorithm. 

2. Active Warden Steganalysis: Estimate/extract some properties of the message 

or the embedding algorithm. For example, extract a (possibly approximate) 

version of the secret message from a stego message. 



20 

Until recently, the research in information hiding focused on analyzing or eval­

uating the hiding algorithms' robustness against various attacks, aiming at removal 

or destruction of the embedded data. The detection of the presence of hidden data 

for different applications such as steganography and digital watermarking is the first 

requirement before manipulation or removal. This need has received intensive at­

tention from the research community and has led to the development of steganalysis 

methods. Some exemplary steganalyis methods are discussed next. 

Avcibas et al. [47] proposed a novel steganalysis framework based on a set of 

image quality measures to capture the perceptual and statistical signatures from the 

stego data which are then used in regression analysis to indicate the presence of the 

hidden data. 

Gul et al. [48] investigated a Singular Value Decomposition (SVD) based blind 

image steganalysis method to detect, especially in the spatial domain, steganographic 

methods. Some other examples of steganalysis techniques proposed for detection 

of spatial domain methods based on least significant bit (LSB) modification are 

presented in Pevny [49], Yang [50], Dumitrescu [51] and Ker [52]. 

In [53] a novel SVD based steganalysis method against JPEG image based per­

turbed quantization (PQ) data hiding method is proposed. Authors showed that 

JPEG based PQ data hiding alters linear dependencies of rows and columns of pixel 

values which are used for training a classifier for differentiating cover and stego im­

ages. 

Yet another steganographic scheme (YASS), a DCT domain QIM based method 

using repeat accumulate (RA) codes for error correction, proposed by Sarkar et al., 

was designed to resist blind steganalysis methods by embedding data in randomized 

locations. Bin et al. [54] proposed a novel steganalytic method to attack the YASS 

algorithm by partially accessing and extracting the features from JPEG quantized 

DCT domain where YASS algorithm embeds hidden message. 

Budhia et al. [55] presented a steganalysis technique for digital video sequences 

based on an inter-frame collusion attack exploiting the temporal statistical visibility 

of hidden message. They claimed that steganalysis algorithms based on frame-by-

frame analysis are suboptimal and proposed a method which uses redundant infor­

mation present in the temporal domain to detect hidden messages embedded using 

spread spectrum techniques. 

In another work [43], authors proposed a video steganalyis method based on 



21 

aliasing detection. They showed that by analyzing the aliasing in the probability mass 

function of the frame difference signal, frame-by- frame, additive type steganographic 

method can be detected. 

Motion coherency has recently been identified as a desirable property for stegano­

graphic methods developed for video to resist temporal frame averaging. In [56] au­

thors proposed a novel oracle to detect whether a video sequence contains any motion 

incoherent component or not. The proposed oracle exploits some features extracted 

from error frames after motion compensation. Through experimental results they 

showed that the proposed method can be used to detect the existence of a hidden 

message in compressed and uncompressed video streams. 

Information hiding in video is commonly considered as data hiding in a sequence 

of still images. Hence, for video applications image based steganographic methods 

are usually employed. Doer et al. [57] investigated this strategy and proved that such 

frame-by-frame approach could not resist collusion based steganalysis attacks. They 

proposed alternative embedding strategies exhibiting superior performance against 

collusion attacks. 

In a further related study, Su et al. [58] studied the linear collusion analysis of 

digital video sequences and presented a definition of statistical invisibility in which 

the presence of a collusion resistant watermark is not revealed using statistical tools. 

They proposed two video watermark design principles robust to linear collusion. 

In the first principle, they claim that the watermark strength should be adjusted 

according to some function of the image variance both at global and local scales. In 

the second principle, they propose that the correlation of the watermarks embedded 

into each pair of video frames should be matched to the host frames themselves. 

This implies that highly correlated video frames should be watermarked with highly 

correlated watermark patterns and vice versa [58]. 

And finally, in [23], the author examined the relationship between motion of an 

object in a video sequence and the perceptual visibility of hidden data (or watermark 

in their case) and investigated the so called "dirty window problem" originating from 

artifacts due to frame-by-frame data hiding approach resulting in visibility of the 

hidden data in video frames. Based on the experimental and analytical studies he 

proposed a new method as a solution to the perceptual visibility problem by taking 

motion magnitude and direction into account to adjust the embedding strength. 
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II.6 CHAPTER SUMMARY 

In this chapter a generic model of the information hiding framework which can be 

used to describe any information hiding algorithm is presented. To make an analogy, 

the framework can be viewed as a classical communication channel in which the cover 

data plays the role as the carrier or part of the channel. To familiarize the reader, 

different types of data hiding algorithms classified into two broad categories namely 

additive and quantization are provided. From the designer's perspective, the central 

challenge of any information hiding algorithm is to balance conflicting requirements 

which manifest themselves as design criteria. For instance, it would be arguable 

to claim a data hiding system will supposedly provide high fidelity and robustness 

simultaneously, as these two criteria do conflict with each other. Satisfying one 

design criterion will exclude the other and vice versa. So it is the designer's task to 

set an optimum compromise among these conflicting criteria to meet the application 

specific goals. 

Different applications and specifically the distinction between two commonly used 

data hiding applications, steganograhy versus watermarking, is elaborated. 

Section II.4 covers data hiding applications for digital video which provide the 

linkage between previous work in this field and the proposed method. And finally, 

in other section, the so-called steganalysis techniques that are devised to detect the 

very presence of hidden channel are presented. The underlying assumption for this 

battery of tools is that any data hiding mechanism will eventually alter some features 

of the cover data which are scrutinized to indicate any perceptual and/or statistical 

deviations. Next, some exemplary known state-of-the-art steganalysis techniques are 

presented. 

In summary the generic information hiding model building blocks, constraints 

and rationale behind design criteria and specific applications are presented in detail. 

From this perspective, this chapter sets the scene for the discussions for the proposed 

method by providing a general overview of the data hiding framework and providing 

linkage between previous work in video domain and the proposed method. 

In the context of the general information hiding framework the embedding func­

tion could be linear or non-linear, as discussed before. For instance, in the commonly 

used dither modulation, two scalar quantizers are used. In Quantization Index Mod­

ulation (QIM) data hiding methods, an ensemble of uniform linear quantizers is used. 

In the proposed method a polar quantization scheme is used in place of an embedding 
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function. Therefore the next chapter will elaborate on the polar quantization basics, 

including distortion analysis of different polar quantization schemes and symbol error 

performance analysis of signal constellations obtained after using polar quantization 

of a source signal. 
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CHAPTER III 

POLAR QUANTIZATION AND PERFORMANCE ANALYSIS 

Different quantization schemes could be used in non-linear data embedding methods 

where the the message is conveyed to the decoder side via quantized feature values 

e.g. Transform Coefficients, pixel values, motion vectors, etc. Polar quantization is 

an example of such schemes which allows us to quantize both the magnitude and 

phase of a joint variable. 

As the proposed method utilizes both the magnitude and the phase of the VO 

motion, a polar quantizer is considered to be the ideal option for quantization. To 

provide the basics with the reader, general description of the quantization operation 

and then a detailed analysis of the polar quantization will be discussed next. 

Note that , during the literature survey, an unsolved problem has been discovered 

on the exact probability of error analysis for 2-D non-uniform constellations. This 

problem was attacked in two approaches and the results are provided, showing an 

improvement in BER computations. The derivations of the proposed solution for the 

exact error probability computations and the results will also be presented later on. 

I I I . l Q U A N T I Z A T I O N 

Quantization is the division of a quantity into a discrete number of small parts, often 

assumed to be integral multiples of a common quantity. More generally, a quantizer 

can be defined as a set of disjoint intervals or partitions S = {Sl;i £ I}, where 

the index set I is ordinarily a collection of consecutive integers beginning with 0 

or 1, together with a set of reproduction levels C = {y%;i E Z} , so that the overall 

quantizer is represented as function Q : S —> C where Q(x) = y% if x £ <S) where the 

function Q is often called the quantization rule. 

In scalar quantization, S is a partition of the real line where the partitions are 

disjoint and exhaustive. In that case, the partitions can be represented as *SZ = 

(al-i,al\. 

A quantizer is said to be uniform if the partitions are equispaced , i.e. A apart, 

and the reproduction levels are midway between adjacent decision levels. In the case 

of non-uniform partitions the quantizer is called non-uniform. 

An example of a uniform quantizer with step size A and nonuniform quantizer is 
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FIG. 6: Uniform and Nonuniform Quantization. 

shown in Fig.6. 

The distortion resulting from reproducing r as f can be measured by a distortion 

measure rf(r, f) . The most common distortion measure is the so-called squared error 

d(r,f) = \r — f\2. In practice, average distortion is used to measure the quality in 

which the average distortion becomes an expectation D(Q) = E[d(r, Q{r))}. 

111.2 P O L A R Q U A N T I Z A T I O N 

In polar quantization, a two dimensional random vector is quantized in terms of 

its phase 9 and magnitude r. Polar quantizers are considered to be the natural 

choice for 2-D data with circularly symmetric density where the magnitude and 

angle components are independent. 

Let X=(x i , x 2 ) be the sample vector which can be represented by its polar coor­

dinates (r, 6). The magnitude is given by R = \fx\2 + x2
2 and distributed on [0, 00) 

while the phase is given by 9 = tan~1^, which is uniformly distributed on [0, 27r). 

More generally one can write z = re^9. Since the magnitude and phase are indepen­

dent, the joint probability density function (pdf) of the sample vector can be written 

as 

fx{r,6) = fe(9).fn(r) 

= ^zfn(r) (7) 
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where //?(r) and fe(9) are the marginal pdfs of the magnitude and phase variable, 

respectively. Also note that if X\ and x2 are independent and identically distributed 

(IID) Gaussian random variables, then R is Rayleigh. 

A polar Quantizer Q with N cells is shown in Fig. 7. The magnitude range is 

partitioned into L magnitude levels indexed by i=l,2,...,L in which the magnitude 

decision levels and reconstruction levels are given as: rt = (i — 1)A where 1 < i < 

(L + 1) and ft — (i — | )A where 1 < i < L. Note that A represents the step size. 

The boundaries of the amplitude levels are 

r0 = 0 < n < r2 < • • • < rL (8) 

Let P denote the number of phase levels at each magnitude level f% such that the 

step size of the uniform phase quantizer is A# = ^ . Then each magnitude ring is 

partitioned into Pz phase regions. The phase regions for the amplitude level r are 
27T 2TT X2TT 

0 < — < 2 — < . . - < ( P - l ) — < 2 T T (9) 

If 4>h3 and 0ij+i are the phase decision levels and (phJ is the j t h phase reconstruction 

level for the ith magnitude ring, then the decision and reconstruction levels for the 

phase quantizer can be written as 

« = 0' - VTF
 a n d ^3 = (2i - 1)T7 (io) 

27T A IX 

— a n d 0 M = (2j-l)-

where j = 1,2, ••• , Pl+1. 

The polar quantizer in which the magnitude and phase are quantized indepen­

dently is called "Restricted (or Strict) Polar Quantizer" where the total number of 

the quantization cells is N = LP. For this type of polar quantizer, the magnitude 

and phase rates are given by IZc = log2 L and TZQ — log2 P respectively. The overall 

rate is K= \{nc + 1lv). 

In an unrestricted polar quantizer, the phase is quantized after the magnitude 

and the phase quantizer varies with the quantized magnitude. In this case, the total 

number of quantization cells is N = Ngti + ... + NgtNL where L is the number of 

magnitude levels and TZ — \ log2 N. 

In nonuniform polar quantization, the magnitude is quantized with an arbitrary 

scalar quantizer. Fig. 10 illustrates some examples of different polar quantizers. 

The mean-square error (MSE) of the polar quantizer in which the quantized point 

for the cell S is defined by the magnitude and phase regions can be expressed as 

D = E{\reje - fe^|2) (11) 
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a Polar Quantizer Constellation b Magnitude And Phase Partitions 
Reconstruction Signal Point 

FIG. 7: Polar Quantizers Magnitude and Phase Partitions and Reconstruction Levels. 

Assuming that the probability density functions for r and 9 are known and they are 

statistically independent, then Mean Squared Error (MSE) can be simplified to 

D = E(r2) - 2E{rf)E{cos(9 - 9)) + E(r2) (12) 

Since f is a function of r and since r and f are positive quantities, the minimization of 

D requires maximization of the term E(cos(9 — 6)). The estimator 9 that maximizes 

E(cos(9 — 9)) is also the estimator that minimizes the MSE of a phasor quantizer. 

In other words as described by Voran in [59] this can be stated as 

De = E{\e>0-e?e\2) (13) 

It is interesting to note that when the phase quantization is infinitely finer than the 

term E(cos(9 — 9)) —> 1 then MSE of a polar quantizer simplifies to the MSE of a 

magnitude quantizer. That is 

D = E({r - f)2) (14) 

It is well known that in a case where a uniform scalar quantizer with step size A is 

used, MSE can be approximated as D = - j | . 
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111.2.1 Phase-Only Polar Quantizer 

If we quantize only the phase and not the magnitude, then MSE becomes 

D = E(r2) - 2fE(cos((f) - <j>))E(r) + f2 (15) 

It can be easily shown that f that minimizes MSE is f = E(r)E(cos{4> — </>)). Then 

the MSE of a phase only quantizer is 

D = E(r2) - E(cos(<f> - <j>))2E2(r) (16) 

When the number of phase levels Ng increases and the step size A Q decreases 

the term E(cos(<j) - 0)) ->• 1. As a result of this D = E(r2) - E(r)2 = var(r). So 

the smallest MSE for the phase-only quantization is the variance of the magnitude 

probability density function. If the phase is uniformly distributed on (0, 2-n] then the 

optimum phase quantizer is a uniform quantizer and E{cos{d> — (/>)) = sinci^-). 

111.2.2 Magnitude Quantizer 

As seen before, the phase quantizer design is independent of the magnitude. On the 

other hand, magnitude quantizer design depends upon the phase quantizer. For the 

sake of simplicity let a — E(cos(4> — 4>)). Recall that distortion (MSE) of a polar 

quantizer is defined as 

D = E(r2) - 2(rr) + E{f2) (17) 

The solution for f that minimizes distortion could be found easily by 

D = E(r2) - 2aE(rf) + E(f2) 
dD 

/

OO /-00 

fr(f)dr+2 / fff{f)df 
-oo J —oo 

X * ' " v ' 

1 E(f) 
0 = -2aE(r) + 2E(f) 

aE(r) = E{f) (18) 

which implies that ar = f 
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III.2.3 Numerical Form of Distortion 

As shown for different polar quantization schemes, analyzing MSE in terms of ex­

pectation gives approximate results. In what follows we will derive exact numerical 

results for the distortion in terms of magnitude and phase levels which in turn will 

allow to computation of the resulting distortion in terms of number of quantization 

cells. To do this analysis we took the approach described in [60] as follows. Let the 

average distortion of a polar quantizer be rewritten as 

D = E{\re]0 - fe]9\2) 
/* r 

= J2J2 \re36 -re^\2fx{r,9)drd9 
1=1 j = l J JS*,J 

L Pz Prl+l p<t>z,]+i „ f(r\ 
iJK j-drd9 = £ £ / / [r2 + f2-2rrzcos(9-4>h3)Y 

2TT 

I=I j=\ Jri 

= Yl £ / ^ + f*2)(<^+i - M - 2rfJ[sin(</)JJ+1 - 0„) 

~ 1 fir) 
+ s i n ( 0 M - ^ ) ] ^drd9 (19) 

J Zn 

Using the fact t h a t 4>%,3+i ~ 4>i,3 = ^p a n d 4>i,3 ~~ $1,3 = ~{4>i,j-i ~ ̂ j ) = p a n d 

also sinc(x) = sm^x' ~ 1 — \x2 + e(x) we simplify (19) as 

D = JlJir+\^ + f^-2rfl{sH^)^sin{^))Mdr 
1=1 7 = 1 Jri x 1 1 3~-

J2 f Z+\(r2 + f2) - 2rfl(sinc(~)]f(r)dr 
t=i Jr* 

P 

_ rmax 1 V^r^ n J\ri)rmaxi /„„N 
- 12L2+2_.L 3P2L J W 

1=1 l 

where we have used the approximation J^z+1 rf(r)dr ~ ^ / ( r J A / , and AL = ^—^ is 

the step size. 

Peric et al. in [60] have studied optimization problems for polar quantizer by 

forming the equation J — D + \P% where A represents the Lagrangian multiplier. 

After solving for the optimum number of phase levels they showed that the distortion 

given in (20) can be simplified to 
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Q 

4 6 8 10 12 14 
a Number of Levels (L) vs Distortion 

20 

0 20 40 60 80 100 120 140 160 180 200 
b Number of Cells (N) vs Distortion 

FIG. 8: Distortion as a Function of Levels L and Number of Cells N for a Source with 
_ r 2 

Density Function f(r) = re~^~. a. Distortion vs. Varying number of Magnitude 
Quantization Levels, b. Distortion vs Varying number of Cells at fixed level L=10. 

where N represents the number of cells. 
_ r 2 

Example-1: Consider a source with Gaussian Density Function f(r) = re~^~. 

After plugging in the density function f(r) in (21) and simplifying we can get 

D + 
9L27T 2 ^ 2 .2 

max x o •rnaj: * 

e e j (22) 
1 2 ^ N2r2

max" 

Fig. 8 shows a plot of (22) as a function of varying levels L and in Fig. 8.b as a 

function of the number of cells keeping the level fixed at level L=10. 

Example-2: Consider magnitude distribution with a Uniform probability density 

function 

f(r) = 
-r— if a < r < b, 
b—a •> — — ' 

else . 

Using (21) and simplifying after substituting the distortion for the polar quantizer 
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800 

600 

4 6 8 10 12 14 16 18 20 
a Number of Levels (L) vs Distortion 

"0 20 40 60 80 100 120 140 160 180 200 
b Number of Cells (N) vs Distortion 

FIG. 9: Distortion as a Function of Levels L and Number of Cells N for a Source 
with Density Function f(r) = ^ , a < r < b a. Distortion vs. Varying number of 
Magnitude Quantization Levels, b. Distortion vs Varying number of Cells at fixed 
level L=8. 

can be found as 
2^-2 

D = + 
L2n 

(23) 
12L2 5N2 

Fig. 9 shows a plot of (23) as a function of varying levels L and in Fig. 9.b as a 

function of the number of cells keeping the level fixed at level L=10. 

It is obvious that the number of levels can be found from the Distortion-Level 

figures approximately or analytically by solving the equation using the necessary 

condition i.e., | £ . If the latter approach is taken, then the optimal distortion can 

further be simplified as given in [60] 

D°Pt = 3N{1 V^MO^)^ (24) 

And finally the optimum distortion of a polar quantizer for different density func­

tions can be found by numerically evaluating (24). 
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(a) (b) (c) 

FIG. 10: Polar Quantizers a. Restricted Nonuniform b. Restricted uniform c. Non-
restricted Nonuniform [3]. 

III.3 DERIVATION OF ERROR PROBABILITY 

The error analysis of a polar quantization scheme, by considering the stego data to be 

sent through an Additive White Gaussian Noise Channel (AWGN), is analyzed. In 

order to help the reader understand the error probability derivations, some basics of 

signal constellations and related error probability definitions will be explained next. 

Some examples of basic signal constellations are shown in Fig. 11. 

An N-dimensional signal constellation, A, can be denoted by 

A = {a„ 1 < i < M} (25) 

where az £ R^ is the signal point, and M represents the number of signal points. 

Some basic 1-D and 2-D signal constellations are illustrated in Fig. 11. 

In the decoding stage, the received signal y = x + n, where n is the noise, is 

mapped into an estimate of the transmitted signal sequence under a decision rule 

such as minimum-distance, which can simply be stated as given y choose d3 £ A 

such that \\y — d3\\
2 is minimized among all \\y — a3\\

2 &3 £ A. The decision regions 

are obtained by partitioning the real N-D space RN into M regions 1Z3, 1< j < M 

where 1Z3 includes the received vectors y which are closer to a3 than any other point 

in A. 

n3 = {y £ RN : \\y - a3\\
2 < \\y - a;||2 Vj ^ / } (26) 

Detection error occurs when the noise causes the received data to fall into a wrong 
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FIG. 11: Some Examples of Signal Constellations. 

detection region. The probability of error can be explained simply as given the signal 

a3 is transmitted the probability that the received signal y fall outside the decision 

region TZ3 whose center is located at a3. In the next section, the error probability 

derivations of three different polar quantization schemes will be examined. 

III.3.1 Magnitude or Phase-Only Quantization 

In the case of magnitude only quantization, the magnitude is quantized with a scalar 

quantizer. For this quantization scheme, the probability of error analysis will be 

similar to that of Pulse Amplitude Modulation (PAM) scheme. Assume that a 2-

bit polar quantizer with step size A = 2r is used to quantize the magnitude with 

dynamic range (0, rmax\. This quantization scheme will result in the the signal space 

representation with the corresponding decision regions as shown in Fig. 12. Note that 

this representation is similar to well known 4-PAM modulation scheme in digital 

communications. 

Let the signal x go through an AWGN channel, yielding the received signal y = 

x+n where AWGN n is Gaussian distributed with zero mean and variance o2 = N0/2. 
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FIG. 12: Signal Constellation of Magnitude Only Polar Quantizer with A = 2r. Re­
construction Points are shown as dots whereas 7Z3 's represent corresponding decision 
regions. 

By using conditional error probabilities the symbol error probability Pe can be defined 

by 

Pe = J2P(e\Sl)P(Sl) 
i=Q 

= P(e|00)P(00) + P(e|01)P(01) + P(e|10)P(10) + P (e | l l )P ( l l ) (27) 

where sz represents the symbols and P(sz) is the probability of occurrence of the 

individual symbols. A symbol error occurs whenever the received signal y does not 

fall into the corresponding decision regions. Individual symbol errors are computed 

as follows. 

P(e|00) = P(yx £ Zi) and P(e|01) = P(y4 <£ Z4) are the same due to the 

symmetry in the signal space diagram. And therefore the symbol error for both 

cases can be written as 

f°° 1 - i f y-r \2 

P(Vi t ZJ = P{Vl t ZJ = ^ ^—^e^V*^' dy (28) 

letting z = yzJL_ and taking the derivative ^ = J-—, after reorganizing the 
6 V^o/2 dV y/No/2 6 & 

equation can be simplified to 

P(y4 $ Z4) = ^ ^=e=±^dz = Q(—Z—) 
Jr/JNo/2 V 27T \f N0/2 



35 

Assuming equal symbol probabilities the average energy of the signal can be 

written as E = \[r2 + 9r2 + 25r2 + 49r2] = 21r2 so that r = J^. Substituting back 

in the result one can obtain P(j/4 ^ Z4) = P(y\ £ Z\) = Q(\ / 2 f§-) 

Probability of symbol error for the other two cases (P(?/3 <£ Z3) = P(y2 <£ Z2)) 

can be computed as 

/

2 r 1 - 1 ( y-3r \ 2 rOO 1 - 1 ( y-3r ) 2 

e 2 K^T*> dy+ e 2 K^^' dy 

Following the same approach taken in the previous case, the result can be found as 

P f e i Z,) - P f c * * ) = ! - Q { ^ = ) + Q ^ ) - 2Q(-/L=) (29) 

Assuming equal symbol probabilities the probability of a symbol error is given by 
3 r 3 / 2E 

p<=2° W = 2 g ( v ™f <30) 

Taking into consideration that the average energy per bit Et, = \E, the above 

expression can be written in terms of bit error probability approximately as: 

P* " i«V2lt> <31> 
Using the above approximation the probability of bit error for varying j^- is 

plotted in Fig. 13. 

III.3.2 Union Bound on Probability of Error for Polar Quantization 

Union bounds are widely used in computing the probability of error for a variety of 

signal constellations. It can be stated as Pr(E\a3) is upper bounded by the sum of 

the pairwise error probabilities to all other signals such that 

^-^ d(a.,,a') 
Pr(E\a3) < £ Q(Aj^A) (32) 

Let S denote the set of distances between the signal points in the constellation 

so than Union Bound Estimate can be written as 

Pr(E\a3)<J2Kd(a3)Q(^-) (33) 
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FIG. 13: Probability of Bit Error vs SNR for Polar Quantizer with 4 Levels and 

Magnitude Quantization Only. In this case P, « \Q{\r^-)-
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where Kd(a3) is the number of signals at distance d from a3. In a particular constella­

tion, there are a few of these distances that are significantly smaller than the others 

in which case they dominate the sum due to the following property of the Q function. 
_ 2 

Q function is defined as Q(x) = -4= f^° e^~dy which decreases exponentially due 
- v 2 

to the term e 2 . Consequently its value will be largest for the minimum Euclidean 

distance. Interested readers should refer to Appendix-A for properties of Q function. 

If there are Kmm(a3) neighbors at distance dmin from the signal point a3 , then 

Pr{E\a3) » Kmin{a3)Q{^) (34) 

Readers should note that this estimate is valid only if the next nearest neighbors 

are at a significantly greater distance and there are not too many of them. If these 

assumptions are violated, then further terms should be used in the estimate. A 

bound on the total probability of error is obtained by weighting each Q(^ n - ) by its 

probability of occurrence i.e. 

Pr(E) « nminQ(^) (35) 
Zo 

where Kmm is the average number of signal points at distance dmm. 

Example: 

The probability of symbol error of the signal constellation constellation given in 

Fig. 15 will be analyzed next. Assume that the magnitude values only lie in the first 

quadrant. From the signal constellation geometry, the smallest distance from any 

signal point to its decision boundary is dmin/2 = fsin# where f is the reconstruction 

level (quantized magnitude) and it occurs one time for outer signal points and twice 

for the inner points. And the next such large distance is the distance between two 

quantized magnitudes, rl and r t_i, where the distance is 2r. For the outer signal 

points, it occurs twice whereas for inner signal points, it occurs three times. For the 

sake of simplicity assume that rmax = 8r and P = 4 (Phase Quantization Levels) and 

therefore P% = 7r/8, resulting in dmm/2 = fsm(n/8). The magnitude is quantized 

with the uniform scalar quantizer illustrated in Fig. 12. 

After examining the constellation it can be seen that dmin/2 = r occurs 24 times, 

which can be found intuitively by 2(L — 1)P. Total number of cells in the first 

quadrant is equal to 16. So the sum of symbol error probability for those signal 

points is simply 

24 r 
PrAS) = - Q ( - ) (36) 
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a. Signal Constellation Of a Uniform b. Detail Of One Quantization Cell 
PolarQuantizerwith A = 2r 

FIG. 14: a. Signal Constellation of a Uniform Polar Quantizer with A = 2r. b. Detail 
of One Quantization Cell where dmm is the distance between at and a3, and % p is 
the distance to the side of decision boundary. 

In a same manner, for the signal points where f = Ir, the distance dmin/2 = 

f sin(7r/8) to the side of the decision boundaries occur 6 times. Also, this can be 

obtained by inspection or by intuition from 2(P-1) where P is the number of phase 

levels. So the total symbol error probability for those signal points is 

P^ (Q\ 6
 r^v7rsin(7r/8K 7r( ' = WQ( a ' 

By the same token the total error probability for signal points at f 

f = 3r can be found as 

ftv(S) - 1 [ « ( 5 ^ ^ ) ] 
lb o 

(37) 

5r and 

(38) 
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FIG. 15: Left. Union bound estimate of symbol error probability: Plot of (40) when 
r = l fixed and o is varied. Right. Symbol error probability as a function of r when 
a=0.1. 

(39) 

Union bound on the symbol error probability can be obtained by summing (36), 

(39), (38) and (37) so that 

Pr(E) < Pr(S) 

< Prr(S) + Pr3r(S) + Pr5r{S) + Pr7r(S) 

< 
24^rr^ 6 r ^ L 1 4 8 1 r \ ^ / l-9134r, 

T6 gy+ i6^ ( -^ ) + c ? (^-^ Qi^)] 
a 

(40) 

Union bound estimate of the symbol error probability for fixed r and varying 

o is illustrated in Fig. 15. As expected, when r is increased, the probability of er­

ror decreases due to the increased distance between the signal points in the signal 

constellation. 
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III.3.3 An Exact Result for Symbol Error Probability for Polar Quanti­

zation 

In this section, a novel approach for the derivation of exact error probability is 

given. Let X=(xi,x2) be the 2-D signal vector which can be represented by its polar 

coordinates (r,9). The magnitude is given by R = \Jxi2 + x2
2 which is distributed 

on [0, ex)) and the phase is given by 9 = tan-1— which is uniformly distributed 

on [0, 27r). From Fig.7 and the quantization cell notations provided in the previous 

section, it is obvious that R corresponds to the AR. Hereafter R and A P will be 

used interchangeably. As the magnitude and phase are independent, joint probability 

density function (pdf) can be written as 

MR,9) = ±fR(R) (41) 

where / R ( P ) is the marginal pdf of the magnitude variable. If x\ and x2 are indepen­

dent and identically distributed (IID) Gaussian random variables, then R is Rayleigh 

distributed: 

fR(R) = ^e^U(R) (42) 

Let the received signal be written &sY = X + N where N is the 2-D noise with 

AWGN on each component (ni,n2) each having zero mean and variance o2. Hence, 

the received signal radius A = y/(xi + nx)2 + (x2 + n2)
2 is Rician distributed with 

pdf of the form 

A -(«2+A2> AR 
fA(A, R) = -^e^^I0(—)U(A) (43) 

o~ o 
n n 

where R = \Jx\ + x\ and IQ is the zeroth order modified Bessel function of the 

first kind. 

The received signal phase will be uniformly distributed on [0, 27r). AS the mag­

nitude and phase are independent, the pdf of the received signal can be written 

as 

fY(A,R,9) = ^fA{A,R) 

1 A -(*V2> r AR 
-e *°l Jo -

2ir oi o. 2e *>l I0(^)U(A) (44) 
n 

Now let us begin the analysis of the symbol error probability by first computing 

the probability of a correct decision Pc when an arbitrary symbol is transmitted. 



41 

Under a decision rule such as the maximum-likelihood, if the received signal Y falls in 

the decision region 2),, the receiver decides that the symbol Sj is transmitted. Hence, 

the probability of correct decision for a specific quantization cell can be calculated 

as follows: 

p^) = E E / / fy(AR,0)d<pdA 
i=\ 3=1 Jrz Hi 

i=l Jr* 3=\ J(PJ n °n 

1=1 Jri 7 = 1 l n 

AR)d(PdA 

-tj 
i=i Jri 

n + 1 ^ \ 2n 1 A -(*Y2> T AR, , „ 
e ^ i0(—)dA 

o~ 

r '+ 1 2TT 1 A - '«Y 2> T ,AR.JA 

(45) 

where we have used the fact that <fi%t3+i — (j>itJ = jr and the total number of phase 

levels at magnitude level L% is Px i.e. zZ23Li P3 — Pi- Note that there is no closed 

form solution for the above expression, and two approaches based on approximations 

will be shown next. 

III .3.4 Bessel Funct ion Approx imat ion 

In this approach the Bessel function can be approximated by 

Ia(x) « ex if x > a2 - - (46) 
V27TX 4 

Using this approximation Pc(sz) at (45) simplifies to 

pM) = > , / - 7 e 2 '" lo(—r)dA = ^ V2' 
1=1 Jrr n 

o2 
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III .3 .5 M a r c u m Q-funct ion 

The probability of correct decision in (45) can also be evaluated numerically by 

utilizing Marcum's Q-Function which is available in common software packages. The 

expression of the first order Marcum's Q-function is 

f°° -(a2 + x2) 
Qi(a, b) = / xe 2 I0[ax)dx 

Jb 
(48) 

Using (48) and noting that the difference between phase boundaries at each mag­

nitude level is 4>i,3+i — 4>ij = -p1 , then we can further simplify Pc(sl) as 

L Lz 

PM) = 2-~* 2-^ / T 27T^2 

L U 

= EE 

I A -JR2+A2) AR 

e 2°* h{-^-)d(f)dA 

1=1 3=1 

coo 

= E 

_ f°° _L?iA 

I, 

[°°2n 1 A -(*V2> r AR, 1A 

I T,T^e '- '<>{~)dA 

1 2TT A -<*V2> r ,AR, 1A 
e 2"2 I0{—z-)dA 

oi 
p A -(R2+A2} A R 

P o2 

rt
 r i un 

e 2an In 

ot 
)dA 

f°° Pt A -(*Y2> r,AR.JA 

Jrl+i ri un un 

R r R rl+1. (49) 

III .3 .6 Probabi l i ty of S y m b o l Error 

Once a closed-form expression for (45) is found using one of the approximations 

mentioned above, the symbol error probability for st can be found as Pe(sz) = 1 — 

Pc{sl). Assuming that P(sz) is the probability that signal sz is transmitted, the 

average probability of symbol error Ps for a set of Ai signal points is 

M 

Ps = ^P(Sl)Pe(s,) (50) 
i=i 

Note that , in practice, when the geometry of the signal constellation is rather 

complex, the usual approach is to find an upper bound such as the Union Bound 
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on the symbol error probability. Union bounds are based on the distance between 

the signal point and the decision boundary, but instead of using all the distances, 

only a particular set of smallest distances is used. For a given signal point, the 

symbol error probability is upper bounded by <5(^2 L) , and the union bound on the 

total probability of error is obtained by weighting each < 5 ( ^ a ) by its probability of 

occurrence, that is 

Ps ~ KminQ[— ) (51) 
Zan 

where Kmin is the average number of points in the signal constellation that are at 

distance dmin. 

III.3.7 Exper imenta l Resul t s 

In this section, experimental results illustrating the symbol error probability obtained 

using the approach are presented. Readers should note that , since the focus of 

this section is the analysis of error probability and not the development of a new 

constellation optimization method or the design of a polar quantizer, it was assumed 

that the 2D signal constellations considered were obtained by using any of the existing 

constellation design algorithms. 

Fig. 16 illustrates the symbol error probability obtained using the Bessel function 

approximation and the Marcum-Q function approach for a non-uniform constellation 

with three magnitude reconstruction levels and 12 phase partitions at each level. Note 

that two expressions result in values of the symbol error rate that are consistent with 

each other up to about 20 dB, when they start to diverge because of the differences 

in the approximation. It can be easily seen that , for SNR values beyond 25 dB the 

Marcum-Q function approach implies more meaningful symbol error values than the 

Bessel Function approximation which appears to flatten out. 

Fig. 17 plots the symbol error probability corresponding to the signal constellation 

shown in Fig. 10.a., obtained after using a restricted uniform polar quantizer. It 

is assumed that there are L = 3 magnitude levels with the magnitude decision 

and reconstruction levels are r% = {0,4,10,13} and A P = {2,7,11} respectively. 

Furthermore, each magnitude ring, A P J + 1 — ARU is partitioned into P% = 12 phase 

sub-partitions. These parameters result in a nonuniform signal constellation for 

which the smallest distance from any signal point to its decision boundary is d\ = 

r\ sin(7r/12) = 0.51 and occurs 24 times for the most inner circle. The next such larger 

distance is d2 = 1 and exists 12 times for the inner-most circle. After examining the 
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other signal points in the constellation in a similar manner, the union bound on the 

symbol error is found to be 

_ 24 2Sin(,/12) 24 7sin(,/12) 
36L^V an

 n 3 6 L V V on
 n 

36 36 
(52) 

The union bound is also shown in Fig. 17, and note that the proposed method for 

calculation of the symbol error rate implies an improvement in ES/NQ that is between 

5 and 8 dB. This result is significant when the exact error probability is used in signal 

constellation optimization or performance evaluation. 
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FIG. 16: Bessel Function and Marcum-Q function Approximations to Exact Error 
Probability. 

The next example is the (4,11,17) 32-QAM constellation shown in Fig. 18 with 

symbols having different probabilities of transmission Ps_? = {1/8,11/31,17/32}. 

The constellation contains three circular constellations where the inner, central and 

the outer circles contain 4, 11, and 17 symbols respectively. The following magnitude 

and phase levels are assumed: L = 3, P2 = (4,11,17), and the reconstruction levels 

are f = AR = (1,4,8) with decision boundaries r2 = (0,3,6,10). The union bound 

estimate for the symbol error probability of this constellation is found by using the 

analytical expressions given in [61, pp. 7-21]. The symbol error rate for this con­

stellation are shown in Fig. 19, for which it is noted that, similar to the previous 

example, that the proposed expressions for error probability method imply a similar 

improvement (of approximately 8 dB) in Es/N0. 
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FIG. 17: The Probability Of Symbol Error For Nonuniform Signal Constellation 
Obtained by Using a Restrictive Nonuniform Polar Quantizer As Shown in Fig. 10.a. 

III.4 CHAPTER SUMMARY 

This chapter provides a detailed study of polar quantization by focusing on quanti­

zation distortion and error probability analysis. MSE measure is used for distortion 

analysis. A closed form expression for optimum distortion and the number of phase 

and magnitude quantization levels are derived and some examples with distributions 

are presented. For the error probability analysis, different quantization scenarios are 

investigated. Specifically phase or magnitude only quantization schemes are ana­

lyzed similar to PAM error analysis. For the specific case of magnitude and phase 

quantization, the union bound estimate of the error probability is derived and an 

example is given. 

The next chapter is devoted to the discussion of VO tracking to provide enough 

background for the reader since the proposed data hiding method aims at modifying 

the VO trajectory segments. 
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rt=AR, is the quantized magnitude 

32-QAM (4,11,17) Constellation 

FIG. 18: An Example of Non-uniform Signal Constellation. 
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CHAPTER IV 

VIDEO OBJECT TRACKING 

A video sequence can be considered as a series of still images taken over time, as 

illustrated in Fig. 20. The number of still images per unit of time of the video is called 

its frame (or picture) rate, typically ranging from six or eight frames per second (fps) 

to 120 or more fps. A commonly accepted minimum frame rate to achieve the illusion 

of motion without jitter is about 15 fps. In practice video sequences are stored and 

transmitted in compressed format using the current international video compression 

standards such as MPEG-1/2/4, H.261/3/4, etc. Computational complexity and 

speed limiting factors in the real life implementations of these standards vary based 

on the technology used in different blocks of the encoder/decoder, such as motion 

estimation algorithms, transforms employed (DCT, DWT, etc.), format of the bit 

stream, Group of Picture (GOP) format, etc. Typically, motion estimation consumes 

60% of encoding time, whereas motion compensation consumes 11% [11]. The bit 

rate of the encoded video bit stream is closely related to the frame size and the rate 

as shown by an example for MPEG-1 bit stream below. 

Maximum number of pixels/line: 720 

Maximum number of lines/picture: 576 

Maximum number of pictures/sec: 30 

^r^^„ , „, . ^. ^r.pixels r~„ lines n pictures 
MPEG - 1 Maximum Bit rate = 720^ x 576 x 30-

line picture sec 
= 1.86 Mbps 

As will be discussed in detail in Chapter IV shortly, the essence of the method 

proposed in this thesis lies in utilization of VO motion trajectory to convey the 

hidden message to the receiver side. In order for a reader to better understand the 

proposed method, some of the fundamental concepts pertaining to VO representation 

and tracking will be briefly discussed next. 

IV. 1 OBJECT BASED REPRESENTATION 

In an object based video coding framework that employs object based representa­

tions, such as MPEG-4, each scene is described as a composition of VOs having 

homogeneous regions with respect to a criterion such as shape, motion or texture. 
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1 

FIG. 20: Video Sequence Representation. 
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This object based representation is a key property for a variety of multimedia appli­

cations, allowing a user to access and manipulate objects within the video sequence. 

Each frame of a video sequence is segmented into a number of arbitrarily shaped 

regions called Video Object Planes (VOPs), and the shape, motion and texture in­

formation of the VOPs belonging to the same VO are coded into a separate Video 

Object Layer (VOL). Its primary goal is to support coding of pre-segmented video se­

quences and to allow separate reconstruction and manipulation of VOs at the decoder 

side. Successive VOPs are clustered in a group to form Group of VOPs (GOV). The 

first VOP of GOV is intraframe coded whereas each subsequent VOP in the GOV 

is interframe coded (P-VOP or B-VOP) using prediction. An illustrative example 

of VOs in a video scene is depicted in Fig. 21 which can be extracted by using an 

existing segmentation method (Also note that MPEG-4 standard does not specify 

any segmentation method in the standard). In the figure, three extracted VOs are 

illustrated by using their shape contour in red. At the coding stage, the object's 

shape, texture and motion information is coded separately as representation of the 

VO. 

Extracting VOs from digital video is still a complex undertaking due to the ill-

posed nature of the object segmentation problem. The VO segmentation algorithms 

can be roughly classified into two groups: spatial-based and temporal-based. In 

spatial based methods, also known as intra-frame methods, each frame is partitioned 

into homogeneous regions with respect to color, intensity or texture. Temporal-based 

methods utilize motion information to extract video objects. For examples of different 

state-of-the art segmentation algorithms the reader should refer to [62, 63, 64, 65]. 

In terms of user intervention, VO segmentation methods can be categorized as 

either supervised, requiring user involvement in defining the object in the first frame, 

or as automatic which does not require any user intervention. 

The segmentation of VO is the pre-requisite for object based tracking algorithms. 

These two tasks interact with each other in a way that segmentation in the con­

secutive frames is done using tracking information from the previous frame and the 

tracking information is updated based on the refined segmentation results in the 

current frame. 

Having discussed object based representation briefly, the next section discusses 

object tracking methods from a general perspective, by looking into common methods 

and their definitions and applications, and provides transition into more specific 
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FIG. 21: A Frame from "News" Sequence VO Segmentation Results. 

application: tracking in sports videos. This essential transition is required to tie in 

object based representation, tracking with the proposed data hiding method. 

IV.2 VO TRACKING 

Object tracking is a common task in the fields of computer vision and multimedia 

technologies. It is used for diverse applications such as human-computer interac­

tion, surveillance, smart rooms, content based indexing, automatic sports analysis, 

summarization, retrieval etc. 

Let a VO trajectory T3 be represented as T3 = {(x*,?/]),z = 1,2,...N3} where 

(xl,yl) is the centroid coordinate of the jth object, N3 is the number of trajectory 

points and j = 1,2,...., J is the number of trajectories. Tracking can generally be 

defined as the problem of estimating the trajectory of an object in the image plane 

by both determining and establishing the correspondence between object positions 

over time. The correspondence problem and resolved trajectories of three objects are 

illustrated in Fig. 22. 

Tracking objects can be complex due to occlusions in the scene, noise, complex 

object motion, deformation of objects, scene illumination changes, etc. Numerous 

approaches for object tracking have been proposed to overcome these problems. In 
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Frame n Frame n+1 '—6 

FIG. 22: Correspondence Problem and Trajectory Estimation. 

that respect, the suitability of a particular tracking algorithm may depend on various 

constraints such as the type of application in which the track information is used, 

object appearances, object shapes, number of objects, object and camera motions, 

and illumination conditions 

The first step in any tracking algorithm is the suitable representation of the 

object. The objects can be represented by their shapes and appearances. Commonly 

used object shape representations are illustrated in Fig. 23. 

In the appearance based representation, the object can be represented by tem­

plates, parametric (Gaussian or mixture of Gaussian) or non-parametric representa­

tions, as well as active and multi-view appearance models. 

The second step in the process is the selection of unique features that distinguish 

the objects from each other in the feature space. The commonly used features are 

color, texture, motion, edge-map etc. 

The third step is the detection of the object, represented using the shape or 

appearance models, in every frame after the object first appears in the video. A 

common approach for object detection is to use information in a single frame (back­

ground subtraction, segmentation etc.). Other object detection methods employ 

motion and temporal information in the form of frame differencing computed from a 

sequence of frames to decrease the number of false detections. 

And finally, given the object regions in each frame, the tracking algorithm estab­

lishes object correspondence from one frame to the next to generate the tracks. The 

commonly used tracking methods will be discussed briefly next. 
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FIG. 23: Object Representation After [4]. 

IV.2.1 Image Plane Kalman Filter Tracking 

A common approach for object tracking is borrowed from estimation theory which 

states that given all the measurements up to the current frame, the object's position 

can be estimated using predictive filtering and statistics of the object's color and 

position. When the measurement noise is assumed to be Gaussian, the Kalman filter 

is seen to be the optimal solution. In a typical Kalman filter, the state transition 

and measurement equations are simply defined as 

x(fc) = Ax(fc - l )+w(fc ) (53) 

z{k) = Hx(fc) + v(fc) (54) 

where w and v are the process and measurement noise respectively. The process 

noise term is a Gaussian random variable with zero mean, covariance Q and PDF 

p(w) ~ N(0,Q) assumed to be independent of state x(k). Similar to the process 

noise, the measurement noise is also assumed to be Gaussian with p(v) ~ N(0, R) 

with covariance R, A is the state transition matrix and H is the measurement matrix 

defined by 
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(56) 

where A T is equal to the inverse of frame rate, I2 and 0 2 represent 2 x 2 identity 

and zero matrices respectively. The state x and measurement z are defined as: 

X = 

z = 

r0 c0 r0 tn Arx Aci Ar 2 Ac2 

i T 
r0 c0 rx Ci r2 c2 

(57) 

(58) 

where (ro, c0) is the centroid of the bounding box, (r0, c0) is the velocity, (rj, ci) and 

(r2, c2) are the top-left and bottom-right coordinates of the bounding-box, and finally 

(Ari , Aci) and (Ar2 , Ac2) are the relative positions of the two opposite corners of 

the bounding-box with respect to each other. 

The Kalman filter has two steps: prediction and correction. In the prediction 

step, the current state is projected to obtain an estimate x~(k). In the correction 

step, actual measurement is incorporated into the estimate as feedback to obtain an 

improved estimate x+(k) by using the Kalman gain. 

One drawback of the Kalman filter is the Gaussian assumption for state variables. 

The filter performance is degraded in cases where Gaussian distribution assumption 

is no longer valid. Kalman filter is commonly used for tracking vehicles, tracking 

balls in sports videos, etc. 

IV.2 .2 M e a n Shift (MS) 

The MS algorithm [5, 66, 67] is an iterative, kernel-based, deterministic procedure 

which converges to a local maximum of the measurement function under certain 

assumptions on the kernel behaviors. It tries to find the image window which is most 

similar to the object color histogram in the current frame by iteratively carrying out 

a kernel-based search. The main idea of the mean-shift tracker is the computation of 
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an offset from the position y0 to a new position y\ according to the mean shift vector 

_ Er=i xxwtK(y0 - xt) 
Vl zZZiwMyo-x.) ^ 

where K is a suitable kernel function (Epanechnikov, Uniform, Gaussian etc.), wl 

is the weight obtained by taking the square root of log-likehood of the location (or 

pixel) x% inside the kernel, and n^ is the number of pixels inside the kernel. Given 

the target distribution q of the target model, to estimate the location y\ of the target 

in the current frame, the mean-shift tracker measures the distribution around the 

object's previous location yn and evaluates the similarity between two distributions 

using the Bhattacharyya coefficient as 

m 

p\P(y),q] = /~2VPu{y)Qu (60) 
u=\ 

where p(y) is the distribution of the candidate object. The algorithm then iteratively 

computes similarity between two distributions by shifting the location y\ until a 

convergence is met according to a threshold. 

MS tracking is employed in some real time tracking applications such as face de­

tection due to its simplicity and speed. However, the tracking success of MS mostly 

depends upon the discriminating power of the object's color histograms. Although 

MS is a low complexity algorithm that provides a general and reliable solution inde­

pendently from the features representing the target, it fails in tracking small and fast-

moving targets and in recovering a track after a total occlusion [5]. This problem 

is illustrated with some examples frames from MS tracking of "Ball VO" in Fig. 24. 

Since the ball velocity is so much between the frames, resulting in displacements 

larger than the kernel size, no part of the ball falls under the kernel at its previous 

position violating the major underlying assumption of the MS tracker and the effec­

tiveness of the MS tracker is decreased. Another problem with this sequence that 

diminishes the performance is the fact that the ball is white while the homogeneous 

background is also cluttered with white pixels which can be considered as noise. 

IV.2.3 Particle Filter (PF) 

PF [68, 69, 70, 71] is a parametric method solving non-linear and non-Gaussian 

state estimation problems in the Bayesian framework and can deal with multi-modal 

PDFs. Let xnk = {xui = 0,1,. . . , A;} and Z\k = {z3,j = l,...,k} represent the state 
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Frame15 Frame44 

FIG. 24: MS Tracking of Ball VO. Left: Frame 15 and Right: Frame 44. Underlying 
problem of MS for fast moving objects and a homogeneous background which has 
lots of the same pixels (noise) as that of VO. 

and observations up to time k. The idea behind the particle filter is to estimate the 

object state xk from the observations by p{xnk\z\ k) by using 

p{zk\xk)p(xk\zlk_x) 
P(xk\zik) = (61) 

piz^Zik-i) 

with a weighted particle set described as x = { a ^ , ^ } ^ where Ns is the number 

of particles and the weights wt, Yli=iwi = 1- The evolution of the particle set is 

achieved by propagating according to a linear model (a constant velocity model) such 

as xk = Axk-i + vk-\ in which A is the deterministic system model and vk-i is a 

random vector drawn from the noise distribution of the system. The major limitation 

of the PF is its requirement of a large number of samples to be drawn from state 

space to describe the underlying probability density function efficiently. 

PF has applications in video surveillance, human face tracking etc. Its feature 

that allows it to recover from lost tracks makes PF one of the most popular methods. 

PF is more complex than MS and heavily dependent on its parameter settings, which 

in turn, depend on the scene content. If the parameters are set optimally, it can track 

fast small objects. However, the number of particles needed to model the variations 

of the underlying PDF increases exponentially with the dimensionality of the state 

space, thus dramatically increasing the computational load [5]. Example frames from 

PF tracking of the Table Tennis sequence are given in Fig. 25. 
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Frame 1 Frame 9 Frame 37 

FIG. 25: PF Tracking of Ball VO. Left: Frame 1 , Middle: Frame 9 and Right: 
Frame 37 [5]. 

IV.2.4 Feature Based Methods 

Feature based tracking methods employ features such as shape, color distributions, 

and shape and color together, to differentiate between objects via trained classifiers. 

One example is the commonly used method in which the difference image obtained 

by subtracting the background image from the current frame leaves possible target 

objects which are then input into the trained classifier. 

IV.3 TRACKING VIDEO OBJECTS IN SPORTS VIDEOS 

Automatic analysis, content based indexing, and the summarization and retrieval of 

sports videos have become popular during the past decade. An important component 

of any video summarization and indexing system is an event-detection mechanism 

which is triggered by an object's actions in the scene. Locating and tracking players 

in each video frame plays a crucial role in automatic comprehension of sports videos. 

For instance, the location of a ball provides information on the ball possession rates, 

segmentation of soccer video into play and break sequences, and detection of semantic 

events (goal, kick, etc.). 

Within this context, research is focused on developing methods for ball games 

such as soccer, football, basketball, baseball, etc. As an exemplary work, Chen et 

al. [72] proposed a physics based tracking method for broadcast basketball video 
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taking the physical characteristics of ball motion into consideration. Chu et al. [73] 

presented a trajectory based framework for automatic ball tracking and pitching 

evaluation in broadcast baseball videos. In ball position prediction and trajectory 

extraction, they analyzed the 2D distribution of ball candidates and exploited the 

characteristic that the ball trajectory is a near parabolic curve in the video frames. 

Ball detection and tracking in broadcast soccer videos (BSV) was investigated 

in [74, 6, 75, 39]. Yu et al. [74] proposed a trajectory-based algorithm for ball detec­

tion and tracking for broadcast soccer videos. In their method the ball size is first 

estimated from salient objects (goalmouth and ellipse), and different sieves (shape, 

size, aspect ratio etc.) are used to detect ball candidates. The true trajectory is ex­

tracted from potential trajectories of the ball candidates by a verification procedure 

based on the Kalman filter. 

In a similar vein, Ren et al. [6] presented a real-time method for detection and 3-D 

tracking of a ball in BSV captured by multiple fixed and calibrated cameras. Size, 

color, and speed are features that discriminate the ball from other moving objects. 

Temporal filtering of the ball-likelihood has also proved to be essential in robust 

ball detection and tracking. They model the ball trajectory as curve segments in 

consecutive virtual planes and use geometric reconstruction techniques to estimate 

the 3-D ball position from a single view. They also introduced high-level ball phase 

transition information to aid low-level tracking. 

Although the players can be successfully detected and tracked, ball detection and 

tracking with high accuracy is still challenging for the following reasons: 

• the size of the ball is relatively small, especially when the camera is in far view, 

when compared to players, 

• the shape, size and color of the ball exhibits variations due to motion and 

movement of the camera, (see examples in Fig. 26), 

• there are many false alarms: objects such as players' head that are similar to 

the ball (ball-like objects), 

• there are possible occlusions: possessions by players and merging with lines or 

players in the same frame. 

These reasons are the key factor for the fundamental difference between ball 

detection-and-tracking and general object detection-and-tracking methods in the 
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FIG. 26: Example of Ball Size, Shape and Color Variations in Soccer Video. (Af­
ter [6]). 

sense that there is no global ball representation applicable to each video frame to dif­

ferentiate the ball from other false alarms. To increase the precision of ball tracking 

any method should take these constraints into account. 

IV.4 BALL VO TRACKING 

Different tracking methods are discussed in Chapter III. As can be concluded from 

the discussions in that chapter each method has its pros and cons such that there is 

no global tracking method applicable to any tracking problem. In other words, one 

method working for a particular problem such as human or vehicle tracking may not 

be suitable for another tracking problem, for instance ball or player tracking. There­

fore, it is concluded that a simple VO tracking method satisfying the requirement of 

accurate tracking will be sufficient for this work. 

IV.4.1 Ball Detection: 

First of all, as discussed earlier, initial to every tracking algorithm is the identification 

of the object. Due to the deformation of the ball and camera conditions (zoom-in, 

zoom-out etc.) there is no universal ball model applicable to every frame. Therefore, 

the tracking algorithm developed in this work utilizes a set of sieves based on the 

ball properties such as size, color and shape to identify the ball in each frame. 

Given a ball object O, let AR(O) denote the aspect ratio ( J ^ ^ ) °f the ball object 

O and A(0) represent the area respectively. Following sieves, which are based on 

object properties, are defined to identify the ball after filtering out candidate objects, 

in which case the remaining object is considered to be the ball object. 

• Ball-Size Sieve: Although the ball size changes due to the ball deformation 

and camera conditions (zoom in and out, tilt etc.), it should fall within a 



60 

specific range. If the object size is not in the range Rmm < A(0) < Rmax then 

the object is discarded. To mitigate ball size variations, the limits for the ball 

size are defined as Rmm = A(i,j)(l — A) and Rmin = A(i, j)(l + A) where A is 

empirically determined constant set to A = 0.5 and A(i,j) represents the ball 

size whose bounding box is located at the (i,j) coordinate. 

• Ball Color Sieve: Ball color is a good discriminator for ball like objects. 

Define 0(i,j) > (3 denoting pixel wise thresholding of an object to remove the 

non-ball objects. 

• Shape Sieve: Remove the objects whose aspect ratios are not in the range 

0.8 < AR(0) < 1.7 

As will be discussed broadly in Chapter V under Section V.l, both the encoder 

and decoder are synchronized with the data which include the starting and ending 

frame numbers as well as the bounding box coordinates of the object. These coordi­

nate locations are determined manually by the user. This supervised approach solves 

the problem of initial ball recognition aiming at identifying the ball VO in the first 

frame. 

The first step in applying the above sieves is the Ball Color Sieve where the 

threshold is (3 = 220/255 = 0.8627. Note that, for the gray scale frames, a pixel 

value of 255 corresponds to the white pixels whereas 0 indicates black pixels. Output 

of this thresholding is basically a binary image as shown in Fig. 27. In the binary 

image, the pixels that are set to 1 belong to the foreground whereas the ones set to 

0 belong to the background. At the end of this stage a ball-like object is identified 

for further morphological operations and blob analysis. 

To identify the ball object in the binary image, a 4 connected-component labeling 

search, which is available in Matlab, is done. After obtaining labeled regions, Mat-

lab's reqionprops function, which computes a set of properties such as Area, Major, 

Minor Axis Length, Bounding Box, Centroid etc., is used to compute Ball-Size and 

Shape Sieve. 

Object O is identified as a ball if its properties match with the sieves defined above 

and the centroid coordinate cx and cy is stored in the object trajectory represented 

^ y -* \pxi^-y) yXpxli C-y-^), \Cx2, Cy2), ) {pxii ^•yl)\-

To identify the ball in the consecutive frames, a simple Region Of Interest (ROI) 

based search strategy, as proposed by Wong in [76] is employed. The rationale behind 
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FIG. 27: Binary Image Obtained After Thresholding Pixel Values in the Bounding 
Box of the Object as 0(i,j) > 0.8637. Connected Component Analysis is done on 
this Binary Image to Label the Pixel Belonging to the Same Object. 

this approach is 

- To decrease complexity which is inherent in even the mostly used methods such 

as Kalman Filter Tracking, which involves computations for prediction and 

correction stages. When a ball moves so quickly in a video scene, the physical 

behavior of the ball motion still demonstrates smooth trajectory segments in 

consecutive frames for ball's both freely moving on the ground and flying in the 

air cases. Therefore, based on this valid assumption, a simple linear motion 

with a region of interest in which the object highly likely exists is used for 

identifying the ball in consecutive frames. 

- To help eliminate making assumptions on the noise and other motion state 

model parameters which can seriously effect the performance of the tracking 

algorithm. 

- To facilitate the demonstration of the data hiding algorithm. 

The goal of this work is neither to develop new tracking algorithms nor to imple­

ment tracking algorithms which have intelligence in identification of semantic mean­

ings such as ball possession, out of filed, ball rolling, or flying but to demonstrate 
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(a) (b) 

FIG. 28: Example Frames From "Table Tennis" and "Soccer" Sequences. 

the idea that in smooth trajectory segments of the ball VO, a simple linear smooth-

motion assumption is considered to be sufficient. 

To estimate the ball location in the current frame, a search region (a window) 

of NxM=30x30 pixels demonstrating the maximum expected displacement of the 

ball between the frames is defined. This window of search region is centered at 

the centroid location of the VO in the previous frame. Once again this is a valid 

assumption as the motion of the ball between consecutive frames is considered to be 

smooth. 

After the search region is identified, the morphological operations and sieves dis­

cussed before are used to detect the ball and the centroid coordinate in the current 

frame. This procedure continues until the end of the video sequence. 

IV.4.2 Experimental Results 

The tracking algorithm described in the previous section is used to find the trajectory 

of the "Ball Video Object (VO)" in "Table Tennis" and "Soccer" video sequences. 

An example frame from each of the sequences is illustrated in Fig.28. The Table 

Tennis sequence includes the Ball VO with complex motion e.g., flying freely in the 

air, occlusion, and fast motion change, whereas the soccer sequence includes the 

Ball VO rolling on the ground with smooth motion and partial occlusion due to the 

possession of the ball by the player. 
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Trajectory obtained for the Ball VO in the Table Tennis video sequences is shown 

in Fig.29. 

A common approach to measuring the performance of a tracking algorithm is the 

comparison of the results of the tracking algorithm with those of the ground truth 

coordinate locations. For this, the actual centroid x and y coordinates are manually 

obtained via frame by frame analysis of the Ball VO. Fig.30 illustrates the ground 

truth and the tracking algorithm computed centroid coordinates together. As can 

be seen from the figures, clearly the tracking algorithm gives very consistent results 

except for the frames in which the ball is occluded by the player's hand. In these 

frames the ball almost disappeared in the hand which color is similar to the ball color 

range. 

IV.5 PERFORMANCE EVALUATION OF OBJECT TRACKING 

In order to evaluate the performance of different tracking algorithms, a simple and 

fast distance-based metric is employed. First, the ground truth object position, which 

is manually obtained, is represented in terms of the object's centroid position. Then 

for each ground truth track and algorithm generated track, the centroid distance, 

which is the Euclidean distance between their centroids, is computed i.e., dist(a, b) = 

y/(xa — xt,)2 + (ya — yt,)2. The difference is then considered to be the tracking error 

for which the essential rule is the smaller the distance the better the performance. 

Note that, in addition to Euclidean distance, examining the individual errors in each 

dimension of the VO motion may be used for performance evaluation as well. 

To analyze the performance of the tracking algorithm under noisy channel con­

ditions, Gaussian white noise with zero mean and varying variance is added to the 

video frames (AWGN Channel). Examples of noisy frames are illustrated in Fig.31. 

Through visual examination of the noisy frames, it can be concluded that when 

o2 > 0.1 the visual quality of the frames get worse and it becomes difficult to per­

ceive the content of the frame. Hence, it is valid to state that the threshold for noise 

variance beyond which it is obsolete to track is o2 = 0.1. 

The results of the error between tracked and the ground truth trajectory both 

in Euclidean distance and errors in each individual axis are shown in Fig.32, Fig.33, 

Fig.34 and Fig.35. It can be clearly observed from the results that for up to o2 = 0.05 

the tracking errors are approximately in the range of ±2 pixels except for the fact 

that a peak stands out around 40th frame. The reason for this large error is due to 
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FIG. 30: Ground Truth and Computed Trajectory Centroid Coordinates. Top: X 
coordinate Bottom: Y Coordinate. The difference between the frames 33 and 42 is 
due to the occlusion of the ball by the player. 

the tracking algorithm's not having any occlusion detection mechanism. Once the 

players holds the ball, the tracking algorithm presumably tracks the hand instead of 

the ball as it finds color and shape match in the hand of the player. This problem 

might be solved by incorporating advanced features to the algorithm by introducing 

occlusion detection, split, merge, ghost and reappear type mechanisms. 
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AWGN Sigma=0.001 AWGN Sigma=0.01 AWGN Sigma=0.05 

AWGN Sigma=0.1 AWGN Sigrna=0.2 AWGN Sigma=0.3 

FIG. 31: Frames 1 to 6 from Table Tennis. From top to bottom: noisy frames with 
al = 0.001 to 0.3. 
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IV.6 RESEARCH FOUNDATIONS 

Having discussed the commonly used VO tracking methods, and tracking in sports 

videos with its inherent problems, the key points which the idea of trajectory based 

data hiding method have been derived from is presented next. 

Despite the fact that tracking the ball in any ball game video is a challenging 

task due to several constraints, it is arguable on the contrary that the ball trajectory 

can be a feature to embed data in an invisible way as follows. 

As discussed earlier, the ball is the focus of attention in many sports videos in 

which the ball size and shape varies due to its motion, as shown in Fig. 26. Its size, 

its single homogeneous region with a common motion-compared to a player whose 

body parts might have different motion directions-and a semantic meaning make ball 

trajectories attractive for manipulations. The changes made to the trajectories will 

result in video sequences with almost no visible and statistical artifacts when both 

global image quality and statistical measures such as PSNR, MSE, and histogram 

based metrics are used. This is a valid argument due to the fact that in a ball 

trajectory perturbation based method, modifications will affect only a small portion 

of the whole frame as opposed to motion or block based data hiding methods that 

may alter the features in larger regions leaving comparatively significant signatures 

after data embedding. Any modifications that preserve the semantic meaning of the 

ball, or even a player, trajectory in the stego scene will be imperceivable for a viewer. 

The data hiding mechanism discussed in general above can be extended further 

to include multiple players, in addition to the ball, to increase the embedding ca­

pacity. In general, every information hiding algorithm uses a secret key to encrypt 

the message as illustrated in the generic data hiding framework in Chapter II Fig. 2. 

The secrecy provided by the encryption mechanism can be strengthened further by 

embedding data in random trajectory segments of the ball or a player VO in the 

video sequence. 

This idea is illustrated in Fig. 36. As shown in the figure at the information em­

bedding side, the trajectory based embedding mechanism utilizes trajectory segments 

that can be selected in either random or deterministic fashion. This information must 

be known by the receiver as ancillary information, which can be also embedded in the 

video frames using conventional techniques such as YASS, Matrix embedding or any 

DCT based data hiding method. Extending trajectory based embedding to multiple 

VO partial trajectories is depicted in Fig. 37. In the figure, line segments represent 



72 

the occurrence of each individual VO in the video sequence, whereas the red intervals 

represent partial trajectory segments that are utilized for embedding secret data. 

In this scenario, frame synchronization between the encoder and the decoder 

is very crucial since the embedded data can only be extracted only if the decoder 

identifies the trajectory segments that are used for information embedding. To fa­

cilitate correct recovery, a simple protocol between information embedder and de­

coder that includes the (START FRAME, END FRAME) of the partial trajectory, 

VO CENTROID COORDINATES, and BOUNDING BOX WIDTH and HEIGHT 

can be employed. These parameters can be exchanged between the sender and re­

ceiver secretly in a separate covert channel, or encrypted as the secret data and 

embedded in the first frame only, first few frames or in any frame chosen randomly 

in a repetitive manner to compensate for the channel associated errors or inten­

tional attacks. Thus, the entire video will be partitioned into sequences of the form 

{Co, Ci, C2,.., Cn, So, Si, S2, S3, ...Sn, Cn+i, Cn+2, ••} where C, , St represent the cover 

frame and stego frame respectively. When the duration of the ball video sequences 

(i.e. 90 min for soccer) is considered, and the utilization of partial trajectory seg­

ments based on the selection strategy defined above, it will be very difficult for an 

observer to find all the trajectory segments where the data is embedded. In that 

respect, this scheme will serve two purposes: providing an additional layer of secu­

rity in addition to trajectory based embedding itself and combating against frame 

reordering, frame dropping and frame addition. 

The decoder receiving the video sequence will only be interested in analyzing stego 

frames that contains the hidden data. The decoder first checks the locations where 

the encrypted data are embedded and decides whether it is a valid video sequence for 

decoding or not. Any degradation to video sequence frames such as frame dropping 

will result in elimination of the video sequence and a request for resending the whole 

stego sequence again. 

IV.7 CHAPTER SUMMARY 

In summary, this chapter aims at providing basics of both VO representation by 

providing common taxonomy, examples of different object tracking methods and 

elaborating on the mechanics involved in tracking. The scope of the discussions 

are limited to three most commonly used tracking methods since the goal of this 

thesis is neither the development of a new tracking nor improvement of an existing 
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method. The idea behind investigation of different methods is the identification of a 

fit-for-purpose yet a simplistic tracking method for the application at hand. Different 

metrics allow us to test the performance of a particular algorithm against a specific 

challenge. More research is required to improve robustness of the tracking algorithm 

against common problems noise, illumination change, occlusion etc. 

Furthermore, discussions are concentrated on common tracking methods devel­

oped for sport videos since the proposed method utilizes sport video sequences as the 

cover data. From the discussion it may be concluded that there is no global method 

that is applicable to any tracking problem for different sport videos. In general, the 

designers come up with ad-hoc methods to fulfill the requirements for a specific ap­

plication problem e.g., tracking basketball, soccer ball, gold ball, baseball, etc. And 

finally, the discussion of the proposed method research foundations is summarized in 

Section IV.6. 

It is claimed that the ball VO trajectory could be used for data hiding contrary 

to the fact that there are inherent problems associated with ball tracking. Then 

the fundamental idea of perturbing trajectory segments of single and multiple VOs 

together with the novel synchronization scheme is presented. 
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CHAPTER V 

TRAJECTORY PERTURBATION DATA HIDING 

Digital video presents many challenges that need to be carefully considered in the 

design stage of the data hiding method. These challenges may put limitations on the 

application specific requirements discussed in Chapter II under Section 2. 

The reader may ask the natural questions of why video sequences are used for data 

hiding and what are the benefits and constraints as opposed to the other multimedia 

cover signals? The answers to these types of questions will be sought by presenting 

constraints and advantages of video domain data hiding. This approach will help 

the reader understand the relationship between the proposed method performance, 

application specific requirements and steganalysis. 

First of all, digital video compression standards such as MPEG-1, MPEG-2 and 

MPEG-4 are considered to be a form of attack against information hiding techniques 

in the sense that the compression algorithm may damage or remove hidden data. 

Successive video frames are highly correlated, and hence it is possible to align and 

average them to obtain a perceptually similar video stream. Data hiding methods 

employing methods originally developed for still images do not efficiently take into 

account the temporal dimension of the video. Therefore, the temporal dimension of 

the video should be considered in designing data hiding techniques to resist against 

collusion type attacks. Motion along the temporal axis and temporal sensitivity of 

the HVS may provide potential improvements in designing efficient algorithms. 

The computational cost and coupling with a specific compression standard lim­

iting the portability of the embedding mechanism could be other constraints for real 

time applications. 

Having discussed the video domain constraints and advantages above, a novel data 

hiding steganographic algorithm using VO trajectories to embed data in a statistically 

and perceptually invisible way is presented next. It is assumed that the secret data 

is encrypted by using a well-known cyrptosystem (e.g. AES ) before the embedding 

stage, which is the case for most secret communication systems. Hence, even though 

the adversary monitoring the channel can somehow access the secret data, he will 

not be able to decrypt the actual plain text message without having the appropriate 

key. 

The proposed method is an oblivious, quantization based data hiding method 
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in spatio-temporal domain. The block diagram of the proposed method is given 

in Fig. 38. The idea behind the method is to perturb the motion trajectory of a 

video object (VO) in a fashion that preserves the smoothness of the trajectory while 

modifying the direction and the magnitude at each feature point. 

Video 
Sequence 

VO Tracking Trajectory 
Perturbation 

A 

Motion Corr pensation 
And Composition 

Stego 
v\/,rlo/~, 

Binary Message 

(a) Embedding Mechanism 

Sequence 

Stego 
Video H 
Sequence 

VO Tracking Detector 
Decoded 

~* Message 

(a) Extraction Mechanism 

FIG. 38: Block Diagram of the Proposed Method. 

The first step of the data embedding stage is the manual selection of the VO 

bounding box, as well as the start and the end frame numbers of the partial tra­

jectory. This side information can be considered as a synchronization signal for the 

decoder as it will not otherwise know which frame and VO are used for perturbation 

to embed data. From the security perspective, this selection will provide another 

layer of security against active or passive wardens who are monitoring the channel. 

Without having the exact synchronization signal it will be impossible for them to 

both detect and attack the partial trajectories that are used for sending information 

to the decoder side. The parameters for synchronization can be selected by using 

a user interface which will allow frame by frame analysis with features such as fast 

forward, skip, pause etc. This type of user interface will allow a user to interactively 

select synchronization side information parameters in a considerably shorter time. 

The tracking module then takes the video sequence and the synchronization in­

formation as input to track the VOs. The VOs which are selected for trajectory 

perturbation are tracked only in the interval defined by the synchronization signal. 
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The result of the tracking module is the centroid coordinates of the tracked VOs. 

As stated earlier, the secret message is in the binary form obtained from the out­

put of a cryptographic system. This binary message and the trajectory information 

are used as input to the trajectory perturbation module to obtain the new centroid 

coordinates of the VOs. In essence, the secret message is conveyed to the receiver 

through perturbations (modulation of trajectory data within the binary message) 

introduced into the trajectory centroid coordinates of the VOs. In the trajectory 

perturbation phase, the direction and the magnitude of the motion are quantized 

using two different set of quantizers. Finally the new centroid coordinate is used to 

motion compensate the VO. 

At the decoder side, the decoder first extracts the synchronization signal so that 

it can determine the bounding box, start, stop frames from which the partial trajec­

tory segment is obtained. After decoding of the synchronization signal the tracking 

module takes the video sequence to generate the partial tracks of the VOs by return­

ing the centroid coordinates of the bounding box of the VOs. The message is then 

decoded by using the same set of quantizers for which the range and step sizes can be 

agreed between the sender and the receiver beforehand. Also note that the decoder 

quantizer parameters may be obtained through analysis of an ensemble of video se­

quences in which the object demonstrate common trajectory types (e.g., ball rolling 

on the ground with different speeds and directions etc.) by using a classifier/future 

extractor. 

Until now the data hiding mechanism and overall functionality of each module 

are explained in general. Each module in the proposed method will be discussed with 

examples in detail next. 

V . l C O N V E Y I N G S Y N C H R O N I Z A T I O N I N F O R M A T I O N TO T H E 

D E C O D E R 

As discussed in Chapter IV Section IV.6, the synchronization information is required 

between the data embedder and the decoder to determine the video segments which 

are used for data hiding and which VOs in those partial video segments are used 

for trajectory perturbation. This side information has to be conveyed to the decoder 

either by using other conventional secret communication techniques or by embedding 

the data in the video sequence. Contrary to the general case which the availability 

of the side information at the decoder side is assumed, a method which can be used 
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FIG. 39: Synchronization Data Embedding Mechanism. 

to convey additional side information to the decoder is presented below. 

The synchronization data embedding algorithm proposed in this thesis embeds 

one bit of data by imposing specific relationships in a way similar to the method 

proposed in [21]. Specifically, a relationship is imposed, if not naturally occurring, 

between some pairs of mid band DCT coefficients in selected MBs, both of which are 

selected pseudo-randomly. The overall scheme of the proposed watermarking system 

is shown in Fig. 39. The synchronization information consists of [Start Frame No., 

End Frame No., VO Bounding Box Top-Left x Coordinate, Bounding Box Top-

Left y coordinate, Bounding Box Width, Bounding Box Height] resulting in 48 bits 

when eight bit representation is used for each parameter. The synchronization data 

embedding is based on a simple idea of embedding data in random locations within 

a frame, which makes it difficult for the steganalysist to get a good estimate of the 

cover frame features via the self-calibration process. 

At the start of each video sequence a pseudo-random sequence is generated, based 

on a secret key, for randomly selecting those MBs in which the synchronization data 
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has to be embedded via the modification of the coefficient pairs. It is assumed 

that both the sender and the receiver share the same seed for the random number 

generator which determines the location of the MBs. Each MB contains 8x8 pixel 

blocks which are then DCT transformed to produce DCT blocks F(u, v) . The MB 

size can be set to the standard J P E G 8x8 grid size or BxB where B > 8. In case of 

B > 8 smaller 8x8 blocks can be selected pseudo randomly from the BxB blocks as 

done in [77]. 

Note that first frame is used to embed synchronization data. To provide redun­

dancy as protection against attacks such as frame dropping, cropping of the regions 

in the first frame where the MBs are utilized for data embedding and random noise 

addition to the frames, the synchronization data can be added in multiple frames of 

the same sequence. This can be simply implemented by using the mechanism shown 

in Fig. 39 iteratively over the selected number of frames. 

After random selection of MBs, the next step is the alteration of pairs of DCT 

coefficients based on energy difference. The DCT coefficients are zig-zag scanned 

to obtain a vector of coefficients as illustrated in Fig. 41. Note that the coefficient 

residing at index i = 0 corresponds to the DC coefficient, whereas coefficient index 

i = 1 to 5 corresponds to the low frequency components and 6-53 mid frequency and 

54-63 are the high frequency components. The modifications made to low frequency 

components are more noticeable than those in the high frequency components. Hence, 

these coefficients need to be left untouched to preserve perceptual quality of the 

original video. 

For video compression, every standard uses different quantization tables for dif­

ferent quality factors to quantize DCT coefficients. An example of a quantization 

table is depicted in Fig. 40. The quantized coefficients are obtained by dividing the 

DCT coefficients with the corresponding entries in the quantization table so that 

F(u,v)=F(u,v)/Q(u,v) where Q(u,v) and F(u,v) represent the quantization step 

and quantized coefficient respectively. As can be easily seen from the quantization 

table in Fig.40, the high frequency components will mostly likely be rounded towards 

zero after quantization, since the quantization table entries, i.e the quantization step 

sizes, are big compared to the entries corresponding to the mid and low frequen­

cies which have smaller quantization step sizes. To achieve a trade-off between the 

requirements of invisibility and robustness against compression, the rule of thumb 

is to use only the DCT coefficients F(u, v) belonging to a mid-frequency range for 
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FIG. 40: JPEG Quantization Table (Luminance Quantization). 

embedding synchronization information. These coefficients are shown as shaded in 

Fig. 41. 

The embedding algorithm hides one bit of the synchronization data in a pair of 

DCT coefficients belonging to the mid-frequency region of a set of selected MBs in a 

fashion as follows. 

Let a consecutive pair of coefficients be denoted by F{ut,v3) and F(ul+i,v3+i) 

and the difference between a pair of DCT coefficients is denoted as 

AF = F(uuv3) - F(ul+x,v3+1),ili,j = 6, 7, ...,21 

where the index i,j correspond to the mid-frequency coefficients. The selection of 

the coefficient pair could also be made random as the block selection, but in our 

case we chose to pick successive pairs as this simple selection strategy will meet the 

requirements at hand. The embedding rule is described in pseudo code in Algorithm 

1. 

Finally, to obtain the synchronization data embedded video sequence, the inverse 

DCT of the altered frame(s) is computed. 

Also note here that using error correction coding framework in addition to repeti­

tive embedding of the synchronization data will provide robustness against distortion 
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Algorithm 1 Synchronization Data Embedding 

Note: ^ = 2 D DCT 
Inputs: 
Ic=Cover Frame 
7s=StegoFrame 
Data=SyncData 
Key 
m=length(Sync Data) 
for i = 1 to m do 

block=key(i) 
/=J"(block) 
/'=zigzagscan(/) 
b=dec2bin(Data(i)) 
for j = 1 to 8 do 

if b(j) = 1 then 
if f'(2j - 1) > f'(2j) then 

Keep the Coefficients 
else 

Swap the coefficients 
f(2j - 1) <- f(2j) 

end if 
else 

if f'(2j - 1) < f'(2j) then 
Keep the coefficients 

else 
Swap the coefficients 

end if 
end if 

end for 
end for 
/neu)=inverse zigzagscan(/') 
J new J~ \Jnew) 

return fnew 

t> Select the block randomly based on the key 

> Select Coeffs from 6 to 21 

> b(j) = 0 

file:///Jnew
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FIG. 41: Zig Zag Ordering of DCT Coefficients in an 8x8 Block. 

constrained attacks which an active warden can launch. 

At the end of synchronization data embedding stage, the first frame or first few 

frames will contain the pointers (start, end frames etc.) to the video sequence seg­

ments and the corresponding VOs in these segments that are utilized for information 

hiding. An example of synchronization data embedded frame for Table Tennis se­

quence "Ball VO" is shown in Fig. 42. The frame size is 240 x 352 pixels resulting 

in a total of 1320 8 x 8 DCT blocks. In this example the synchronization data in­

clude start frame=27, stop frame=34, bounding box [x, y] coordinates, and width 

and height are (134, 105, 25, 25) respectively. For illustration purposes first frame, 

synchronization data embedded frame, the difference between unmarked original and 

data embedded frames and the start frame obtained after decoding the synchroniza­

tion data are displayed in the Fig. 42. By visual inspection of the original and altered 

frame it can be concluded that the perceptual qualities of both frames are the same 

without any visual artifact. 

The stego video sequence may undergo unintentional channel associated degra­

dations, two of which are noise and filtering. To investigate the performance of the 
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FIG. 42: Sync Data Embedded and Extracted Frames. Statistical Invisibility of the 
Stego Frame Based on Pixel Measures Presented in Appendix A. Image Fidelity=1.0 
and MSE=0.6122. Difference Frame between the original and the stego frames shows 
the randomized locations of the 8x8 blocks. 
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(a) Noise Added Frame 21, a = 0.1 (b) Noise Added Frame 21,er = 1 

(c) Bounding Box Drawn Frame 27 

FIG. 43: Additive Noise Effect. Sync Data Embedded and Extracted Frames. 

synchronization data extraction (decoding) mechanism under channel associated ad­

ditive noise, noise with N(Q, 0.1) and N(0,1) is added to the frame in which the 

synchronization data is embedded. The performance of the exact data extraction at 

the decoder side must be satisfied to guarantee correct decoding of the secret mes­

sage. The noise added frames only and with the extracted bounding box result are 

shown in Fig. 43. For both cases the synchronization data is extracted correctly. 

An intuitive explanation for this can be provided as follows. The DCT is a linear 

transform, meaning ^{x + n) = T{x) + T(n). During energy difference based binary 

data extraction, the noise coefficients will not contribute much to the difference so 

the DCT coefficients will determine the bit value. 
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FIG. 44: Gaussian Blurr Effect. Sync Data Embedded and Extracted Frames. 

Similarly, the reference frame is filtered with a Gaussian blurring function, shown 

in Fig. 44, having size 5x5 and o = 4. The decoder side successfully extracted the 

synchronization data and the bounding box drawn at the initial frame of the partial 

trajectory is shown in the same figure as well. Intuitive explanation for the result is 

the fact that Gaussian blur eliminates the high frequency components which are not 

used during binary embedding. 

From the above results, it can be concluded that a simple embedding technique, 

based on energy difference of the mid frequency band DCT coefficient pairs, survives 

common channel associated degradations. 

When an active warden attacks the stego data, using techniques such as frame 

dropping, frame cropping,and format changes, the immunity of the embedding mech­

anism will be as follows. For the frame dropping case, as commented earlier, a simple 

redundancy approach provided by embedding the same synchronization data in a 

window of frames will render the attack obsolete. 

In case of a frame cropping attack, having the data embedded in randomized loca­

tions decreases the likelihood of having corrupted blocks to almost zero. Also redun­

dant embedding in randomized frames, such as embedding synchronization data in 

odd frames starting from a random frame number, will help remedy frame cropping, 

assuming active warden will not know the start frame and crop the same locations 

where the bits are embedded in every redundant frame embedding scenario. 
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And finally, for the case of compression format changes, the embedding mecha­

nism will still survive the attack as we employ a commonly used transform in many 

coding standards and specifically use mid frequency DCT coefficients which are kept 

together with low frequency and DC coefficients during the quantization step. From 

this perspective, it will be a valid assumption to expect perfect recovery of the syn­

chronization data after different compression ratios and formats. 

V.2 TRAJECTORY PERTURBATION 

The trajectory perturbation module consists of a polar quantizer that utilizes the cen­

troid coordinates of the VO. Recall from the previous discussions that the trajectory 

for a particular VO is represented by 

T{(CX,Cy)} = {{CXl,Cy1),....,{CXn,Cyn)} (62) 

where the pair (cx,cy) represents the bounding box coordinates obtained by using 

the tracking algorithm presented before. 

The message is conveyed to the decoder side through the perturbations of the 

trajectory coordinates via the usage of a nonlinear embedding function such as a 

polar quantizer. In particular, the term perturbations refers to differences between 

the reconstruction level of the quantizer at a specific partition and the original motion 

magnitude. Note that this difference is also widely known as the quantization noise. 

The output of the quantization is the new motion magnitude and the phase from 

which the new centroid coordinates of the bounding box can easily be obtained. 

If one has to make the analogy between this scheme and the existing digital 

modulation techniques, the uncoded Pulse Amplitude Modulation would be the best 

example. In both cases, the encoder selects one of possible M = 2J amplitude levels 

based on the input message. Or in a similar vein, in a quantization scheme the 

binary codewords are assigned to each individual reconstruction level, while in the 

perturbation based scheme presented here, the magnitude and/or phase levels are 

selected based on the binary message. This explains the process of how the motion 

magnitude and/or angle are modulated with the input binary message. 

Let the magnitude of the VO motion in x-y coordinates between consecutive 

frames be defined in terms of centroid coordinates as Acx = (cXi,cx) and Acy = 

(cVi, Cy) where i,j is the frame number and i > j . Then the motion magnitude and 

angle can be represented in polar coordinates such as 
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Ac / 
9 = arctan —± r = J(Acx)

2 + (Acv)
2 (63) 

Z A C X 

The message m[i] is assumed to be a binary bit stream with j e {0,1}. In each 

frame, L-bit binary code words {bi, b2, ...&L} are embedded. The first bit, b\, is em­

bedded through angle quantization and the remaining L-1 bits are embedded through 

magnitude quantization as discussed below. The first bit of the L-bit binary code 

word is embedded in motion angle 9 by using following the quantization scheme [8] 

9Q = Q{9,Ae,m[i\) 

= Aeround{ L J 2 )+m[i]—- (64) 
Ag 2 

To embed the remaining L-1 bits of the binary code word, motion magnitudes 

are quantized with a uniform polar quantizer as follows. First a range (rmin,rmax) 

that represents the motion for the VO in the entire video sequence is defined. This 

value can be made a priori or can be determined by histogram analysis of the VO 

displacements for consecutive frames. The dynamic range obtained by this setting 

is divided into disjoint adjacent rings in the polar quantizer as illustrated in Fig. 45. 

The magnitude values that fall into corresponding disjoint ring are quantized with 

uniform polar quantizer Q = {qi, q2,..., #M} with a step size A. The rationale behind 

partitioning the range into disjoint quantizers is to decrease the distortion introduced 

by the quantization. As an example, when the magnitude r\ falls in the range [0, ri] 

the first quantizer is used, and when r\ < r2 the quantizer with the range defined 

by the ring {r\,r2] is used and so on. With this approach the distortions due to the 

quantization of the motion magnitude will be smaller than the distortion resulting 

from using single global scalar quantizer with the whole motion dynamic range. 

This quantization strategy allows us to build up look-up tables on both sides. 

The only side information that needs to be communicated to the decoder side are 

the binary code word length L and disjoint rings. Moreover, if we use uniform 

partitioning of the motion magnitude dynamic range, R, we only need to send L, R 

and the number of disjoint rings. After quantization, new centroid coordinates can 

be obtained by converting (rg, 8Q) back to Cartesian coordinates such as 
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FIG. 45: Uniform Polar Quantizer for Motion Magnitude Quantization. 

Cxnew = rQ cos(9Q) 

cynsw = rQ sm(9Q) (65) 

These new centroid coordinates essentially determines the new location of the 

"Ball VO". The motion compensation process that allows these new coordinates to 

place the ball in the new location and video sequence recomposition will be discussed 

in detail next. 

V.3 MOTION COMPENSATION A N D RECOMPOSITION OF THE 

VIDEO SEQUENCE 

A block matching algorithm is a commonly used technique in many video coding 

standards for determining the motion vectors. In this method the video frame is 

divided into non-overlapping blocks of size MxN where a global displacement vector 

is assigned for each block. Blocks are formed in a region without overlapping each 

other. Every block in a frame is compared to the corresponding blocks in the reference 

frame by sliding pixel positions in x and y direction within a search window and the 

displacement that gives smallest error with respect to an error measure such as "Sum 

Of Absolute Differences (SAD)" is defined as the motion of the corresponding block. 

Once the motion vectors are found for each block, only those motion vectors 

and the resulting error are transmitted so that interframe redundancy is reduced. 

The reference frame and motion vectors would be sufficient to regenerate the frame 

a Polarform representation of Mot ion 
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at the decoder side. This process is known as "Motion Compensated (MC)" pre­

diction. Various search strategies have been developed for motion estimation and 

compensation, such as the Fixed-Size Block Matching, Object Based Block Match­

ing and Variable Size Block Matching. The reader should note that the development 

of computationally efficient block based motion estimation methods is still an active 

research topic in which the researchers try to find solution to the problems associated 

with selection of optimum block size such as blockiness, computational complexity, 

and loss of local motion. 

Two approaches are implemented for motion compensation of the original bound­

ing box of the VO. The first is a practical approach similar to classical block based 

motion compensation described above. The second is a more advanced method called 

inpainting. For the first approach, let xnew,ynew,x0id and y0id,w,h define the new 

and old top-left x-y coordinates, the width and the height of the VO bounding box 

respectively. First, a patch 2l(z : i + w,j : j + h) belonging to the background is 

defined manually by the user only at the first frame. For the other frames where 

there will be no scene changes and the background will stay the same, this patch will 

basically be used for replacing pixels in the original position of the bounding box. 

Otherwise, a scene change detection and re-initialization of this background patch 

must be done. Next, the region where the ball object is located (old ball position) 

at, for example 0(x0id : x0u + w, y0id '• Void + h), is cropped automatically. Then the 

previously defined background patch is assigned to the old ball region, making the 

region the same as the background. And finally, the pixels at the cropped ball region 

are assigned to the new coordinates as 

I(x0id : x0id + w, yoid : yaid + h) = %l(i : i + w,j : j + h) 

I{xnew : xnew + w, ynew : ynew + h) = 0(xold : xotd + w, yoM : y0id + h) (66) 

where / represents the original frame. Fig.46 demonstrates three frames of the 

"Motion Compensated Ball VO" obtained via this method. 

To evaluate the perceptual quality of the method, the patch-based motion com­

pensated frames played consecutively. The blockiness effects have been observed 

from the play back frames for the homogeneous background areas as well as the ar­

eas where two objects, the ball and the player hand, come closer to each other. These 

examples have lead to the conclusion that this simple patch-based region replacing 
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FIG. 46: Patch Based Motion Compensation Example Frames. Top Left and 
Right:Frames 7, 14. Bottom:Frame 34. 
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« 

FIG. 47: Inpainting Region and isophote directions [7]. 

strategy might work for homogeneous backgrounds up to a certain perceptual qual­

ity. But, in the case of a non-homogeneous background, such as a soccer field with 

vertical dark and light shades of green, this patch-based method will not work at the 

border lines between these two regions. 

To solve the blockiness problem and have more natural looking video frames after 

the motion compensation, an inpainting algorithm is used. Let O represent the hole 

to be inpainted and dfl be its boundary. The basic idea behind in inpainting is to 

smoothly propagate the information surrounding Q, in the direction of the isophotes 

entering dQ. Both gray pixel values and isophote directions are propagated inside 

the region, as shown in the Fig.47. This propagation is done by numerically solving 

the Partial Differential Equation (PDE) [7] and [78] 

ft = V(A/) . VT7 (67) 

where V, A, and VT stand for the gradient, Laplacian, and orthogonal-gradient 

(isophote direction) respectively. This equation is solved only inside fl , with proper 

boundary conditions in dfl for the gray values and isophote directions [7]-[78]. In­

terested readers could refer to [7]-[78] for more information on inpainting. 

The inpainting approach discussed above is implemented with the code provided 

by Bhat in [79]. Some example frames obtained by using the inpainting method 

are shown in Fig. 48. Clearly from these results and the visual inspection of the 

inpainted video sequence, it can be concluded that the inpainting method gives better 

results than the simple block based background patch replacement in terms of visual 

perceptual quality. 
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Motion Compansated (Inpainted) Frames 21 to 24 

FIG. 48: Inpainted Frames from 21 to 24. 

Note that the processing time of the inpainting algorithm for one frame is ap­

proximately 7 seconds when the program runs on an IBM T42p Labtop having 1 

GB RAM with Intel Pentium 2 GHz Processor. This is a fairly reasonable amount 

of time for an off-line video sequence processing. Since the encoder side implements 

video motion compensation and recomposition off line, the time it takes to process 

the video sequence should not be a pressing issue. But, in any case the per frame 

processing time could be decreased by increasing the computational resources. 

V.4 DECODER SIDE TRACKING A N D DETECTION 

The input to the decoder side is the stego video sequence obtained by applying the 

proposed method to the original video sequence. The decoder first checks the syn­

chronization information indicating exactly from which frame to start with and the 

location of the object. Recall from Section V.l that the synchronization information 

is embedded in randomized 8x8 DCT blocks of the cover frames where both the en­

coder and the decoder are assumed to have the same seed for the random number 

generator. So from the practical application point of view, the decoder will only 
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check the DCT blocks where the synchronization information is embedded. 

Once the decoder is synchronized with the encoder in terms of start frame and the 

location of the VO, the tracking module starts tracking the VO to get the centroid 

coordinates. An example of the decoder's synchronizing itself to the start frame and 

right VO is depicted in Fig.43. 

Next, the motion magnitude and the angle is computed from the centroid co­

ordinates similar to what is done in the encoding stage. And finally the motion 

magnitude and/or motion angle is compared with a codebook, whose entries are ob­

tained by using the same quantizer as that of the embedding quantizer, to read out 

the binary message. 

V.5 CHAPTER SUMMARY 

This chapter discusses the block diagram of the proposed method with an overall 

process flow of the intermediate steps. Note that the tracking algorithm is already 

discussed in detail in Chapter IV Section IV.4 and IV.5. Therefore, the tracking 

module of the proposed method is skipped in this chapter. First, the following key 

question inherent to every blind data hiding mechanism is answered: "how should 

the synchronization between embedder and the decoder be established?". In addi­

tion to the classical loose assumption that the decoder has the side information or 

the synchronization info is sent through a separate channel, a practical DCT based 

approach is proposed as a solution to the synchronization problem. The proposed 

method is tested for different channel associated conditions such as filtering and noise 

and the results demonstrated that when there is a passive steganalysist who is only 

monitoring the channel, DCT energy difference based method will survive the channel 

degradations. 

In the case of an active steganalysist who could launch a battery of attacks such as 

frame cropping, frame dropping, rotation etc., aiming at breaking the synchronization 

between the encoder and sender, a redundant embedding of the same synchronization 

data in randomized frames, such as embedding synchronization data in odd frames 

starting from a random frame number or resending the same data again, will mitigate 

the problem. 

Next, how the message is conveyed to the decoder side via the perturbations 

of the trajectory coordinates, i.e. the process of motion magnitude and/or angle 

modulation with the input binary message through the usage of a uniform polar 
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quantizer, is explained in detail. 

The goal of the motion compensation and video sequence recomposition step is 

to reproduce video frames which do not raise suspicion, which is important from the 

perceptual invisibility constraint perspective. To accomplish this task, two practical 

approaches are presented. The first is the the block based motion compensation ap­

proach, which has resulted in blockiness artifacts even in the homogeneous regions. 

Second, the inpainting based approach, which gave more natural looking, percep­

tually less-distracting results. After the motion compensation stage, the individual 

video frames are re-written in the same video sequence to get the stego sequence. 

Once the stego video sequence is obtained it could be transmitted to the receiver in 

many ways, such as an attachment to an email or a posting to a web page. Assuming 

that the sender and the receiver have established a channel, the steps involved in the 

message decoding phase will be similar to the encoding phase. The tracking algorithm 

will first obtain the synchronization information to start tracking and then track the 

VO for the trajectory segments indicated by the synchronization data. Once the 

trajectory centroid coordinates are obtained, the polar quantization scheme which is 

used in the encoding phase will be used to decode the binary message. 

Having discussed the proposed method in detail, the experimental results of the 

proposed method will be presented in Chapter VI next. 
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CHAPTER VI 

EXPERIMENTAL RESULTS AND DISCUSSIONS 

The modules of the proposed method that perform embedding and decoding are in­

troduced in Chapter V. This chapter presents the experimental results and discussion 

on the performance of the proposed method. The experiments were conducted by 

using two different sports video sequences, "Table Tennis" and "Soccer Ball" both 

consisting of smooth linear and sudden motion change. The aim was to demonstrate 

the practical applicability of the proposed method as a proof of concept. The "Table 

Tennis" sequence has 65 frames which have a frame size of 352 x 240 and a frame 

rate of 30 fps. The "Soccer Ball" sequence has 80 frames which have a frame size of 

360x480 with a frame rate of 30 fps. In the experiments a random binary string was 

generated and used as the message to be sent to the decoder side. 

The results of each step of the proposed method will be presented in detail next. 

VI. 1 VO SELECTION, PREPROCESSING A N D TRACKING 

Recall from the discussions in Chapter IV and V that the proposed algorithm utilizes 

a user defined VO and its trajectory points as the features to be modified for sending 

the data to the receiver side. 

As discussed earlier, VO segmentation could be unsupervised, meaning fully au­

tomatic segmentation done by a segmentation algorithm, or supervised where a user 

interaction is needed. The first type is suitable for object based coding standards. 

A supervised VO definition was selected as this option fit-for-purpose for the appli­

cation presented in this work. The VO selection is accomplished by first reading the 

first frame of the Table Tennis sequence and displaying it on the monitor to select 

the VO. Next, the centroid coordinates of the "Ball VO" are obtained manually as 

shown in the Fig.49. 

The rationale behind using the ball trajectories for perturbation data embedding 

is re-iterated as follows. Although the ball has small size and its shape varies due to 

its motion, having a single homogeneous region with a common motion, compared 

to a player whose body parts might have different motion directions, and a semantic 

meaning make ball trajectories attractive for manipulations. Because the changes 

made to the trajectories by the proposed perturbation method will only modify a 
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FIG. 49: Ball VO Centroid Coordinates. 

small area of the video frame due to the ball size. These small modifications will result 

in video sequences with almost no visible and statistical artifacts when both pixel 

wise global image quality (e.g. PSNR, MSE) and statistical measures (e.g., histogram 

based metrics) are used. Any modifications that keep the semantic meaning of the 

ball, or even a player, trajectory in the stego scene will be imperceivable for a viewer. 

As discussed earlier VO's full trajectory (trajectory from first frame to the last 

frame) is not suitable for perturbation because the tracking algorithm does not have 

the features to identify player possessions, full and/or partial occlusions which usually 

exist in more advanced tracking algorithms such as in [6]. Additionally, deformation 

of the ball due to fast motion smear (see Fig.26 in Chapter IV) has not been dealt 

with at the moment. Those two issues were left for future research topics as a 

continuation of the work presented here. 

To identify the trajectory segments that could be used for perturbation, the 

video sequence is analyzed with an editor shown in the Fig.50. Once the trajectory 

segments are identified with user supervision, the synchronization data (start, end 

frame numbers and VO location) is formed. 
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FIG. 50: Movie Editor for Frame-by-Frame Analysis of the Video Sequence. 
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VI . 1.1 V O Tracking 

The tracking result for the Ball VO, obtained by using the method described in 

Chapter IV Section IV, is illustrated in Fig.51. 

The Ball VO motion magnitude histogram and probability density fit to the 

data are also shown in Fig. 52. From the histogram analysis, it was concluded 

that small to large displacements between the frames were due to the reduced and 

increased acceleration of the ball during free fall or upwards direction. In Fig. 52.b 

the probability density function (pdf), which is Rician with a = 9.94153 and non-

centrality parameter s = 0.00279, is given. This probability density estimate was 

obtained by fitting a curve to the motion magnitude histogram data. Note that the 

pdf plot is included for illustrative purposes and would otherwise be different for 

different motion data obtained for tracking other VO. 

Recall that the proposed method is a quantization based one which parameters 

depend upon the motion magnitude and angle. To set up the parameters for the 

quantizer, the ball motion magnitude histogram was analyzed as follows. First, the 

dynamic range ( r m a i , r m j n ) of the motion magnitude was determined as a result of 

histogram analysis and found to be rmin = 0 and rmax = 30. Based on the histogram 

analysis, the dynamic range was divided into disjoint quantization rings as r\ — [0, 8], 

r2 = (8,16], r3 = (16, 24], r4 = (24, 32] with step size A = 2 (Refer to the Chapter 

V Section V.2 for explanation of how motion parameters are quantized.). A 4-level 

scalar quantizer resulting in 2 bits per quantized magnitude was selected for each 

disjoint magnitude interval. 

Again, the reason behind using disjoint rings as opposed to one scalar quantizer 

for the whole dynamic range is to decrease the distortion and preserve the semantic 

meaning of the VO motion which would otherwise result in big motion magnitude 

differences between the actual and the quantized values. 

For a quantization mechanism like this, the only side information needed on the 

decoder side is the disjoint ring intervals and the step size(s) used at the encoder 

side. This side information could also be transmitted either in a separate channel or 

embedded in the cover data using a synchronization data embedding technique. But 

for this implementation the decoder is assumed to have these parameters. 
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FIG. 52: Histogram and Density Function Analysis of " Bal VO". 

VI.1.2 Data Embedding and Decoding 

For the first experiment, the first 33 frames of the "Table Tennis" sequence were used 

for perturbation based data hiding. The reason for not using all of the frames in the 

sequence was because the sequence has occlusions (player catching and holding the 

ball), split of the objects (the ball and the hand of the player) and the deformation 

of the ball due to fast motion after the player hits the ball. As mentioned previously, 

the tracking algorithm does not have features to detect occlusion, split, merging and 

deformation of the objects. Thus, only the trajectory segment, in which no occlusion 

and/or drastic deformation exists, was used for illustration of the idea behind the 
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proposed method. On the other hand, the segment that was used for data hiding 

also has complex motion (ball flying freely in the air with acceleration and change 

of motion direction, moderate deformation due to speed of the ball, etc.) so, in that 

respect, the selection of these frames was considered to be sufficient for demonstration 

of the proposed method. 

Extension of the proposed method to the scenes with more complex motion re­

quires a tracking algorithm having intelligence through the use of occlusion detection, 

non-rigid body tracking features, etc. 

Once the trajectory points, centroid coordinates of the VO, were computed, the 

embedding function modulates those coordinates with the binary data using the polar 

quantization mechanism described before. 

The first experiment conducted was the magnitude-only quantization of the VO 

motion magnitude. Since the number of frames that were used for data embedding 

was 33, a binary string of 66 bits (2 bits per frame), representing random data as 

the output of a cryptological algorithm, was used as the input to the perturbation 

based data embedding function (Refer to Fig.38.) 

The new centroid coordinates were found basically by mapping the 2 bit code­

words to new reconstruction levels in the polar quantizer. The motion compensation 

was done via inpainting and recomposition of the video sequence was done by creating 

an "avi" file and writing the modified (stego) frames into it. 

The decoding process was implemented in the way presented in Chapter V Sec­

tions V.3 and V.4. An exemplary output of the decoded binary information is illus­

trated in Fig.53. 

For performance measurements under AWGN, Bit Error Rate (BER) of the pro­

posed algorithm was measured for varying noise variances. The results of the BER 

for magnitude only quantization are tabulated in Table. 1. The reader should note 

that the BER performance for noise variances up to 0.1 was tested. Because, as can 

be seen from the Fig. 31 in Chapter IV Section IV.5, as the noise variance is increased 

beyond o2 = 0.1, the visual quality of the video frames deteriorates dramatically. 

And from the previous tracking performance experiments, it was concluded that the 

tracking module could not track the object reliably beyond a2 = 0.1. Therefore, the 

experiment was performed for values up to a2 = 0.1. 

The BER results are consistent with the performance of the tracking algorithm 

presented in Chapter IV Section IV.5. As can be observed from the results, as 
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TABLE 1: BER Performance of "Table Tennis" Sequence for Magnitude Quantiza­
tion Based Embedding under AWGN with Varying Variance. 

°l 
0.001 
0.01 
0.05 
0.1 

BER 
0 
13.23% 
14.70% 
19.11% 

the noise variance increases, the tracking error increases, which yields errors in the 

decoding side. This is due to the fact that noise deteriorates the performance of 

the object locating phase of the tracking in which color, size and aspect ratios are 

used through morphological operations for filtering non-ball objects. The deviations 

from the actual quantized coordinate locations (on the encoder side) result in the 

detected magnitude on the decoder side to fall under different disjoint quantization 

rings and/or a different partition in the same disjoint ring. 

One possible solution to mitigate the effects of noise would be the usage of a 

tracking method, which is invariant to noise or could decrease the effect of noise such 

file:///Documents
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as the one proposed by Porikli et al. in [80]. They propose a simple and elegant 

algorithm to track nonrigid objects using a covariance-based object description and 

an update mechanism which effectively adapts itself to the undergoing object defor­

mations and appearance changes. The power of their method is that the covariance 

tracking method does not make any assumption on the measurement noise and the 

motion of the tracked objects and provides the global optimal solution. Through the 

experimental results, it was shown that the covariance based tracking method was 

capable of tracking objects in AWGN with very high success rates. 

Discussion on Perceptual and Statistical Invisibility 

The visual perceptual quality assessment of the resultant stego frames was done 

primarily by subjective assessments of three researchers who were experts in the 

field and two non-experts. Also, the stego video sequences were shown to an expert 

audience of 10 people in a conference. The randomly selected stego and original 

video frames are shown in Fig.54 for illustrative purposes. From the subjective 

quality assessments, it was concluded that the visual quality of the stego frames 

were almost identical to that of the original ones. There were no local artifacts, such 

as blockiness, or global artifacts, such as the change in the semantic meaning of the 

motion which could otherwise raise suspicion. 

To further justify the claim that the proposed method did not degrade the per­

ceptual quality of the frames, pixel wise steganalysis measures presented in Appendix 

B were used to compute the differences between the original and the stego frames. 

The reader should note that it is possible to get an estimate of the original frame, by 

an averaging method such as collusion, from which a comparison with the suspected 

stego frame may reveal the existence of the stego channel under steganalysis. 

The steganalysis results of the "Table Tennis" video sequence are given in Fig.55 

and 56. High per frame PSNR values shown in Fig.55a also support the high percep­

tual quality of the perturbed frames. Note that the gaps in per frame PSNR values 

indicate infinite values as MSE is almost zero for those frames. Measures that are 

based on pixel wise differences such as MSE and MAE also justify the claim that 

stego frames are almost identical to the original ones. 

In order to verify whether or not the data embedding algorithm has altered 

any statistical property of the original video frame, the stego frames were tested 

against commonly used histogram and correlation-based metrics given in Appendix 



104 

Stego Frame 24 Stego Frame 34 

Original Frame 24 Original Frame 34 

FIG. 54: Stego and Original Frames. 

B. Among the histogram metrics, the \2 metric was shown to be the most sensitive 

histogram differencing metric. It is used to compare two binned data sets to identify 

whether or not they are drawn from the same distribution. If the two distributions 

are identical, then difference dhlst = x2(H0, Ha) = 0 and it will increase towards 1 as 

the histograms differ more. 

The results illustrated in Fig.56b were found to be significant as they are on 

the order of 10~4 and 10~6 for histogram based differences and approximately 1 for 

normalized cross correlation indicating low statistical evidence of the perturbation. 

To investigate the effects of perturbations in the frequency domain per frame spectral 

difference between the original frames and the perturbed frames were computed. The 

results illustrated in Fig.55b also prove that the degree of distortion in DFT domain 

is almost negligible. 

In the next experiment, both the phase and the magnitude of the VO were quan­

tized to embed a total of three bits, one bit for phase quantization and two bits 

for magnitude quantization. The magnitude quantization levels were kept the same 

as before. For the phase angle quantization, the scheme shown in Fig.57 was used. 

The reason behind using such a quantization scheme rather than the general uniform 
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FIG. 55: Steganalysis Results of " Bal VO" Perturbation Based Data Hiding. 
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FIG. 56: Steganalysis Results of " Bal VO" Perturbation Based Data Hiding 
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FIG. 57: Angle Quantization Scheme [8]. 

or non-uniform polar quantizer with P phase levels (Refer back to Chapter III) is 

the fact that in the polar quantization scheme the phase may be assigned to any 

of quantization cells based on the codeword which might result in sudden motion 

change (e.g. VO motion angle having motion in 45° direction gets quantized to 135° 

then 60° and so on). Instead, phase changes were limited only to the neighborhood 

of the original motion direction with ±Ag. This quantization strategy was chosen 

to implement small perturbations and at the same time to preserve the semantic 

meaning of the VO motion. To better explain the effects of phase quantization on 

the semantic meaning of the VO motion, some example frames in which the phase 

of the motion was quantized using the strategy in Fig. 5 7 with Ae = ±30° are shown 

in Fig.58. By visual inspection of the frames, it can be deduced that the semantic 

meaning of the ball is lost because the ball no longer moves along a smooth trajectory 

compared to the original trajectory. 

For joint quantization of the motion phase angle and the magnitude, the phase 

quantization step size was empirically set to Ag =2° whereas the magnitude quan­

tization levels were kept the same as before. With this set-up a total of 99 bits (3 

bits/frame and a total of 33 frames) could be transmitted to the decoder side. The 

performance of the decoder for joint magnitude and phase angle quantization under 

AWGN is tabulated in Table 2. 
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FIG. 58: Magnitude and Angle Quantized Frames. The Semantic Meaning of the 
VO is lost. 

Another observation made from the experimental results was that the BER perfor­

mance of joint quantization of both the magnitude and phase got worse as compared 

to the magnitude-only case. This makes sense because as opposed to the magnitude-

only case, the tracking error now effects the phase as well as the magnitude which 

results in the increase in BER. One remedy against the effect of noise would be in­

creasing the magnitude and phase quantization step sizes. However, in this case, the 

visual perceptual quality of the object motion might be degraded seriously. 

As it has been done for the magnitude-only case the perceptual and statistical 

invisibility tests were done using the steganalysis metrics given in Appendix B. The 

results are illustrated in Fig.59 and 60. After examining the results, it can be con­

cluded that the phase quantization, if the quantization step size is kept small, does 

not degrade the statistical properties of the original frames. The results of the per 

frame histogram based metrics illustrated in Fig. 60b were found to be significantly 

low since they are on the order of 10~4 and approximately 1 for normalized cross 

correlation indicating low statistical evidence of the perturbation. To investigate the 

effect of perturbations in the frequency domain as in the case of magnitude only 
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TABLE 2: BER Performance of "Table Tennis" Sequence for both Magnitude and 
Phase Quantization Based Embedding under AWGN with Varying Variance. 

BER 
0.001 9.37% 
0.01 22% 
0.05 21.2% 
0.1 28.3% 
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Frames 

(a) Per Frame PSNR 
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(b) Per Frame Spectral Magnitude Distortion 
Measure 

FIG. 59: The Results of the Steganalysis Measures for Magnitude and Phase Quan­
tized VO Stego Frames. 

quantization, the per frame spectral difference between the original frames and the 

perturbed frames were computed. The results illustrated in Fig.59b also prove that 

the degree of distortion in the DFT domain is almost negligible. 

From the above results it can be concluded that both magnitude only and 

magnitude-phase joint quantization scheme could be used for perturbation based 

data hiding. The only constraint is the smoothness of the motion trajectory as there 

could be cases for which even small perturbations to the motion direction (motion 

angle) may result in noticeable distortions. Therefore, it will be valid to say that 

the generalization of joint phase-magnitude quantization depends upon the VO mo­

tion trajectory. For cases where the VO has smooth linear motion, only magnitude 

quantization might be feasible from the perceptual invisibility perspective. 
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(a) Per Frame MSE versus MAE 
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(b) Per Frame Histogram Measures 

FIG. 60: The Results of the Steganalysis Measures for Magnitude and Phase Quan­
tized VO Stego Frames. 
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In another experiment the proposed algorithm was tested by using the "Soccer 

Ball" video sequence, which consists of smooth linear VO motion. The "Soccer Ball" 

sequence has 80 frames with the frame size of 360x480 pixels. As it was done for the 

"Table Tennis" sequence, a binary string, representing random data as the output of 

a cryptological algorithm, was generated and used as the message to be sent to the 

decoder side. 

The first step for setting up the quantization scheme parameters is the analysis of 

the motion distribution. For this purpose, the object motion magnitude distribution, 

illustrated in Fig.61, was computed. Smoothness of the Ball VO motion can easily 

be recognized from Fig.61c where the ball has linear motion in both axes. 

After histogram analysis of the motion magnitude (see Fig.61b) the dynamic 

range (rmax, rmin) of the ball VO motion magnitude was determined as rmin = 0 and 

rmax = 8. Linear motion of the object and the comparatively small motion magnitude 

(limited dynamic range) between the frames have set limitations on the quantization 

step size and the number of the levels. Since the magnitude quantization step size 

could not be set arbitrarily large due to highly likely perceptual distortions and loss 

of the semantic meaning of the object, the quantizer parameters were empirically set 

to be L=2 resulting in two disjoint quantization rings (or cells). As done previously 

for the Table Tennis video sequence example, the dynamic range was divided into 

disjoint quantization rings as r\ = [0, 4],r2 = (4, 8] with step size A = 2 (Refer to the 

Chapter V Section V.2 for explanation of how motion parameters are quantized.). 

For each quantization cell one bit quantizer resulting in two levels was used. 

Reiterating the reason behind using disjoint rings as opposed to a one scalar 

quantizer for the whole dynamic range is to decrease the distortion and preserve 

the semantic meaning of the VO motion which would otherwise result in big motion 

magnitude differences between the actual and the quantized values. 

For a total of 80 frames and the magnitude only quantization case where 1 bits 

could be embedded per frame, the total capacity came out to be 80 bits. The motion 

compensation was done via inpainting and recomposition of the video sequence was 

done by creating an avi file and saving the modified (stego) frames. 

BER performance tests were conducted for varying noise variances. Noisy first 

frames of the "Soccer Ball" sequence for a^=[0.001, 0.01, 0.05 and 0.1] are illustrated 

in Fig.62. As can be seen from the figure, when o2 = 0.001 visual quality of the frame 

is acceptable but when the noise variances is increased, it is almost impossible to 
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(a) An Example of Soccer Video Sequence 
and the "Ball VO" 

(b) Soccer Ball VO Motion Magnitude His­
togram 
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Plots 

FIG. 61: Soccer Ball VO Motion Magnitude. 
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FIG. 62: Noise Added 1st Frame.Top-Left, Top-Right, Bottom-Left and Bottom-
Right represent the noise variance in order a2 — [0.001, 0.01, 0.05, 0.1]. 

perceive the ball. One observation that can be made is that the small size of the ball 

when the scene is in the global view may cause problems in the tracking phase under 

AWGN. The BER results are tabulated in Table 3. Since the tracker could not track 

the "Ball VO" in noisy frames for o2 = 0.05 and 0.1, BER results are not included. 

Clearly from the results one can observe the effects of object size. Compared to the 

table tennis, the soccer ball has smaller size in pixels which in return affects the BER 

performance adversely due to the increased tracking errors under AWGN. 

In the second experiment, both the magnitude and phase were quantized to embed 

two bits, one bit by magnitude and one bit by phase quantization. This quantization 

strategy has resulted in an embedding capacity of 160 bits for a total of 80 frames. 

Error performance of the magnitude-phase joint quantization scheme was tested for 

AWGN with varying noise variance. Note that, as in the case of magnitude-only 

quantization error performance for AWGN, the tracker could not track VO for the 
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TABLE 3: BER Performance of "Soccer Ball" Sequence for Magnitude Quantization 
Based Embedding under AWGN with Varying Variance. 

-1 
0.001 
0.01 
0.05 
0.1 

BER 
14% 
23% 
-

-

cases where noise variance was either 0.05 or 0.1. The BER performance results for 

the other two cases are tabulated in Table 4. From the results, it can be deduced 

that the bit error increases due to the fact that the magnitude errors yields errors in 

the phase angle of the motion. 

TABLE 4: BER Performance of "Soccer Ball" for both Magnitude and Phase Quan­
tization Based Embedding under AWGN with Varying Variance. 

°l 
0.001 
0.01 
0.05 
0.1 

BER 
25% 
35% 
-

-

Discussion on Perceptual and Statistical Invisibility 

Steganalysis of the "Soccer Ball" VO was done using the measures given in Appendix 

B. The results are illustrated in Fig.63 and Fig.64. From the subjective quality as­

sessments, it was observed that the perceptual visual quality of the stego frames were 

almost identical to those of the original ones. This observation was also supported 

by high PSNR results of the steganalysis. Neither local (e.g.blockiness) nor global 

artifacts, such as the change in the semantic meaning of the motion, was observed in 

the stego frames. Pixel wise and histogram based steganalysis metrics were used to 

compute the deviations from the original frames. 

Both the results of the pixel wise and histogram difference based metrics prove 

that the modifications made to the trajectory of the ball result in small localized 

changes that are almost negligible. From this perspective, it is proven one more 

time that the proposed algorithm provides steganographic stealth against an outside 

observer. 
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(a) Per Frame PSNR (b) Per Frame Spectral Distortion 

FIG. 63: PSNR and Spectral Distortion Results. 

VI.2 COMPARISON OF THE PROPOSED METHOD WITH OTHER 

METHODS 

To the best of author's knowledge there is no prior published work on a trajectory 

perturbation based data hiding method. Moreover, perceptual and especially sta­

tistical invisibility are not considered as constraints for most of the prior motion 

vector based data hiding algorithms. Instead, those methods are focused primarily 

on capacity and robustness design criteria. Because of this, it is difficult to do a 

fair comparison of the performance of the proposed method and other methods with 

respect to perceptual and statistical invisibility. 

As emphasized earlier, the focus in this work is on designing an algorithm sat­

isfying invisibility constraints while at the same time providing moderate rate data 

hiding capacity. 

The most relevant existing application is the watermarking of motion vectors. The 

proposed method is different than motion vector based watermarking algorithms in 

several aspects. Despite the motion vector based digital video watermarking algo­

rithms, the proposed method is not a block based one that utilizes motion vectors 

computed via "Motion Estimation" algorithms. Instead, arbitrary VO centroid co­

ordinates, obtained by using a tracking algorithm, are used to convey the message. 

More importantly, prior motion vector based watermarking algorithms have not taken 
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FIG. 64: Pixel Wise and Histogram Based Steganalysis Results of "Soccer Ball" VO 
Motion Magnitude and Angle Perturbation Based Data Hiding. 
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into consideration the semantic meaning of the object motion which result in degra­

dation of the perceptual invisibility. 

In a more recent paper by Aly [81], a method which employs motion vector LSB 

value modification was proposed. In this method, adaptive prediction error thresh­

olds are used as the mechanism to select and control the motion vector modification 

where only one bit of information is sent per motion vector by changing the LSBs of 

the selected motion vectors. Although PSNR values were provided to prove that the 

perceptual quality of the frames have been preserved after modification, nothing has 

been included on whether the method actually preserves the semantic meaning in 

the video frame or not. In that respect, it is arguable that the designer can modify 

the motion vectors arbitrarily but rather the motion semantics should play a role 

in the selection of a subset of motion vectors for modification. Also, the author did 

not discuss the performance of the method against noise, illumination change and/or 

filtering, all of which could impact the performance of a motion estimation algorithm. 

In another work by Fang et al. [82], a motion vector modification based data 

hiding method was proposed. In this method, the phase of the motion is quantized 

by using a circular quantizer. The drawback of this method is again not taking into 

consideration the semantic meaning object motion. Arbitrary modification of the 

motion phase using a multi-level circular quantization scheme will result in abrupt 

changes in the motion trajectory of an object e.g., VO having a linear motion will 

have sudden and meaningless motion direction change because of codeword-motion 

vector assignments. 

VI.3 CHAPTER SUMMARY 

This chapter presents the experimental results of the proposed algorithm used to 

embed binary data into two types of sports videos. To set up the polar quantizer pa­

rameters, first the motion magnitude distribution is analyzed. Based on the analysis, 

the quantization cell parameters are determined. Future work could be well invested 

on automatic selection of these parameters obtained by a classifier trained on different 

motion models commonly encountered in sports videos. Results of the experiments 

for varying noise variance have shown that as the noise variance increases BER also 

increases. For large noise variances, cases in which the perceptual visual quality of 

the video frames are completely deteriorated, the tracking error results are so large 

that it is not possible obtain reliable results. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE PERSPECTIVES 

This thesis presents a novel data hiding method based on a simple idea of sending 

the information to the receiver through perturbations of a VO trajectory. To the 

best of author's knowledge there is no similar work in existence as upon completion 

of this thesis. 

Implementation of the proposed algorithm covers multiple areas from different 

disciplines such as digital image (morphological operations and inpainting), video 

(tracking, video frame processing basics), signal processing (quantization) and digital 

communications (modulation and signal constellation analysis). 

From the subjective assessment of the experimental results, it has been assessed 

that the perceptual qualities of the original cover and stego frames are almost iden­

tical with almost no visual artifacts. The statistical visibility tests have also been 

conducted by employing some commonly used statistical measures on the data em­

bedded frames and found that the proposed algorithm did not leave any statistical 

signature after the embedding process. Hence, from the statistical invisibility and 

imperceptibility perspectives, the proposed method showed promising results. 

Overall Contributions : 

The main contributions of this thesis are the following. 

1. The proposed method is the first in the literature in terms of VO trajectory 

perturbation based data hiding. 

2. Existing spatial, temporal and transform domain data embedding schemes em­

bed data into most of the cover media features to maximize the capacity. This 

approach causes the inherent problem of the trade-off between steganographic 

security and data hiding capacity since most of the steganalysis techniques use 

statistical measures in detecting the existence of hidden data. Based on the 

findings, it is concluded that the proposed method could provide both statisti­

cal and perceptual invisibility. 

3. Kundur et al. have shown in their work on motion coherent watermarking 

[55] that the capacity of a video data hiding scheme is actually smaller than 

the general approach that considers the video frames as still images. If the 
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individual frames are considered as still images, the visual artifacts may occur 

in areas of static background. Therefore, they suggested that motion infor­

mation should be considered to decrease the artifacts and increase statistical 

invisibility. Based on their research it can be concluded that both statistical 

and perceptual invisibility must be the first priority of the designer. In that 

respect,the strength of this method is its feature of providing both perceptual 

and statistical invisibility. 

4. From the embedding capacity perspective, this method could be used for low 

and moderate rate steganography. It can also be used with other existing data 

hiding methods to increase the overall embedding data rate. 

5. A new expression of the symbol error probability of 2-D non-uniform signal 

constellations is provided by using two approximations. 

VI I . l F U T U R E DIRECTIONS 

The method in this thesis is provided as a proof-of-concept. It is the first implemen­

tation of a semantic data hiding method in the literature which aims at establishing 

a covert channel between the sender and the decoder. Improvement of the proposed 

method is possible in different areas as listed below. 

VII . 1.1 Near Term Focus 

This algorithm may be implemented using more sophisticated trajectory estimation 

methods which take into consideration the ball motion phases (i.e. rolling, flying, in 

possession etc.) resulting in fully automatic methods. This is a promising scope for 

building more complex algorithms for data hiding in sports videos. 

The proposed method is demonstrated for table tennis and soccer videos. This 

method could be investigated for extension to other sports videos such as basketball, 

golf etc. for which the tracking algorithm requirements are different. 

VII . 1.2 Long Term Focus 

As the technology move towards 3D video standards, a 3D implementation of the 

proposed method could also be considered as a possible research topic. 
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Robustness of a tracking algorithm against illumination changes in the video 

frames is still an active research field. Considering the valumetric attacks aiming at 

changing the illumination, the proposed method could be improved by incorporation 

of a tracking algorithm such as the one proposed in [83, 84] to mitigate effects of 

such attacks. 

The accuracy of a tracking algorithm is essential to increasing the performance of 

this method. More robust methods that can deal with segmentation and tracking of 

non-rigid objects such as [85] could well be investigated to improve the performance 

of the proposed algorithm. 

Incorporation of error control coding could be another area that needs further 

investigation. 

In order to incorporate the proposed method into an object based video coding 

standard, such as MPEG-4, a motion vector based object tracking algorithm could 

be implemented. In this case, after motion estimation, a global common motion 

vector should be computed for the pixels belonging to the same segmented object. 

This approach would give the designer the opportunity to shift the pixel locations, 

which will be computed by embedding quantizer, to non-integer pixel locations i.e. 

1/2,1/4 and 1/8. This could be a very promising future work in the field of motion 

based data hiding which will help increase the capacity. 

Another solution worth investigating is to frame-by-frame coordinate quantization 

while preserving the semantic meaning of the object motion. In this case, individual 

x and y coordinates of the centroid coordinates are quantized using QIM techniques 

or a reversible transform such as Difference Expansion. 

And finally the proposed method operates on consecutive frames to embed the 

data through the perturbations of video object trajectories. As discussed earlier un­

der different chapters, what happens when intentional or unintentional frame drop­

ping occurs? One solution is to resend the data based upon an ACK (Acknowledge­

ment) signal from the decoder. 



121 

REFERENCES 

[1] Petitcolas, F., "LSB hiding examples," O n l i n e R e s o u r c e w w w . p e t i t c o l a s . n e t / 

f ab ien . 

[2] Fridrich, J., "Applications of data hiding in digital images," Online Resource 

www.ws.binghamton.edu/f r idr ich . 

[3] Moore, B., Takahara, G., and Alajaji, F., "Pairwise optimization of modulation 

constellations," in [Communications, Computers and Signal Processing, 2009. 

PacRim 2009. IEEE Pacific Rim Conference on], 181 -186 (Aug. 2009). 

[4] Yilmaz, A., Javed, O., and Shah, M., "Object tracking: A survey," ACM Corn-

put. Surv. 38(4), 13 (2006). 

[5] Maggio, E., Smerladi, F., and Cavallaro, A., "Adaptive multifeature tracking 

in a particle filtering framework," Circuits and Systems for Video Technology, 

IEEE Transactions on 17(10), 1348 -1359 (2007). 

[6] Ren, J., Xu, M., Orwell, J., and Jones, G., "Real-time modeling of 3-d soccer 

ball trajectories from multiple fixed cameras," Circuits and Systems for Video 

Technology, IEEE Transactions on 18, 350 -362 (March 2008). 

[7] Bertalmio, M., Vese, L., Sapiro, G., and Osher, S., "Simultaneous structure and 

texture image inpainting," in [Computer Vision and Pattern Recognition, 2003. 

Proceedings. 2003 IEEE Computer Society Conference on], 2, II - 707-12 vol.2 

(June 2003). 

[8] Ourique, F., Licks, V., Jordan, R., and Perez-Gonzalez, F., "Angle qim: a nov.l 

watermark embedding scheme robust against amplitude scaling distortions," in 

[Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). 

IEEE International Conference on], 2, ii/797 - ii/800 Vol. 2 (March 2005). 

[9] Cay, A., R. Z. and Popescu, D., "Video object trajectory perturbation based 

data hiding satisfying statistical and perceptual invisibility," in [45th Annual 

Conference on Information Sciences and Systems (CISS 2011)}, (March 2011). 

[10] Moulin, P., "The role of information theory in watermarking and its application 

to image watermarking," Signal Processing 81(6), 1121 - 1139 (2001). 

http://OnlineResourcewww.petitcolas.net/
http://www.ws.binghamton.edu/fridrich


122 

[11] Wu, M., Multimedia Data Hiding, PhD Thesis, Princeton University, Princ-

ton,NJ (June 2001). 

[12] Cox, I., Kilian, J., Leighton, F., and Shamoon, T., "Secure spread spectrum wa­

termarking for multimedia," Image Processing, IEEE Transactions on 6, 1673-

1687 (December 1997). 

[13] Perez-Freire, L. and Perez-Gonzalez, F., "Spread-spectrum watermarking secu­

rity," Information Forensics and Security, IEEE Transactions on 4, 2-24 (March 

2009). 

[14] Ramkumar, M. and Akansu, A., "Signaling methods for multimedia steganog­

raphy," Signal Processing, IEEE Transactions on 52, 1100 - 1111 (Apr. 2004). 

[15] Chen, B. and Wornell, G., "Quantization index modulation: a class of provably 

good methods for digital watermarking and information embedding," Informa­

tion Theory, IEEE Transactions on 47, 1423 -1443 (May 2001). 

[16] Wu, H.-C, Wu, N.-L, Tsai, C.-S., and Hwang, M.-S., "Image steganographic 

scheme based on pixel-value differencing and lsb replacement methods," Vi­

sion, Image and Signal Processing, IEE Proceedings - 152, 611 - 615 (October 

September). 

[17] Yang, C.-H., Weng, C.-Y., Wang, S.-J., and Sun, H.-M., "Adaptive data hiding 

in edge areas of images with spatial lsb domain systems," Information Forensics 

and Security, IEEE Transactions on 3, 488 -497 (September 2008). 

[18] Mielikainen, J., "LSB matching revisited," Signal Processing Letters, IEEE 13, 

285 - 287 (May 2006). 

[19] Luo, W., Huang, F., and Huang, J., "Edge adaptive image steganography based 

on LSB matching revisited," Information Forensics and Security, IEEE Trans­

actions on 5, 1-1 (Jun 2010). 

[20] Senear, H. T., Ramkumar, M., and Akansu, A. N., "An overview of scalar 

quantization based data hiding methods," Signal Process. 86(5), 893-914 (2006). 

[21] Barni, M., Bartolini, F., and Checcacci, N., "Watermarking of mpeg-4 video 

objects," Multimedia, IEEE Transactions on 7, 23 - 32 (Feb. 2005). 



123 

[22] Koz, A. and Alatan, A., "Oblivious spatio-temporal watermarking of digital 

video by exploiting the human visual system," Circuits and Systems for Video 

Technology, IEEE Transactions on 18, 326 -337 (March 2008). 

[23] Steven, S., "Motion sensitive video watermarking," Tech. Rep. 825, NAT.LAB. 

(Aug. 2001). 

[24] Mihcak, M., Information Rising Codes and Their Applications to Images and 

Audio, PhD Thesis, Univesity of Illinois at Urbana-Champaign, Urbana,Illinois 

(2002). 

[25] Moulin, P. and Mihak, M. K., "The parallel-gaussian watermarking game," 

IEEE Trans.on Information Theory 50, 272-289 (2000). 

[26] Cohen, A. and Lapidoth, A., "On the gaussian watermarking game," IEEE 

Trans. Inform. Theory AS, 1639-1667 (2000). 

[27] Jeng-Shyang Pan, Hsiang-Cheh Huang, L. C , [Intelligent Watermarking Tech­

niques], World Scientific Publishing, Tuck Link,Singapore, 1st ed. (2004). 

[28] Cox, I. J., Miller, M. L., and Bloom, J. A., "Watermarking applications and their 

properties," in [International Conference on Information Technology: Coding 

and Computing], 6-10 (2000). 

[29] Anderson, R., ed., [Information Hiding:First International Workshop], Springer-

Verlag, Berlin, Germany (1996). 

[30] Petitcolas, F. A. P., Anderson, R. J., and Kuhn, M. G., "Information hiding -

a survey," Proceedings of the IEEE 87, 1062-1078 (July 1999). 

[31] Langelaar, G., Setyawan, I., and Lagendijk, R., "Watermarking digital im­

age and video data, a state-of-the-art overview," Signal Processing Magazine, 

IEEE 17, 20 -46 (Sep. 2000). 

[32] Alattar, A., Lin, E., and Celik, M., "Digital watermarking of low bit-rate ad­

vanced simple profile MPEG-4 compressed video," Circuits and Systems for 

Video Technology, IEEE Transactions on 13, 787 - 800 (Aug. 2003). 

[33] Hartung, F. and Girod, B., "Watermarking of uncompressed and compressed 

video," Signal Processing 66(3), 283 - 301 (1998). 



124 

[34] Langelaar, G. and Lagendijk, "Optimal differential energy watermarking of dct 

encoded images and video," Image Processing, IEEE Transactions on 10, 148 

-158 (Jan. 2001). 

[35] Chen, S. and Leung, H., "A temporal approach for improving intra-frame con­

cealment performance in H.264/AVC," Circuits and Systems for Video Technol­

ogy, IEEE Transactions on 19, 422-426 (March 2009). 

[36] Wong, K. S., Tanaka, K., Takagi, K., and Nakajima, Y., "Complete video 

quality-preserving data hiding," Circuits and Systems for Video Technology, 

IEEE Transactions on 19, 1499 -1512 (Oct. 2009). 

[37] Swanson, M., Zhu, B., and Tewfik, A., "Multiresolution scene-based video wa­

termarking using perceptual models," Selected Areas in Communications, IEEE 

Journal on 16, 540 -550 (May 1998). 

[38] Mukherjee, D., Chae, J. J., Mitra, S. K., and ManJuneath, B. S., "A source and 

channel coding framework for vector based data hiding in video," Circuits and 

Systems for Video Technology, IEEE Transactions on 10, 630-645 (June 2000). 

[39] Wang, P., Zheng, Z., and Ying, J., "A novel video watermark technique in mo­

tion vectors," in [Audio, Language and Image Processing, 2008. ICALIP 2008. 

International Conference on], 1555 -1559 (July 2008). 

[40] Kezheng, L., Wei, Y., and Pie, L., "Video watermarking temporal synchroniza­

tion on motion vector," in [Intelligent System and Knowledge Engineering, 2008. 

ISKE 2008. 3rd International Conference on], 1, 1105 -1110 (Nov. 2008). 

[41] Liu, Z., Liang, H., Niu, X., and YixianYang, "A robust video watermarking in 

motion vectors," in [Signal Processing, 2004- Proceedings. ICSP '04- 2004 7th 

International Conference on], 3, 2358 - 2361 vol.3 (Aug. 2004). 

[42] Bodo, Y., Laurent, N., and Dugelay, J.-L., "Watermarking video, hierarchical 

embedding in motion vectors," in [Image Processing, 2003. ICIP 2003. Proceed­

ings. 2003 International Conference on], 2, II - 739-42 vol.3 (Sept. 2003). 

[43] Zhang, C. and Su, Y., "Video steganalysis based on aliasing detection," Elec­

tronics Letters 44, 801 -803 (June 2008). 



125 

[44] Mohaghegh, N. and Fatemi, 0., "H.264 copyright protection with motion vector 

watermarking," in [Audio, Language and Image Processing, 2008. ICALIP 2008. 

International Conference on], 1384 -1389 (July 2008). 

[45] Deguillaume, F., Csurka, G., O'Ruanaidh, J. J., and Pun, T., "Robust 3D 

DFT video watermarking," Security and Watermarking of Multimedia Con­

tents 3657(1), SPIE (1999). 

[46] Liu, Y. and Zhao, J., "Rst invariant video watermarking based on Id dft and 

radon transform," in [Visual Information Engineering, 2008. VIE 2008. 5th 

International Conference on], 443 -448 (Aug. 2008). 

[47] Avcibas, I., Memon, N., and Sankur, B., "Steganalysis using image quality 

metrics," Image Processing, IEEE Transactions on 12, 221 - 229 (Feb. 2003). 

[48] Gul, G. and Kurugollu, F., "Svd-based universal spatial domain image steganal­

ysis," Information Forensics and Security, IEEE Transactions on 5, 349 -353 

(June 2010). 

[49] Pevny, T., Bas, P., and Fridrich, J., "Steganalysis by subtractive pixel adjacency 

matrix," Information Forensics and Security, IEEE Transactions on 5, 215 -224 

(June 2010). 

[50] Yang, C , Liu, F., Luo, X., and Liu, B., "Steganalysis frameworks of embedding 

in multiple least-significant bits," Information Forensics and Security, IEEE 

Transactions on 3, 662 -672 (Dec. 2008). 

[51] Dumitrescu, S. and Wu, X., "A new framework of lsb steganalysis of digital 

media," Signal Processing, IEEE Transactions on 53, 3936 - 3947 (Oct. 2005). 

[52] Ker, A., "Steganalysis of lsb matching in grayscale images," Signal Processing 

Letters, IEEE 12, 441 - 444 (June 2005). 

[53] Gul, G., Dirik, A., and Avcibas, I., "Steganalytic features for jpeg compression-

based perturbed quantization," Signal Processing Letters 14, 205 -208 (March 

2007). 

[54] Li, B., Huang, J., and Shi, Y. Q., "Steganalysis of yass," Information Forensics 

and Security, IEEE Transactions on 4, 369 -382 (Sept. 2009). 



126 

[55] Budhia, U., Kundur, D., and Zourntos, T., "Digital video steganalysis exploit­

ing statistical visibility in the temporal domain," Information Forensics and 

Security, IEEE Transactions on 1, 502 -516 (Dec. 2006). 

[56] Pankajakshan, V., Doerr, G., and Bora, P., "Detection of motion-incoherent 

components in video streams," Information Forensics and Security, IEEE Trans­

actions on 4, 49 -58 (March 2009). 

[57] Doerr, G. and Dugelay, J.-L., "Security pitfalls of frame-by-frame approaches to 

video watermarking," Signal Processing, IEEE Transactions on 52, 2955 - 2964 

(Oct. 2004). 

[58] Su, K., Kundur, D., and Hatzinakos, D., "Statistical invisibility for collusion-

resistant digital video watermarking," Multimedia, IEEE Transactions on 7, 43 

- 51 (Feb. 2005). 

[59] Voran, S. and Scharf, L., "Polar coordinate quantizers that minimize mean-

squared error," Signal Processing, IEEE Transactions on 42(6), 1559 -1563 

(1994). 

[60] Peric, Z., Djordjevic, I., Bogosavljevic, S., and StefaNov.c, M., "Design of signal 

constellations for gaussian channel by using iterative polar quantization," in 

[Electrotechnical Conference, 1998. MELECON 98., 9th Mediterranean], 2, 866 

-869 (May 1998). 

[61] Ibnkahla, M., [Signal Processing for mobile communications handbook], CRC 

Press, Boca Raton,FL, 1st ed. (2005). 

[62] Babu, R., Ramakrishnan, K., and Srinivasan, S., "Video object segmentation: 

a compressed domain approach," Circuits and Systems for Video Technology, 

IEEE Transactions on 14, 462 - 474 (April 2004). 

[63] Erdem, C , Sankur, B., and Tekalp, A., "Performance measures for video object 

segmentation and tracking," Image Processing, IEEE Transactions on 13, 937 

-951 (July 2004). 

[64] Meier, T. and Ngan, K., "Segmentation and tracking of moving objects for 

content-based video coding," Vision, Image and Signal Processing, IEE Pro­

ceedings - 146, 144 -150 (June 1999). 



127 

[65] Tsai, Y.-P., Lai, C.-C, Hung, Y.-P., and Shih, Z.-C, "A bayesian approach to 

video object segmentation via merging 3-d watershed volumes," Circuits and 

Systems for Video Technology, IEEE Transactions on 15, 175 - 180 (jan. 2005). 

[66] Comaniciu, D. and Ramesh, V., "Mean shift and optimal prediction for efficient 

object tracking," in [Image Processing, 2000. Proceedings. 2000 International 

Conference on], (2000). 

[67] Collins, R., "Mean-shift blob tracking through scale space," in [Computer Vi­

sion and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society 

Conference on], 2, II - 234-40 (2003). 

[68] Mihaylova, L. and Boel, R., "A particle filter for freeway traffic estimation," in 

[Decision and Control, 2004. CDC. 43rd IEEE Conference on], 2, 2106 - 2111 

(Dec. 2004). 

[69] Zhou, S. K., Chellappa, R., and Moghaddam, B., "Visual tracking and recog­

nition using appearance-adaptive models in particle filters," Image Processing, 

IEEE Transactions on 13(11), 1491 -1506 (2004). 

[70] Rathi, Y., Vaswani, N., Tannenbaum, A., and Yezzi, A., "Tracking deforming 

objects using particle filtering for geometric active contours," Pattern Analysis 

and Machine Intelligence, IEEE Transactions on 29, 1470 -1475 (Aug. 2007). 

[71] Maggio, E., Smerladi, F., and Cavallaro, A., "Adaptive multifeature tracking 

in a particle filtering framework," Circuits and Systems for Video Technology, 

IEEE Transactions on 17(10), 1348 -1359 (2007). 

[72] Huang, C.-L., Shih, H.-C, and Chen, C.-L., "Shot and scoring events identifi­

cation of basketball videos," in [Multimedia and Expo, 2006 IEEE International 

Conference on], 1885 -1888 (2006). 

[73] Chu, W.-T., Wang, C.-W., and Wu, J.-L., "Extraction of baseball trajectory 

and physics-based validation for single-view baseball video sequences," in [Mul­

timedia and Expo, 2006 IEEE International Conference on], 1813 -1816 (2006). 

[74] Yu, X., Leong, H., Xu, C , and Tian, Q., "Trajectory-based ball detection and 

tracking in broadcast soccer video," Multimedia, IEEE Transactions on 8, 1164 

-1178 (Dec. 2006). 



128 

[75] Kim, J.-Y. and Kim, T.-Y., "Soccer ball tracking using dynamic kalman filter 

with velocity control," in [Computer Graphics, Imaging and Visualization, 2009. 

CGIV '09. Sixth International Conference on], 367 -374 (Aug. 2009). 

[76] Wong, K. and Dooley, L., "High-motion table tennis ball tracking for umpir­

ing applications," in [Signal Processing (ICSP), 2010 IEEE 10th International 

Conference on], 2460 -2463 (2010). 

[77] Sarkar, A., Nataraj, L., ManJuneath, B., and Madhow, U., "Estimation of 

optimum coding redundancy and frequency domain analysis of attacks for yass 

- a randomized block based hiding scheme," in [Image Processing, 2008. ICIP 

2008. 15th IEEE International Conference on], 1292 -1295 (2008). 

[78] Bertalmio, M., Vese, L., Sapiro, G., and Osher, S., "Simultaneous structure and 

texture image inpainting," Image Processing, IEEE Transactions on 12, 882 -

889 (Aug. 2003). 

[79] Bhat, S., "Object removal by examplar-based impainting," Online Resource 

www.cc.gatech.edu/~sooraj/inpainting. 

[80] Porikli, F., T. O. and Meer, P., "Covariance tracking using model update based 

on means on riemannian manifolds," in [Computer Vision and Pattern Recogni­

tion (CVPR), 2011 IEEE Computer Society Conference], 1, 728 -735 (2006). 

[81] Aly, H., "Data hiding in motion vectors of compressed video based on their 

associated prediction error," Information Forensics and Security, IEEE Trans­

actions on 6, 14 -18 (March 2011). 

[82] Fang, D.-Y. and Chang, L.-W., "Data hiding for digital video with phase of 

motion vector," in [Circuits and Systems, 2006. ISC AS 2006. Proceedings. 2006 

IEEE International Symposium on], 1422-1425 (2006). 

[83] Cogun, F. and Cetin, A., "Object tracking under illumination variations us­

ing 2d-cepstrum characteristics of the target," in [Multimedia Signal Processing 

(MMSP), 2010 IEEE International Workshop on], 521 -526 (2010). 

[84] Porikli, F., "Achieving real-time object detection and tracking under extreme 

conditions," in [Real Time Image Processing, Journal of], 1(1), 33 -40 (2006). 

http://www.cc.gatech.edu/~sooraj/inpainting


129 

[85] Erdem, C , Tekalp, A., and Sankur, B., "Video object tracking with feedback 

of performance measures," Circuits and Systems for Video Technology, IEEE 

Transactions on (Apri 2003). 



130 

APPENDIX A 

Q FUNCTION 

The Q function is the tail probability of the standard normal distribution. Fig.65 

shows the plot of the Q function whose definition is given as 

Q(x) — f e 2 du (68) 

Q(x) = 1 — Q(—x) = 1 — $(x) where $(x) is the cumulative distribution of the 

Normal distribution. 

The Q function can also be expressed in terms of the error function as 

Q(x) = I - \erf{^) = \erfc{fA 
where complementary error function erfc is defined as 

2 f°° -t2 

erfc(x) = —= j e~dt (69) 
V* Jx 

It is also easy to show that erf(x) = 1 — 2Q(\/2x) and erfc(x) = 2Q(y/2x) 
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APPENDIX B 

STEGANALYSIS 

Information hiding in digital media results in modifications of the cover signal prop­

erties, introducing degradations which yield information leakage about the hidden 

data. Therefore, steganalysis of the suspected data aims at detecting and/or esti­

mating potentially hidden information from the observed stego data with little or 

no knowledge about the underlying steganographic algorithm. The first step of ste­

ganalysis is feature extraction where a set of distinguishing statistics are obtained 

from the stego and cover data. The second step is the classification of the input data 

by a trained classifier (e.g., Support Vector Machine (SVM) classifier) as either being 

clear or carrying a hidden message. 

Avcibas et al. in [47] propose a set of image quality metrics as the feature set for 

steganalyzer design. Brief descriptions of the metrics that are used for steganalysis 

are provided next. 

B. l MEASURES BASED ON PIXEL DIFFERENCES 

These measures calculate the total distortion between cover and stego frames based 

on pixel-wise differences between the two or certain moments of the difference frame. 

Let Ck(i,j) represents the pixel value at (i,j) in band kth of the frame. Note when 

RGB color space is used k = 1, 2, 3 and the pixel values can be in the range {0, ...255} 

at each band. Let Sk(i,j) represent the k band stego frame, M%,i = 1,2, . . . ,10 

represent the features used in the steganalyzer and finally ek denotes the error over 

all pixels. Specifically ek = Ck{i,j) - Sk(i,j) = I]f=i[Cfc(«, j) ~ Sk{i,j)}2 will denote 

the sum of errors in each band at pixel (i,j). 

B . l . l Minkowsky Measures: 

The Ly norm of the dissimilarity of two frames(which can be considered as still 

images) can be calculated by taking the Minkowsky average of the pixel differences 

spatially and then over the bands as 

MT = Jc E \w E [C*(»'') - 5*(M)]7V (70) 
k=l I %,3 = l ) 
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7 = 1 corresponds to mean absolute error M\ and 7 = 2 is the mean square error 

(MSE), M2 respectively. 

B.l .2 Correlation Based Measures: 

The closeness between two frames can also be measured in terms of correlation func­

tion. The Image Fidelity and Normalized Cross-Correlation measures the similarity 

between two frames. If the difference between the two frames approaches zero, the 

correlation based measures tend to go to one. Some commonly used correlation based 

measures are image fidelity and normalized-cross correlation described below. 

Image Fidelity = M3 = 1 
1 y . E t ^ [ g f c ( t , j ) - g f c ( i , j ) ] 5 

1 Y^,3=\Ck{i,j)Sk{i,j) 

(71) 

Normalized Cross — Correlation = MA = ,, , (72) 
K E^=oCfc(»,j)2 

B.2 SPECTRAL MEASURES 

In this category we consider the distortion penalty functions obtained from the com­

plex Fourier spectrum of the frames [47]. Let Discrete Fourier Transforms (DFT) of 

the original and data embedded (stego) frames be denoted by Fk(u,v) and Tk(u,v) 

respectively. The 2D-DFT is defined as: 

J V - l 

Tk(u, v) = 2 . Ck(m,n)exp —2nim— exp —2-Kin— (73) 
m,n=Q 

N. 

where k = 1,2,... ,K. The phase and magnitude of the DFT are defined by 

4>{u,v) = arctan(Ffc(tt,v)) and F{u,v) = \T(u,v)\ respectively. The spectral magni­

tude distortion is given by 

M s ^ E \F(U,V)-F(U,V)2 (74) 
m,n=0 

B.3 PERCEPTUAL MEASURES 

B.3.1 Peak Signal-to-Noise Ratio (PSNR): 

M mi™ / [mzx(C{i,j))}2\ 
M6 = 101og10( ^ r ^ ] (75) 
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where max(C(i, j)) is the maximum pixel value and MSE is the mean squared error 

that can be found using metric M2. 

B.4 HISTOGRAM MEASURES 

B.4.1 K-L Divergence: 

j , T = £ f l l o g = £ tog (76) 
I ' I 

where Hm and H0 represents the modified (stego) and original frame histogram re­

spectively. 

B.4.2 x2 (Chi-Square) Metric: 

V B [Hm(3)-H0(3)]2 

Z^,=i MS = 0 < X
2(Hm, H0) = J=

A; H^A;H°b) < 1 (77) 

where Hm, Ha and B represent the modified (stego), original frame histograms and 

number of bins respectively. Also NHo = ^3=i H0{j) and NHm = z~23=i Hm(j). 
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