1,151 research outputs found

    Visual Snow: Old Problem, New Understanding

    Get PDF

    Visually evoked responses from the blind field of hemianopic patients

    Get PDF
    Hemianopia is a visual field defect characterized by decreased vision or blindness in the contralesional visual field of both eyes. The presence of well documented above-chance unconscious behavioural responses to visual stimuli presented to the blind hemifield (blindsight) has stimulated a great deal of research on the neural basis of this important phenomenon. The present study is concerned with electrophysiological responses from the blind field. Since previous studies found that transient Visual Evoked Potentials (VEPs) are not entirely suitable for this purpose here we propose to use Steady-State VEPs (SSVEPs). A positive result would have important implications for the understanding of the neural bases of conscious vision. We carried out a passive SSVEP stimulation with healthy participants and hemianopic patients. Stimuli consisted of four black-and-white sinusoidal Gabor gratings presented one in each visual field quadrant and flickering one at a time at a 12Hz rate. To assess response reliability a Signal-to-Noise Ratio analysis was conducted together with further analyses in time and frequency domains to make comparisons between groups (healthy participants and patients), side of brain lesion (left and right) and visual fields (sighted and blind). The important overall result was that stimulus presentation to the blind hemifield yielded highly reliable responses with time and frequency features broadly similar to those found for cortical extrastriate areas in healthy controls. Moreover, in the intact hemifield of hemianopics and in healthy controls there was evidence of a role of prefrontal structures in perceptual awareness. Finally, the presence of different patterns of brain reorganization depended upon the side of lesion

    An Objectivation of Visual Perception using Virtual Reality, Brain-Computer Interfaces and Deep Learning

    Get PDF
    Der Sehsinn ermöglicht eine detailgenaue Wahrnehmung der Welt. Virtual Reality (VR), Brain-Computer Interfaces (BCI) und Deep Learning sind neue Technologien, die uns hierbei neue Möglichkeiten für die Erforschung der visuellen Wahrnehmung geben. In dieser Dissertation wird ein System für die Augenheilkunde vorgestellt, das Augenkrankheiten in VR simulieren kann und durch Hinzufügen von BCI und KI eine objektive Diagnostik von Gesichtsfeldausfällen ermöglicht. Für ein besseres Verständnis der Arbeit wird das menschliche Sehen mit Modellen der Computer Vision verglichen und basierend hierauf ein allgemeines vierstufiges Seh-Modell eingeführt. Innerhalb des Modells werden Schnittstellen zwischen der biologisch-realen und der technologisch-virtuellen Welt evaluiert. Besteht heutzutage bei einem Patienten der Verdacht auf einen Gesichtsfeldausfall (Skotom), so werden ophthalmologische Geräte wie das Perimeter zur Ausmessung des Gesichtsfeldes eingesetzt. Das dem Stand der Technik entsprechende Verfahren liegt dem subjektiven Feedback des Patienten zugrunde. Entsprechend können Lerneffekte beim Patienten das Ergebnis nicht unwesentlich beeinflussen. Um diese Problematiken zu umgehen, wurde in dieser Dissertation ein objektives Perimetriesystem auf Basis von VR, BCI und Deep Learning erfolgreich implementiert und evaluiert. Ein weiterer Vorteil des neuen Systems ist die Möglichkeit zur Einsetzung bei Menschen mit Schwerbehinderung, Kindern und Tieren. Der Lösungsansatz dieser Dissertation ist die Simulation (pathologischer/eingeschränkter) Sehzustände. Hierfür wurde der Zustand von Glaukompatienten mit Hilfe von VR-Technologien virtuell abgebildet. Die resultierende VR-Anwendung bildet individuelle Glaukomverläufe immersiv in VR ab. Evaluiert wurde die Simulationsumgebung mit medizinischem Fachpersonal und Glaukompatienten an der Augenklinik des Universitätsklinikums Heidelberg (\textit{N}=22). Hierbei wurde gezeigt, dass VR eine geeignete Maßnahme zur Simulation von Sehbedingungen ist und zum Verständnis des Patientenzustandes einen Beitrag leisten kann. Ausgehend von dieser Simulationsumgebung wurden weitere Software- und Hardwaremodule hinzugefügt. Erzeugte stationäre visuelle Stimuli wurden hierbei eingesetzt, um (simulierte) Sehfehler durch ein Elektroenzephalographie (EEG)-basiertes BCI zu erkennen. Das System wurde in einer internationalen Laborstudie (\textit{N}=15) in Zusammenarbeit mit dem Massachusetts Institute of Technology getestet und validiert. Die gesammelten Daten deuten darauf hin, dass das System für die Klassifizierung des zentralen (88\% Genauigkeit pro 2,5 Sekunden EEG-Daten) und peripheren Gesichtsfeldes (63-81\% Genauigkeit) geeignet ist, während es für periphere Positionen aufgrund der Technologiesensitivität zu Einschränkungen (50-57\% Genauigkeit) kommt. Entsprechend sollte das System für Skotome eingesetzt werden, sofern der Sehausfall das zentrale Sehen oder ganze Quadranten des Gesichtsfelds betrifft. Aufgrund der Notwendigkeit für einen besseren ambulanten EEG-Messaufbau werden modulare, plattformübergreifende Softwareimplementierungen und neuartige, zum Patent angemeldete, EEG-Elektroden vorgestellt. Die neuartigen Elektroden bieten ein besseres Signal-zu-Rausch-Verhältnis als herkömmliche Trockenelektroden (\SI{1,35}{dB} Verbesserung), sind schnell anzulegen, wiederverwendbar und hinterlassen kaum bis keine unerwünschten Rückstände im Haar des Patienten. Diese Dissertation legt den Grundstein für ein VR, BCI und KI-basiertes Perimetrie-Messsystem, welches insbesondere im ambulanten Setting oder bei Patienten mit Einschränkungen zum Einsatz kommen könnte

    An Objectivation of Visual Perception using Virtual Reality, Brain-Computer Interfaces and Deep Learning

    Get PDF
    Der Sehsinn ermöglicht eine detailgenaue Wahrnehmung der Welt. Virtual Reality (VR), Brain-Computer Interfaces (BCI) und Deep Learning sind neue Technologien, die uns hierbei neue Möglichkeiten für die Erforschung der visuellen Wahrnehmung geben. In dieser Dissertation wird ein System für die Augenheilkunde vorgestellt, das Augenkrankheiten in VR simulieren kann und durch Hinzufügen von BCI und KI eine objektive Diagnostik von Gesichtsfeldausfällen ermöglicht. Für ein besseres Verständnis der Arbeit wird das menschliche Sehen mit Modellen der Computer Vision verglichen und basierend hierauf ein allgemeines vierstufiges Seh-Modell eingeführt. Innerhalb des Modells werden Schnittstellen zwischen der biologisch-realen und der technologisch-virtuellen Welt evaluiert. Besteht heutzutage bei einem Patienten der Verdacht auf einen Gesichtsfeldausfall (Skotom), so werden ophthalmologische Geräte wie das Perimeter zur Ausmessung des Gesichtsfeldes eingesetzt. Das dem Stand der Technik entsprechende Verfahren liegt dem subjektiven Feedback des Patienten zugrunde. Entsprechend können Lerneffekte beim Patienten das Ergebnis nicht unwesentlich beeinflussen. Um diese Problematiken zu umgehen, wurde in dieser Dissertation ein objektives Perimetriesystem auf Basis von VR, BCI und Deep Learning erfolgreich implementiert und evaluiert. Ein weiterer Vorteil des neuen Systems ist die Möglichkeit zur Einsetzung bei Menschen mit Schwerbehinderung, Kindern und Tieren. Der Lösungsansatz dieser Dissertation ist die Simulation (pathologischer/eingeschränkter) Sehzustände. Hierfür wurde der Zustand von Glaukompatienten mit Hilfe von VR-Technologien virtuell abgebildet. Die resultierende VR-Anwendung bildet individuelle Glaukomverläufe immersiv in VR ab. Evaluiert wurde die Simulationsumgebung mit medizinischem Fachpersonal und Glaukompatienten an der Augenklinik des Universitätsklinikums Heidelberg (\textit{N}=22). Hierbei wurde gezeigt, dass VR eine geeignete Maßnahme zur Simulation von Sehbedingungen ist und zum Verständnis des Patientenzustandes einen Beitrag leisten kann. Ausgehend von dieser Simulationsumgebung wurden weitere Software- und Hardwaremodule hinzugefügt. Erzeugte stationäre visuelle Stimuli wurden hierbei eingesetzt, um (simulierte) Sehfehler durch ein Elektroenzephalographie (EEG)-basiertes BCI zu erkennen. Das System wurde in einer internationalen Laborstudie (\textit{N}=15) in Zusammenarbeit mit dem Massachusetts Institute of Technology getestet und validiert. Die gesammelten Daten deuten darauf hin, dass das System für die Klassifizierung des zentralen (88\% Genauigkeit pro 2,5 Sekunden EEG-Daten) und peripheren Gesichtsfeldes (63-81\% Genauigkeit) geeignet ist, während es für periphere Positionen aufgrund der Technologiesensitivität zu Einschränkungen (50-57\% Genauigkeit) kommt. Entsprechend sollte das System für Skotome eingesetzt werden, sofern der Sehausfall das zentrale Sehen oder ganze Quadranten des Gesichtsfelds betrifft. Aufgrund der Notwendigkeit für einen besseren ambulanten EEG-Messaufbau werden modulare, plattformübergreifende Softwareimplementierungen und neuartige, zum Patent angemeldete, EEG-Elektroden vorgestellt. Die neuartigen Elektroden bieten ein besseres Signal-zu-Rausch-Verhältnis als herkömmliche Trockenelektroden (\SI{1,35}{dB} Verbesserung), sind schnell anzulegen, wiederverwendbar und hinterlassen kaum bis keine unerwünschten Rückstände im Haar des Patienten. Diese Dissertation legt den Grundstein für ein VR, BCI und KI-basiertes Perimetrie-Messsystem, welches insbesondere im ambulanten Setting oder bei Patienten mit Einschränkungen zum Einsatz kommen könnte

    Objectivation of Visual Perception

    Get PDF
    Der Sehsinn ermöglicht eine detailgenaue Wahrnehmung der Welt. Virtual Reality (VR), Brain-Computer Interfaces (BCI) und Deep Learning sind neue Technologien, die uns hierbei neue Möglichkeiten für die Erforschung der visuellen Wahrnehmung geben. In dieser Dissertation wird ein System für die Augenheilkunde vorgestellt, das Augenkrankheiten in VR simulieren kann und durch Hinzufügen von BCI und KI eine objektive Diagnostik von Gesichtsfeldausfällen ermöglicht. Für ein besseres Verständnis der Arbeit wird das menschliche Sehen mit Modellen der Computer Vision verglichen und basierend hierauf ein allgemeines vierstufiges Seh-Modell eingeführt. Innerhalb des Modells werden Schnittstellen zwischen der biologisch-realen und der technologisch-virtuellen Welt evaluiert. Besteht heutzutage bei einem Patienten der Verdacht auf einen Gesichtsfeldausfall (Skotom), so werden ophthalmologische Geräte wie das Perimeter zur Ausmessung des Gesichtsfeldes eingesetzt. Das dem Stand der Technik entsprechende Verfahren liegt dem subjektiven Feedback des Patienten zugrunde. Entsprechend können Lerneffekte beim Patienten das Ergebnis nicht unwesentlich beeinflussen. Um diese Problematiken zu umgehen, wurde in dieser Dissertation ein objektives Perimetriesystem auf Basis von VR, BCI und Deep Learning erfolgreich implementiert und evaluiert. Ein weiterer Vorteil des neuen Systems ist die Möglichkeit zur Einsetzung bei Menschen mit Schwerbehinderung, Kindern und Tieren. Der Lösungsansatz dieser Dissertation ist die Simulation (pathologischer/eingeschränkter) Sehzustände. Hierfür wurde der Zustand von Glaukompatienten mit Hilfe von VR-Technologien virtuell abgebildet. Die resultierende VR-Anwendung bildet individuelle Glaukomverläufe immersiv in VR ab. Evaluiert wurde die Simulationsumgebung mit medizinischem Fachpersonal und Glaukompatienten an der Augenklinik des Universitätsklinikums Heidelberg (\textit{N}=22). Hierbei wurde gezeigt, dass VR eine geeignete Maßnahme zur Simulation von Sehbedingungen ist und zum Verständnis des Patientenzustandes einen Beitrag leisten kann. Ausgehend von dieser Simulationsumgebung wurden weitere Software- und Hardwaremodule hinzugefügt. Erzeugte stationäre visuelle Stimuli wurden hierbei eingesetzt, um (simulierte) Sehfehler durch ein Elektroenzephalographie (EEG)-basiertes BCI zu erkennen. Das System wurde in einer internationalen Laborstudie (\textit{N}=15) in Zusammenarbeit mit dem Massachusetts Institute of Technology getestet und validiert. Die gesammelten Daten deuten darauf hin, dass das System für die Klassifizierung des zentralen (88\% Genauigkeit pro 2,5 Sekunden EEG-Daten) und peripheren Gesichtsfeldes (63-81\% Genauigkeit) geeignet ist, während es für periphere Positionen aufgrund der Technologiesensitivität zu Einschränkungen (50-57\% Genauigkeit) kommt. Entsprechend sollte das System für Skotome eingesetzt werden, sofern der Sehausfall das zentrale Sehen oder ganze Quadranten des Gesichtsfelds betrifft. Aufgrund der Notwendigkeit für einen besseren ambulanten EEG-Messaufbau werden modulare, plattformübergreifende Softwareimplementierungen und neuartige, zum Patent angemeldete, EEG-Elektroden vorgestellt. Die neuartigen Elektroden bieten ein besseres Signal-zu-Rausch-Verhältnis als herkömmliche Trockenelektroden (\SI{1,35}{dB} Verbesserung), sind schnell anzulegen, wiederverwendbar und hinterlassen kaum bis keine unerwünschten Rückstände im Haar des Patienten. Diese Dissertation legt den Grundstein für ein VR, BCI und KI-basiertes Perimetrie-Messsystem, welches insbesondere im ambulanten Setting oder bei Patienten mit Einschränkungen zum Einsatz kommen könnte

    Visual and Brainstem Auditory Evoked Potentials in Neurology

    Get PDF

    Neural responses in a fast periodic visual stimulation paradigm reveal domain-general visual discrimination deficits in developmental prosopagnosia

    Get PDF
    We investigated selective impairments of visual identity discrimination in developmental prosopagnosia (DP), using a fast periodic identity oddball stimulation paradigm with electroencephalography (EEG). In Experiment 1, neural responses to unfamiliar face identity changes were strongly attenuated for individuals with DP as compared to Control participants, to the same extent for upright and inverted faces. This reduction of face identity discrimination responses, which was confirmed in Experiment 2, provides direct evidence for deficits in the visual processing of unfamiliar facial identity in DP. Importantly, Experiment 2 demonstrated that DPs showed attenuated neural responses to identity oddballs not only with face images, but also with non-face images (cars). This result strongly suggests that rapid identity-related visual processing impairments in DP are not restricted to faces, but also affect familiar classes of non-face stimuli. Visual discrimination deficits in DP do not appear to be face-specific. To account for these findings, we propose a new account of DP as a domain-general deficit in rapid visual discrimination

    Psychophysical performance, contingent negative variations, visually evoked cortical potentials, and selective attention : a behavioral and neurophysiological assessment of learning disabilities in children

    Get PDF
    The present experiment was designed to assess whether any attentional, perceptual, or neurophysiological differences exist between children classified as reading disabled and normal. A visual discrimination task was employed, which required attentional and perceptual capabilities; wherein the children were required to selectively attend and respond to one stimulus of a pair and to ignore the other stimulus. Four pairs of stimuli (colors, line orientations, letters, and words) of different levels of complexity were discriminated in order to provide clues as to the possible level of neural processing accounting for the reading disability. The children's ability to attend and to discriminate each stimulus in a pair was measured both behaviorally by psychophysical measures of response accuracy (d’) and reaction time, and also electrophysiologically by visually evoked cortical potentials (VEPs) and contingent negative variations (CNVs). A secondary purpose of the study was to examine whether the learning disability was restricted to one sensory modality. Children who were diagnosed as having either a visual or an auditory disability participated in the experiment so as to determine whether only the visual learning disability children would have difficulty with the visual discrimination task. Therefore, three groups of subjects, matched for age, sex, and IQ, were employed: normal controls (NC), visual learning disabled (VLD), and auditory learning disabled (ALD)

    The utility of latency and spectral analysis methods in evoked potential recordings from patients with hepatic encephalopathy

    Get PDF
    Evoked potentials (EPs) are small phasic potentials that are elicited in conjunction with sensory, motor and cognitive events. EP variables have been assessed in patients with cirrhosis but in general, methods were inadequately standardized and study populations incompletely characterized, leading to some studies questioning the validity of EP’s in diagnosing and monitoring hepatic encephalopathy, while other studies indicated that there is only a low positive yield with these investigations. Few studies have attempted tri-modal sensory and cognitive recordings. Recorded waveforms may demonstrate altered morphology while possessing broadly normal latencies. Since EP analysis is usually performed solely in the time domain, latency measurements do not therefore highlight morphological changes to the waveform and so abnormalities may go unreported. The aim of this study was twofold (i) to measure sensory and cognitive EPs in patients with cirrhosis in relation to their neuropsychiatric status and (ii) to address frequency content in relation to neuropsychiatric status by examining EPs with two spectral techniques, the Fourier Transform (FT) and the Power Spectral Density Estimate (PSD). Seventy patients with biopsy–proven cirrhosis were classified using clinical, psychometric and EEG criteria as unimpaired or as having minimal or overt hepatic encephalopathy (HE). Forty-eight healthy individuals served as controls. Visual (VEPs), brainstem auditory (BAEPs) somatosensory (SSEPs) and cognitive auditory (P300) EPs were recorded under standardized conditions. Significant latency differences were observed in sensory EPs between patients and controls with patient subgroups differences being less significant. The cognitive auditory P300 however, distinguished the patient subpopulations from one another. Frequency shifts are observed in all EP modalities with significant differences also occurring between patient groups. The sensitivity and specificity of the frequency-domain is comparable to that of the time-domain. Paired EP investigations analysed by latency indicate BAEP and P300 best discriminate any degree of encephalopathy; in the frequency domain it is the VEP combined with SEP and in the time-frequency domain it is the SEP. These findings suggest that EPs, when performed as a bank of multimodal tests and with spectral analysis, could provide a sensitive and specific method for the diagnosis and monitoring of hepatic encephalopathy

    Visual Impairment in the absence of ON-pathway signal

    Get PDF
    Congenital retinal diseases are a major cause of childhood and lifelong visual im- pairment. Such conditions can manifest a variable array of severe and subtle ef- fects on vision. Assessment of visual function in children can be challenging; yet, knowledge about phenotype, genotype and impact of these disorders is crucial for providing appropriate support, tailored diagnostics and for developing treatments. ON-and OFF-pathways are separately transmitting information on brightness and darkness from the retina to the cortex, where their interplay is crucial in visual perception. This project investigated the effects of retinal ON-pathway dysfunction on vision. A cohort of 109 patients with ON-pathway dysfunction was examined from four subgroups of visual electrophysiological phenotypes (incomplete and complete Congenital Stationary Night Blindness - CSNB, Duchenne Muscular Dystrophy - DMD, and congenital disorders of N-glycosylation - PMM2-CDG). Using spe- cialised visual evoked potential stimuli, designed to distinguish the ON-and OFF- pathway signal arrival at the striate cortex, marked ON system delays were revealed in patients with subtypes of CSNB, DMD mutations post exon 30 and PMM2-CDG. A child-friendly psychophysical software called LumiTrack was developed to assess motion and contrast perception, two important qualities conveyed by ON-and OFF-pathways. Patients with subtypes of CSNB and PMM2-CDG showed abnormalities in motion perception and subnormal contrast sensitivity, while patients with DMD performed at the level of healthy volunteers. These impairments may occur due to a delay of signal transmission through the retina, resulting in an ON/OFF signal asymmetry within the visual system. A genotype-phenotype comparison suggested a trend of increasing ON/OFF asymmetry associated with genetic defects affecting proteins placed later within the photoreceptor / ON bipolar cell signalling cascade. This systematic study of cortical and behavioural visual function in patients with ON-pathway dysfunction highlights the impairments encountered by patients in visual qualities important for everyday life
    • …
    corecore