5,233 research outputs found

    Objective and automated protocols for the evaluation of biomedical search engines using No Title Evaluation protocols

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evaluation of information retrieval techniques has traditionally relied on human judges to determine which documents are relevant to a query and which are not. This protocol is used in the Text Retrieval Evaluation Conference (TREC), organized annually for the past 15 years, to support the unbiased evaluation of novel information retrieval approaches. The TREC Genomics Track has recently been introduced to measure the performance of information retrieval for biomedical applications.</p> <p>Results</p> <p>We describe two protocols for evaluating biomedical information retrieval techniques without human relevance judgments. We call these protocols No Title Evaluation (NT Evaluation). The first protocol measures performance for focused searches, where only one relevant document exists for each query. The second protocol measures performance for queries expected to have potentially many relevant documents per query (high-recall searches). Both protocols take advantage of the clear separation of titles and abstracts found in Medline. We compare the performance obtained with these evaluation protocols to results obtained by reusing the relevance judgments produced in the 2004 and 2005 TREC Genomics Track and observe significant correlations between performance rankings generated by our approach and TREC. Spearman's correlation coefficients in the range of 0.79–0.92 are observed comparing bpref measured with NT Evaluation or with TREC evaluations. For comparison, coefficients in the range 0.86–0.94 can be observed when evaluating the same set of methods with data from two independent TREC Genomics Track evaluations. We discuss the advantages of NT Evaluation over the TRels and the data fusion evaluation protocols introduced recently.</p> <p>Conclusion</p> <p>Our results suggest that the NT Evaluation protocols described here could be used to optimize some search engine parameters before human evaluation. Further research is needed to determine if NT Evaluation or variants of these protocols can fully substitute for human evaluations.</p

    CDAPubMed: a browser extension to retrieve EHR-based biomedical literature

    Get PDF
    Over the last few decades, the ever-increasing output of scientific publications has led to new challenges to keep up to date with the literature. In the biomedical area, this growth has introduced new requirements for professionals, e.g., physicians, who have to locate the exact papers that they need for their clinical and research work amongst a huge number of publications. Against this backdrop, novel information retrieval methods are even more necessary. While web search engines are widespread in many areas, facilitating access to all kinds of information, additional tools are required to automatically link information retrieved from these engines to specific biomedical applications. In the case of clinical environments, this also means considering aspects such as patient data security and confidentiality or structured contents, e.g., electronic health records (EHRs). In this scenario, we have developed a new tool to facilitate query building to retrieve scientific literature related to EHRs. Results: We have developed CDAPubMed, an open-source web browser extension to integrate EHR features in biomedical literature retrieval approaches. Clinical users can use CDAPubMed to: (i) load patient clinical documents, i.e., EHRs based on the Health Level 7-Clinical Document Architecture Standard (HL7-CDA), (ii) identify relevant terms for scientific literature search in these documents, i.e., Medical Subject Headings (MeSH), automatically driven by the CDAPubMed configuration, which advanced users can optimize to adapt to each specific situation, and (iii) generate and launch literature search queries to a major search engine, i.e., PubMed, to retrieve citations related to the EHR under examination. Conclusions: CDAPubMed is a platform-independent tool designed to facilitate literature searching using keywords contained in specific EHRs. CDAPubMed is visually integrated, as an extension of a widespread web browser, within the standard PubMed interface. It has been tested on a public dataset of HL7-CDA documents, returning significantly fewer citations since queries are focused on characteristics identified within the EHR. For instance, compared with more than 200,000 citations retrieved by breast neoplasm, fewer than ten citations were retrieved when ten patient features were added using CDAPubMed. This is an open source tool that can be freely used for non-profit purposes and integrated with other existing systems

    A traffic classification method using machine learning algorithm

    Get PDF
    Applying concepts of attack investigation in IT industry, this idea has been developed to design a Traffic Classification Method using Data Mining techniques at the intersection of Machine Learning Algorithm, Which will classify the normal and malicious traffic. This classification will help to learn about the unknown attacks faced by IT industry. The notion of traffic classification is not a new concept; plenty of work has been done to classify the network traffic for heterogeneous application nowadays. Existing techniques such as (payload based, port based and statistical based) have their own pros and cons which will be discussed in this literature later, but classification using Machine Learning techniques is still an open field to explore and has provided very promising results up till now

    Computer Science Named Entity Recognition in the Open Research Knowledge Graph

    Get PDF
    Domain-specific named entity recognition (NER) on Computer Science (CS) scholarly articles is an information extraction task that is arguably more challenging for the various annotation aims that can hamper the task and has been less studied than NER in the general domain. Given that significant progress has been made on NER, we anticipate that scholarly domain-specific NER will receive increasing attention in the years to come. Currently, progress on CS NER – the focus of this work – is hampered in part by its recency and the lack of a standardized annotation aims for scientific entities/terms. Directly addressing these issues, this work proposes a standardized task by defining a set of seven contribution-centric scholarly entities for CS NER viz., research problem, solution, resource, language, tool, method, and dataset

    Retrieval of publications addressing shared decision making: an evaluation of full-text searches on medical journal websites.

    Get PDF
    BACKGROUND: Full-text searches of articles increase the recall, defined by the proportion of relevant publications that are retrieved. However, this method is rarely used in medical research due to resource constraints. For the purpose of a systematic review of publications addressing shared decision making, a full-text search method was required to retrieve publications where shared decision making does not appear in the title or abstract. OBJECTIVE: The objective of our study was to assess the efficiency and reliability of full-text searches in major medical journals for identifying shared decision making publications. METHODS: A full-text search was performed on the websites of 15 high-impact journals in general internal medicine to look up publications of any type from 1996-2011 containing the phrase "shared decision making". The search method was compared with a PubMed search of titles and abstracts only. The full-text search was further validated by requesting all publications from the same time period from the individual journal publishers and searching through the collected dataset. RESULTS: The full-text search for "shared decision making" on journal websites identified 1286 publications in 15 journals compared to 119 through the PubMed search. The search within the publisher-provided publications of 6 journals identified 613 publications compared to 646 with the full-text search on the respective journal websites. The concordance rate was 94.3% between both full-text searches. CONCLUSIONS: Full-text searching on medical journal websites is an efficient and reliable way to identify relevant articles in the field of shared decision making for review or other purposes. It may be more widely used in biomedical research in other fields in the future, with the collaboration of publishers and journals toward open-access data

    Towards Agile Academia: An Approach to Scientific Paper Writing Inspired by Software Engineering

    Get PDF
    The construction of scientific papers is performed in service of the greater scientific community. This iterative process is, in effect, an academic economy, where all members benefit from well-written papers. However, many published scientific papers are poorly written; they often lack sufficient detail to allow replication, there is improper usage of citations or a lack of regard to relevant work, reporting is vague or without linked empirical data to allow verification, figures do not correspond to text or are non-sensical, literary elements, e.g., bulleted lists, are used ineffectively, formatting renders certain sections unreadable, and grammatical errors abound. The issues of paper quality are widespread and of varying concern. Similarly, the development of software systems is rife with many processual issues, from high-level architectural flaws to small developer errors, e.g., setting a Boolean value to true instead of false, which can be disastrous in large systems. As an answer to these longstanding concerns, software development methods have emerged over decades, most notably, the Waterfall and Agile approaches. These methods have established software engineering as a professional discipline backed by rigorous, empirical evaluation on many systems. A scientific paper is, conceptually, a system to be developed, much like a software system: it has a name, particular sections codified for different purposes, e.g., as the abstract summarizes and the conclusion concludes, it has an author or authors, it goes through several iterations of refinement, it may reference outside systems and it is eventually released to the public, and possibly maintained in future versions. It is posited that, due to the relatively small nature of most scientific papers (4-20 pages), the Agile method of software development can be used to produce more reliable scientific papers, in a more efficient manner and with better availability to readers, by employing the principles of open-source software, and a version control system, e.g., Git. Agile methods consistently provide deliverables of higher quality; this work intends to demonstrate that Agile can be adapted to streamline the scientific writing process and improve publication quality

    A method for discovering and inferring appropriate eligibility criteria in clinical trial protocols without labeled data

    Get PDF
    BACKGROUND: We consider the user task of designing clinical trial protocols and propose a method that discovers and outputs the most appropriate eligibility criteria from a potentially huge set of candidates. Each document d in our collection D is a clinical trial protocol which itself contains a set of eligibility criteria. Given a small set of sample documents [Formula: see text] , a user has initially identified as relevant e.g., via a user query interface, our scoring method automatically suggests eligibility criteria from D, D ⊃ D', by ranking them according to how appropriate they are to the clinical trial protocol currently being designed. The appropriateness is measured by the degree to which they are consistent with the user-supplied sample documents D'. METHOD: We propose a novel three-step method called LDALR which views documents as a mixture of latent topics. First, we infer the latent topics in the sample documents using Latent Dirichlet Allocation (LDA). Next, we use logistic regression models to compute the probability that a given candidate criterion belongs to a particular topic. Lastly, we score each criterion by computing its expected value, the probability-weighted sum of the topic proportions inferred from the set of sample documents. Intuitively, the greater the probability that a candidate criterion belongs to the topics that are dominant in the samples, the higher its expected value or score. RESULTS: Our experiments have shown that LDALR is 8 and 9 times better (resp., for inclusion and exclusion criteria) than randomly choosing from a set of candidates obtained from relevant documents. In user simulation experiments using LDALR, we were able to automatically construct eligibility criteria that are on the average 75% and 70% (resp., for inclusion and exclusion criteria) similar to the correct eligibility criteria. CONCLUSIONS: We have proposed LDALR, a practical method for discovering and inferring appropriate eligibility criteria in clinical trial protocols without labeled data. Results from our experiments suggest that LDALR models can be used to effectively find appropriate eligibility criteria from a large repository of clinical trial protocols
    • 

    corecore