32 research outputs found

    Assessing the impact of spectral resolution on classification of lowland native grassland communities based on field spectroscopy in Tasmania, Australia

    Get PDF
    This paper presents a case study for the analysis of endangered lowland native grassland communities in the Tasmanian Midlands region using field spectroscopy and spectral convolution techniques. The aim of the study was to determine whether there was significant improvement in classification accuracy for lowland native grasslands and other vegetation communities based on hyperspectral resolution datasets over multispectral equivalents. A spectral dataset was collected using an ASD Handheld-2 spectroradiometer at Tunbridge Township Lagoon. The study then employed a k-fold cross-validation approach for repeated classification of a full hyperspectral dataset, a reduced hyperspectral dataset, and two convoluted multispectral datasets. Classification was performed on each of the four datasets a total of 30 times, based on two different class configurations. The classes analysed were Themeda triandra grassland, Danthonia/Poa grassland, Wilsonia rotundifolia/Selliera radicans, saltpan, and a simplified C3 vegetation class. The results of the classifications were then tested for statistically significant differences using ANOVA and Tukey’s post-hoc comparisons. The results of the study indicated that hyperspectral resolution provides small but statistically significant increases in classification accuracy for Themeda and Danthonia grasslands. For other classes, differences in classification accuracy for all datasets were not statistically significant. The results obtained here indicate that there is some potential for enhanced detection of major lowland native grassland community types using hyperspectral resolution datasets, and that future analysis should prioritise good performance in these classes over others. This study presents a method for identification of optimal spectral resolution across multiple datasets, and constitutes an important case study for lowland native grassland mapping in Tasmania

    Exploring issues of balanced versus imbalanced samples in mapping grass community in the telperion reserve using high resolution images and selected machine learning algorithms

    Get PDF
    ABSTRACT Accurate vegetation mapping is essential for a number of reasons, one of which is for conservation purposes. The main objective of this research was to map different grass communities in the game reserve using RapidEye and Sentinel-2 MSI images and machine learning classifiers [support vector machine (SVM) and Random forest (RF)] to test the impacts of balanced and imbalance training data on the performance and the accuracy of Support Vector Machine and Random forest in mapping the grass communities and test the sensitivities of pixel resolution to balanced and imbalance training data in image classification. The imbalanced and balanced data sets were obtained through field data collection. The results show RF and SVM are producing a high overall accuracy for Sentinel-2 imagery for both the balanced and imbalanced data set. The RF classifier has yielded an overall accuracy of 79.45% and kappa of 74.38% and an overall accuracy of 76.19% and kappa of 73.21% using imbalanced and balanced training data respectively. The SVM classifier yielded an overall accuracy of 82.54% and kappa of 80.36% and an overall accuracy of 82.21% and a kappa of 78.33% using imbalanced and balanced training data respectively. For the RapidEye imagery, RF and SVM algorithm produced overall accuracy affected by a balanced data set leading to reduced accuracy. The RF algorithm had an overall accuracy that dropped by 6% (from 63.24% to 57.94%) while the SVM dropped by 7% (from 57.31% to 50.79%). The results thereby show that the imbalanced data set is a better option when looking at the image classification of vegetation species than the balanced data set. The study recommends the implementation of ways of handling misclassification among the different grass species to improve classification for future research. Further research can be carried out on other types of high resolution multispectral imagery using different advanced algorithms on different training size samples.EM201

    Knowledge-Based Classification of Grassland Ecosystem Based on Multi-Temporal WorldView-2 Data and FAO-LCCS Taxonomy

    Get PDF
    Grassland ecosystems can provide a variety of services for humans, such as carbon storage, food production, crop pollination and pest regulation. However, grasslands are today one of the most endangered ecosystems due to land use change, agricultural intensification, land abandonment as well as climate change. The present study explores the performance of a knowledge-driven GEOgraphic-Object—based Image Analysis (GEOBIA) learning scheme to classify Very High Resolution(VHR)imagesfornaturalgrasslandecosystemmapping. Theclassificationwasappliedto a Natura 2000 protected area in Southern Italy. The Food and Agricultural Organization Land Cover Classification System (FAO-LCCS) hierarchical scheme was instantiated in the learning phase of the algorithm. Four multi-temporal WorldView-2 (WV-2) images were classified by combining plant phenology and agricultural practices rules with prior-image spectral knowledge. Drawing on this knowledge, spectral bands and entropy features from one single date (Post Peak of Biomass) were firstly used for multiple-scale image segmentation into Small Objects (SO) and Large Objects (LO). Thereafter, SO were labelled by considering spectral and context-sensitive features from the whole multi-seasonal data set available together with ancillary data. Lastly, the labelled SO were overlaid to LO segments and, in turn, the latter were labelled by adopting FAO-LCCS criteria about the SOs presence dominance in each LO. Ground reference samples were used only for validating the SO and LO output maps. The knowledge driven GEOBIA classifier for SO classification obtained an OA value of 97.35% with an error of 0.04. For LO classification the value was 75.09% with an error of 0.70. At SO scale, grasslands ecosystem was classified with 92.6%, 99.9% and 96.1% of User’s, Producer’s Accuracy and F1-score, respectively. The findings reported indicate that the knowledge-driven approach not only can be applied for (semi)natural grasslands ecosystem mapping in vast and not accessible areas but can also reduce the costs of ground truth data acquisition. The approach used may provide different level of details (small and large objects in the scene) but also indicates how to design and validate local conservation policies

    ANALISIS PRODUKTIVITAS PADI MENGGUNAKAN ALGORITMA MACHINE LEARNING RANDOM FOREST DI KABUPATEN BATANG TAHUN 2018 - 2022

    Get PDF
    Produktivitas padi merupakan salah satu alat untuk mengamati seberapa besar nilai produksi padi yang dicapai suatu wilayah. Perubahan produksi padi di suatu wilayah dapat dipengaruhi oleh pembangunan yang terjadi. Proyek pembangunan seperti jalan tol Semarang-Batang yang dimulai tahun 2016 dan pembangunan Kawasan Industri Terpadu Batang (KITB) yang dimulai tahun 2020, dapat mempengaruhi perubahan tutupan lahan pada wilayah Kabupaten Batang terutama sawah yang merupakan tempat dimana padi dihasilkan. Penelitian ini menggunakan data citra Sentinel-2 dari tahun 2018 hingga 2022 sehingga akan diketahui kondisi lahan dan perubahannya. Terdapat 8 periode yang digunakan untuk mengamati perubahan tutupan lahan sawah dan non sawah di Kabupaten Batang. Analisis perubahan tutupan lahan tersebut dilakukan dengan metode klasifikasi citra secara supervised dengan algoritma random forest (RF). Hasil klasifikasi tersebut kemudian dijadikan batas luasan untuk analisis produktivitas padi. Untuk mendapatkan nilai pendugaan produktivitas padi, dilakukan analisis regresi dengan data produktivitas padi sebagai variabel terikat dan nilai indeks tanaman sebagai variabel bebas. Nilai akurasi hasil klasifikasi yang didapat dari matriks konfusi dengan 100 titik validasi menghasilkan akurasi producer sebesar 95,556 %, akurasi user sebesar 86 %, akurasi keseluruhan sebesar 91 % , dan nilai Kappa sebesar 0,82. Variabel terikat yang digunakan dalam analisis regresi terdapat 2 macam, yang pertama adalah data per kecamatan dari Dinas Pangan dan Pertanian Kabupaten Batang dan yang kedua merupakan data survey validasi yang mencakup area per sawah. Nilai RMSE yang didapat dari data per kecamatan adalah 1,857 ton/Ha, sedangkan hasil prediksi menggunakan data lapangan dengan sampel per sawah menghasilkan nilai RMSE 0,498 ton/H

    Sentinel-2 Remote Sensed Image Classification with Patchwise Trained ConvNets for Grassland Habitat Discrimination

    Get PDF
    The present study focuses on the use of Convolutional Neural Networks (CNN or ConvNet) to classify a multi-seasonal dataset of Sentinel-2 images to discriminate four grassland habitats in the “Murgia Alta” protected site. To this end, we compared two approaches differing only by the first layer machinery, which, in one case, is instantiated as a fully-connected layer and, in the other case, results in a ConvNet equipped with kernels covering the whole input (wide-kernel ConvNet). A patchwise approach, tessellating training reference data in square patches, was adopted. Besides assessing the effectiveness of ConvNets with patched multispectral data, we analyzed how the information needed for classification spreads to patterns over convex sets of pixels. Our results show that: (a) with an F1-score of around 97% (5 x 5 patch size), ConvNets provides an excellent tool for patch-based pattern recognition with multispectral input data without requiring special feature extraction; (b) the information spreads over the limit of a single pixel: the performance of the network increases until 5 x 5 patch sizes are used and then ConvNet performance starts decreasing

    Using Landsat-Based Phenology Metrics, Terrain Variables, and Machine Learning for Mapping and Probabilistic Prediction of Forest Community Types in West Virginia

    Get PDF
    This study investigates the mapping of forest community types for the entire state of West Virginia, USA using Global Land Analysis and Discovery (GLAD) Phenology Metrics analysis ready data (ARD) derived from the Landsat time series and digital terrain variables derived from a digital terrain model (DTM). Both classifications and probabilistic predictions were made using random forest (RF) machine learning (ML) and training data derived from ground plots provided by the West Virginia Natural Heritage Program (WVNHP). The primary goal of this study is to explore the use of globally consistent ARD data for operational forest type mapping over a large spatial extent. Mean overall accuracy calculated from 50 model replicates for differentiating seven forest community types using only variables selected from the 348 GLAD Phenology Metrics used in the study resulted in an overall accuracy (OA) of 53.36% (map-level image classification efficacy (MICE) = 0.42). Accuracy increased to a mean OA of 73.0% (MICE = 0.62) when the Oak/Hickory and Oak/Pine classes were combined to an Oak Dominant class. Once selected terrain variables were added to the model, the mean OA for differentiating the seven forest types increased to 61.58% (MICE = 0.52). Our results highlight the benefits of combining spectral data and terrain variables and also the enhancement of the product’s usefulness when probabilistic prediction are provided alongside a hard classification. The GLAD Phenology Metrics did not provide an accuracy comparable to those obtained using harmonic regression coefficients; however, they generally outperformed models trained using only summer or fall seasonal medians and performed comparably to spring medians. We suggest further exploration of the GLAD Phenology Metrics as input for other spatial predictive mapping and modeling tasks

    Comparison of classification algorithms of images for the mapping of the land covering in Tasso Fragoso municipality, Brazil.

    Get PDF
    Abstract. One of the main applications of satellite images is the characterization of terrestrial coverage, that from the use of classification techniques, allows the monitoring of spatial transformations of the terrestrial surface, this process being directly associated with the potential of classifiers to differentiate the most diverse data present in the images, a fundamental aspect for the use of remote sensing data. This article evaluates the performance of different classification algorithms in the mapping classes of land use and land cover in medium resolution images from the Landsat 8 program, the test area of this test corresponds to the Municipality of Tasso Fragoso (State Maranhão - Brazil), stands out for a typical vegetation cover of the Cerrado Biome, presents similar spectral patterns that induce high difficulty of class differentiation automatically. In this paper, were analyzed the machine learning algorithms C5.0 and Random Forest in comparison to traditional classification algorithms being the Minimum Distance and the Spectral Angle Mapper. The best results were generated by Random Forest with 90% accuracy and Kappa of 0.861, followed by the C5.0 algorithm. Traditional algorithms, on the other hand, presented a lower precision rate with global accuracy, not exceeding 75% of accuracy and Kappa varying between 0.507 and 0.627. The accuracy of the producer showed that all the algorithms, in major or minor tendency presented difficulties in to differentiate the areas, with rates of mistakes varying between 25 and 75%, being the main, the confusion with pastoral areas
    corecore