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ABSTRACT 

Using Landsat-Based Phenology Metrics, Terrain Variables, and Machine Learning for Mapping 
and Probabilistic Prediction of Forest Community Types in West Virginia 

Faith Hartley 

This study investigates the mapping of forest community types for the entire state of West 
Virginia, USA using Global Land Analysis and Discovery (GLAD) Phenology Metrics analysis 
ready data (ARD) derived from the Landsat time series and digital terrain variables derived from 
a digital terrain model (DTM). Both classifications and probabilistic predictions were made 
using random forest (RF) machine learning (ML) and training data derived from ground plots 
provided by the West Virginia Natural Heritage Program (WVNHP). The primary goal of this 
study is to explore the use of globally consistent ARD data for operational forest type mapping 
over a large spatial extent. Mean overall accuracy calculated from 50 model replicates for 
differentiating seven forest community types using only variables selected from the 348 GLAD 
Phenology Metrics used in the study resulted in an overall accuracy (OA) of 53.36% (map-level 
image classification efficacy (MICE) = 0.42). Accuracy increased to a mean OA of 73.0% 
(MICE = 0.62) when the Oak/Hickory and Oak/Pine classes were combined to an Oak Dominant 
class. Once selected terrain variables were added to the model, the mean OA for differentiating 
the seven forest types increased to 61.58% (MICE = 0.52). Our results highlight the benefits of 
combining spectral data and terrain variables and also the enhancement of the product’s 
usefulness when probabilistic prediction are provided alongside a hard classification. The GLAD 
Phenology Metrics did not provide an accuracy comparable to those obtained using harmonic 
regression coefficients; however, they generally outperformed models trained using only summer 
or fall seasonal medians and performed comparably to spring medians. We suggest further 
exploration of the GLAD Phenology Metrics as input for other spatial predictive mapping and 
modeling tasks. 
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Chapter 1. Introduction  

Forests serve as an important source of land-based carbon and as biological resource 
reservoirs (Liu et al. 2018). Dominant species composition, which defines forest type, impacts 
forests' ecological characteristics and workings, making understanding this key to quantifying a 
forest communities’ function (Costanza et al. 2018). Key functions of forest communities include 
providing habitat for a variety of organisms, acting as a carbon pool for the global carbon cycle, 
regulating the flow of water through the hydrological cycle, and providing a number of 
ecosystem goods and services for human and societal uses (Liu et al. 2018, Lu et al. 2017). 
Forest management practices have matured over centuries as humans and society have adapted to 
live within, make use of, and manage the natural environment. This can be seen historically 
through indigenous community practices and more recently in state-centric management such as 
prescribed fires and forest thinning. Shifting from traditional forest management focused on 
increasing timber production, sustainability-based approaches have arisen to meet the challenges 
of protecting and sustaining forests and the communities they support (Mery et al. 2005).  

Sustainable forest management began in the 1960s and evolved to address deforestation 
and biodiversity loss resulting from widescale timber production. This transition was further 
spurred by media coverage of deforestation and global poverty (Mery et al. 2005). A crucial 
aspect of sustainable forest management is mapping forest community types, their abundances, 
and their distribution within a given region, as forest diversity composition impacts habitat 
suitability, best management practices, ecosystem services, and hydrologic and biogeochemical 
processes (Liu et al. 2018; Pasquarella et al. 2018). Specifically, with the rise in the impacts of 
global climate change, forests are increasingly important due to their role in climate change 
abatement (Liu et al. 2018). Therefore, thematic mapping products that simply differentiate 
forests from other land cover, or that only differentiate deciduous, mixed, and evergreen forests 
(i.e., the National Land Cover Database (NLCD) in the United States (Jin et al. 2013)), are 
inadequate to meet modeling and management needs to support sustainable development and 
climate change adaption. Also desirable is the ability to update these maps with ease using repeat 
collection remotely sensed images and other data sources since distributions are likely to adjust 
in response to climate change and landscape disturbances. Forest community mapping is also 
important for many professions such as wildlife habitat modeling, policymaking and governance, 
and natural resource management (Immitzer et al. 2010; Liu et al. 2018; Pasquarella et al. 2018). 

Forest tree species composition depends on local biotic and abiotic conditions while also 
varying over time and space (Evans et al. 2011). For example, each species has a different 
response to environmental condition variation (e.g., temperature, precipitation, seasonality, and 
humidity), which can result in increased distribution and abundance of environmentally sensitive 
plants (Evans et al. 2011).  With climate change, changing precipitation and temperature patterns 
will lead to shifts in the distribution of species.  Unfortunately, these relationships are not always 
well understood or easily modeled to estimate forest stand tree species composition and 
associated forest community types. Further, forest communities are generally not easily 
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differentiated into a limited number of discrete, well-defined types, resulting in “fuzzy” class 
definitions, and boundaries between classes are often gradational.  Traditional field survey 
methods are expensive and time consuming. Different research studies have sought to overcome 
these challenges through remote sensing techniques, which provide a methodical, synoptic view 
of the earth at differing time intervals and spatial resolutions (Adams et al., 2020; Negandra 
2001; Pasquarella et al. 2018). Remote sensing is beneficial for forest community type 
classification as it can provide a high level of detail for large areas in a relatively short amount of 
time (Negrenda, 2001).  

This study investigates the use of random forest (RF), support vector machine 
(SVM), and k-Nearest neighbor (kNN) machine learning (ML) for classifying and 
estimating the probability of forest type occurrence over a broad spatial extent (i.e., every 
forested pixel in an entire state) at a moderate spatial resolution and at the pixel-level. 
Predictions were made using a combination of digital terrain variables derived from digital 
terrain models (DTMs) along with phenological and seasonal variability metrics derived from the 
Landsat multispectral time series and made available via the Global Land Analysis and 
Discovery (GLAD) Phenology dataset (Potapov et al. 2020). This will be accomplished by 
exploring the following objectives: 

• Document the importance of a variety of digital terrain and spectral variables for 
predicting and differentiating forest community types in different landscapes. 

• Produce classification and probability of occurrence maps for every forested pixel 
within the entire extent of West Virginia.  

• Assess the accuracy of classification and probabilistic forest community type models 
using withheld validation data and a variety of assessment metrics. 

Ultimately, this study explores the mapping of forest community types and associated 
probabilities in an operational context using available spectral and terrain predictor variables and 
an existing field plot-based forest inventory as training data. 

Chapter 2. Background 

2.1. Remote Sensing and Forest Type Mapping 

With improved satellite imaging in regards to spatial, spectral, and temporal resolutions 
and wider availability of open archives, classification methods have increasingly incorporated 
remotely sensed data, such as surface reflectance measured over varying wavelengths in the 
visible, near infrared (NIR), and shortwave infrared (SWIR) spectral ranges. Different plant 
species may reflect specific ranges of electromagnetic (EM) radiation differently (Gates et al. 
1965). Also, satellite-based multispectral sensors allow for wall-to-wall mapping of spectral 
reflectance, ignoring the influence of data gaps and clouds, which allows models to be applied 
over entire spatial extents to generate complete map output; therefore, spectral reflectance data 
are often incorporated in classification projects (Negrenda, 2001). Multi-temporal data 
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classifications relying on a time series of repeated measurements have been shown to improve 
forest type mapping accuracy as seasonal patterns can aid in differentiation of communities that 
have similar spectral signatures in one season but different signature in others (Liu et al. 2018). 
Difficulties in mapping species composition and community types include that spectral 
reflectance can change with the seasons and species can have overlapping ground distributions 
(Adams et al., 2020). Further, a variety of methods have been developed to summarize time 
series multispectral data, many of which have not been consistently or completely applied to 
global data archives (Potapov et al. 202). Thus, we argue that there is a need to investigate input 
predictor variables that represent consistent, global products, such as the GLAD Phenology 
metrics explored here. 

Pasquerella et al. (2018) is an example study that highlights the value of time series data 
and ancillary data for forest type mapping. Within their study, which differentiated between eight 
forest classes including Hardwood Swamp, Softwood Swamp, Northern Hardwood, Central 
Hardwoods, White Pine, Hemlock/White Pine, Spruce-Fir, and Pitch Pine/Scrub Oak, they 
documented that single-date late autumn images significantly outperformed other single date 
classifications (accuracy of 74.4 ± 1.3%), that multi-date imagery consistently outperformed 
single-date imagery (highest overall accuracy of 78.5 ± 1.2%), and that spectral-temporal 
variables derived from a time series of available Landsat multispectral observations performed 
the best (mean accuracy of 80.50 ± 2.23%) based on a pixel-based assessment. Classification 
improved further when ancillary datasets, including wetland probability estimates and 
topographic variables, were included alongside the spectral-temporal features (83.39 ± 2.31% 
overall accuracy) (Pasquarella et al. 2018).  

2.2. Machine Learning 

Within remote sensing and land classification, ML has matured to become an important 
tool for extracting actionable information from large, complex datasets (Maxwell et al. 2018, 
2020).  ML serves as a framework for identifying important variables, building accurate 
predictions, and exploring complex relationships and spatial patterns within a model (Evans et al. 
2011). These algorithms tend to produce higher overall classification accuracies than traditional 
parametric classification methods (e.g., Gaussian maximum likelihood) which is attributed to 
their non-parametric nature and ability to model complex patterns and relationships within a 
complex feature space (i.e., many variables that may be correlated, of different data types, 
measured on different scales, and not normally distributed) (Maxwell et al. 2016, 2018, 2020). 
As an operational example, the NLCD uses machine learning methods to map general land cover 
and land cover change for the entire United States on a regular basis (Jin et al. 2013; Maxwell et 
al. 2018). 

This study specifically makes use of the SVM, kNN, and RF algorithms. The SVM 
algorithm attempt to define an optimal hyperplane to separate classes. This hyperplane is the 
plane that provides the maximum margin or separation between classes and is defined by a 
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subset of the available training samples, termed support vectors. In order to allow for improved 
separation of classes that are not linearly separable, the training samples can be projected into a 
higher dimensional feature spaces using the “kernel trick” where the optimal hyperplane may be 
more linear. Additionally, the cost parameter is used to control the complexity of the generated 
hyperplane by controlling the penalty associated with misclassifying a sample, practically 
allowing for adjusting the model to compensate for overfitting or underfitting. Methods have also 
allowed for the original SVM algorithm, which only allows for the differentiation of two classes, 
to be expanded to allow for the differentiation of three or more classes (James et al. 2013, Kuhn 
& Johnson 2013). SVM classifiers have been documented to be effective at classifying 
hyperspectral data (Li 2021, Sheykhmousa et al. 2020, Lu et al. 2017). Specifically, this 
algorithm is useful due to its high memory efficiency, ability to learn from small training sets, 
and its generally high accuracy rates for classification problems (Li 2021). Previous studies also 
indicate that this method is most effective when hyperparameters are optimized for 
generalization and to avoid overfitting (Li 2021). These benefits have made SVM popular as a 
classifier within the field of remote sensing. The main limitation found in previous studies is that 
this method can be sensitive to overfitting if hyperparameters are not properly tuned 
(Sheykhmousa et al. 2020).  

kNN is a nonparametric method that has been successfully used for classification 
problems. This method is conceptually simple; a new sample is classified based on the nearest 
training samples within the multidimensional feature space defined by the input predictor 
variables. The nearest samples are determined based on some measure of distance in the feature 
space, such as simple Euclidean distance. The number of neighbors that are considered is 
controlled by the k parameter, which is commonly selected using a tuning process. The new 
sample is then assigned to the majority class of the selected neighbors (James et al. 2013, Kuhn 
& Johnson 2013).  

RF is an ensemble decision tree method. Decision trees use recursive binary partitioning 
to split the data into more homogeneous subsets and generate rulesets to perform classification. 
In order to determine decision rules, the Gini Impurity metric is used, which is a measure of how 
often a random element from the dataset is incorrectly labeled. Each tree in the ensemble uses a 
subset of the training samples, which are selected using bootstrapping, or random sampling with 
replacement. Also, only a subset of the predictor variables is available for splitting at each 
decision node. The goal of using a subset of the training data and variables is to reduce the 
correlation between trees and minimize overfitting. Or, a set of weak classifiers are collectively 
strong and generalize well due to reduced overfitting (Brieman, 2001).  RF has been applied to a 
variety of problems including classifying ecological zones (e.g., Immitzer et al. 2012), 
identifying landslide probability areas (e.g., Maxwell et al. 2020), and creating forest dead fuel 
load estimates (e.g., D’Este et al. 2021). Further, previous studies indicate that RF is robust to 
combining data from multiple sources, including incorporating data measured on varying scales 
and nominal data with varying numbers of categories (Liu et al. 2018). For example, studies have 
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combined topographic and spectral reflectance data to improve classification performance (e.g., 
Immitzer et al. 2012; Liu et al. 2018; Maxwell et al. 2020). 

Although RF is not commonly used for mapping or modeling over large spatial extents, 
several studies have used it for such tasks in the context of slope failure prediction and forest 
classification (e.g., Liu et al 2018; Maxwell et al. 2016, 2020; Pasquarella et al. 2018). Liu et al. 
2018 used an RF classification approach to differentiate eight forest types using a combination of 
Sentinel-1A synthetic aperture radar (SAR), Sentinel-2A MSI multispectral imagery, digital 
elevation models (DTMs) and associated derivatives, including aspect and slope, and multi-
temporal, multispectral Landsat-8 images. They used a total of 43 input features including 39 
spectral, three topographic, and one backscatter variable. They documented a very high overall 
accuracy rate (99.3%), and that topographic slope was the most important feature for forest type 
classification within their model (Liu et al. 2018). Additionally, they documented that mixed 
forest types (e.g., mixed broad-leaved forest) had greater confusion or error when compared 
against single-species forest types (e.g., Chinese red pine) (Liu et al. 2018). Alternatively, Lu et 
al. (2017) used an SVM algorithm with a combination of multispectral and hyperspectral data for 
forest classification in the Jiangxi province of China. They found that the highest accuracies 
were obtained when using a spatial-spectral-temporal fusion framework. 

2.3. Input Data Considerations  

Studies indicate that Landsat imagery is useful for monitoring landcover and forest 
change due to its ability to capture the spectral and temporal variability in ground reflectance 
(Pasquarella et al., 2018). However, Landsat imagery availability and timing can make large-area 
forest type mapping challenging, especially during heavy cloud cover, as clouds and cloud 
shadows impact analyses (Pasquarella et al. 2018). Landsat ETM+ and OLI images are collected 
once every 8 to 16 days and are available globally as Level 1, geometrically corrected data, and 
as Level 2, surface reflectance products (Potapov et al., 2020). Forest and resource mapping have 
been a goal of the Landsat program since its development, with the opening of the Landsat 
archive in 2008 making this goal more attainable for researchers (Pasquarella et al. 2018).  

As forest community spatial distribution can be closely linked with topographic 
characteristics, including topographic derivatives with multispectral imagery has been shown to 
improve forest classification accuracies by 10-27% (Liu et al. 2018). Despite Liu et al.’s 2018 
high overall accuracy, their Landsat-only classification accuracy rate was only 50%, significantly 
lower than the combined Landsat 8, Sentinel-2A, and DTM-derivatives classification result 
(82.78%). Previous studies have provided evidence that multi-source imagery is beneficial for 
mapping forest community types (e.g.,Gao et al. 2015; Liu et al. 2018; Lu et al. 2017; Melville et 
al. 2018; Nink et al. 2019). For example, Lu et al. (2017) quantified a Landsat 8-based forest 
type classification overall accuracy rate using single date imagery at 69.95% but obtained an 
almost 14% improvement in accuracy by using a spatial-spectral-temporal integrated data fusion 
method (Table 1). Despite the utility of multispectral data fusion for forest type classification, 
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mapping projects, such as the NLCD in the United States, have had success using one 
multispectral imagery source when differentiating a small number of community types (i.e., 
deciduous, mixed, and evergreen) (Pasquerella et al. 2018).  

2.4. Results from Prior Studies 

Table 1 provides an overview of some forest community type mapping projects 
conducted since 2009. The table illustrates how variable overall accuracy rates for forest type 
mapping are with values as low as 50% and as high as 96%. All of the included studies tested 
several feature spaces and/or methods, which resulted in a range of reported accuracies. For 
example, Nink et al. (2019) tested spectral vegetation indices between two different states in 
Germany in a cross-border forest type classification of broadleaf or coniferous forests. 
Alternatively, Pasquerella et al. (2018) examined differences in spectral-temporal Landsat forest 
type mapping versus conventional single and multi-date classification methods. Similarly, 
Adams et al. (2020) used RF classification with Landsat imagery; however, this study used 
Landsat 8 Operational Land Imager (OLI) images with topographic variables including 
elevation, slope, aspect, topographic wetness index, and topographic position index for forest 
community type mapping. Immitzer et al. (2012) differed from other studies in the table in their 
use of high-resolution commercial imagery, specifically Maxar’s WorldView-2 satellite data, and 
documented very high user accuracies for the four main tree species (95.9%) but saw lower 
accuracy for the classification of all ten tree species (82.4 %). Additionally, their study showed 
higher accuracy rates for object-based RF classification as opposed to pixel-based classification 
(Immitzer et al. 2012). Kim et al. (2009) similarly used an object-based image analysis approach; 
however, their study utilized a single Ikonos image.  

I argue that the disparity in reported accuracies can be attributed to variability in (1) the 
number of and definition of classes differentiated, (2) landscapes characteristics and abiotic 
gradients, (3) spatial extent, (4) quantity and quality of training data, (5) input predictor variables 
include, and (6) classification methods used. Thus, there is a need to specifically investigate the 
mapping of forest community types across large spatial extents using consistently available 
predictor variables and training data in the context of operational forest type mapping. This study 
differs from those in Table 1 in that the goal is to produce probabilistic map products alongside 
“hard” classifications.  Given the commonly reported low classification accuracies when a large 
number of forest community types are differentiated, or more than just deciduous, evergreen, and 
mixed forests are mapped, I argue that there is a need to investigate probabilistic mapping as a 
means to generate products that may be more accurate and useful.  

ML algorithms have proven to be beneficial for obtaining probabilistic map outputs for 
other mapping tasks (e.g., Evans & Cushman 2009; Maxwell et al. 2020). For example, Wright 
and Gallant (2007) noted the value of RF-based probabilistic output as opposed to hard 
classifications for wetland mapping in Yellowstone National Park in the western United States. 
This is important as it has been a challenge for the remote sensing community, in the face of 
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rapid climate change, to provide frequent and complete observations for forest and vegetation 
monitoring across large areas (Gao et al. 2015), and seeking alternatives to “hard” classifications 
that may be too inaccurate or unreliable is necessary to meet this goal. By producing probability 
surfaces rather than discrete patches of community types, vegetation representation errors 
including community type definitions, stand delineations, and omission/commission errors are 
reduced (Evans & Cushman 2009). This study hopes to expand upon previous work by 
incorporating forest community type field observations, topographic derivatives, Landsat-derived 
phenology and seasonal metrics, and ML to investigate variable importance and community 
probability of occurrence values for every forested pixel within the state of West Virginia. A 
community occurrence probability map will be helpful for planning fieldwork, monitoring and 
modeling the effects of climate change, managing and protecting forests, and understanding 
ecosystem relationships and processes. 

 

Table 1. Subset of forest community type mapping projects.  

Study 
Multi-Spectral 

Data Study Area(s) 
Classification 

Method(s) 

Number 
of 

Classes 

Reported 
Accuracy 

Kim et al. (2009) Ikonos 

Guilford 
Courthouse 
National Military 
Park, 
Greensboro, 
North Carolina 

Segmentation or 
Object Based 
Image Analysis 

3 60-83% 

Immitzer et al. 
(2012) WorldView-2 

Burgenland, 
Austria 

Random Forest 
Linear 
Discrimination 
Analysis  

10 65.7-95.9% 

Lu et al. (2017) 

HJ-1A CCD 
HJ-1A HSI 
MOD09GA 
Landsat-8 

Gan River nature 
reserve, Jiangxi, 
China 

SVM 7 
69.95-
83.6% 

Liu et al. (2018) 
Sentinel-2A 
Sentinel-1A 
Landsat-8 

Dabie Mountains, 
Wuhan, China 

Random Forest 8 50-82.78% 

Pasquarella et al. 
(2018) 

Landsat-4 
Landsat-5 
Landsat-7 
 

Massachusetts, 
USA Random Forest 8 62.4-85.7% 
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Nink et al. (2019) 
Landsat-8 
Sentinel-2A 
Sentinel-2B 

Saarland and 
Luxembourg, 
Germany  

Automated 
bootstrap  

2 79-96% 

Adams et al. 2020) Landsat-8 OLI 

Southern 
Unglaciated 
Allegheny 
Plateau, Ohio, 
USA 

Random Forest 7 70.3-74.9% 

 

Chapter 3. Study Area 

The United States Department of Agriculture (USDA) classified 78% of West Virginia’s 
land area as forest, or over 12 million acres (Widmann 2007). Forests are a critical part of the 
state’s natural resources; however, forest community types are especially difficult to distinguish 
due to local topographic variability and the mountain forest’s diverse nature (Widmann et al. 
2007). According to Strausbaugh and Core in the Flora of West Virginia text, the dominant types 
of forest vegetation vary between the three physiographic provinces within the state (Widmann 
et al. 2007). Furthest west, the Western Hill Section, which is the largest province in the state, is 
characterized by Oak-Pine, Oak-Chestnut, Floodplain, and Cove Hardwoods or Mixed 
Mesophytic forests. This area hosts the Allegheny Plateau, which is situated between the Ohio 
River to the west and the more mountainous region to the east and is dissected by a dendritic 
stream network. The second division is the Allegheny Mountain section which includes a 
northeast to southwest oriented mountain range dominated by Northern Evergreen, including 
Red Spruce stands, and Northern Hardwood community types. This area contains the highest 
elevations in the state and is bound to the east by the Allegheny Front. The final, lowest 
elevation, and most eastern division is the Ridge and Valley province which is generally the 
driest area in the state and hosts Oak-Hickory-Pine community types. The landscape is 
dominated by structurally controlled linear ridges and valleys and a trellis drainage network. This 
area originally had a large chestnut population that declined in the 1920s and 30s with the 
chestnut blight caused by a fungus (Elkins 2012). 

 

Chapter 4. Data  

 The Landsat-based spectral data for this study comes from the University of 
Maryland’s Global Land Analysis and Discovery (GLAD) Laboratory. Specifically, I used 
GLAD’s Phenological Metrics, which are based on Landsat surface reflectance measurements 
and represent a set of globally consistent metrics to characterize land surface phenology 
(Potapov et al. 2020). These variables are provided to the public as Landsat analysis-ready data 
(ARD) (Potapov et al. 2020). GLAD selects Landsat images from 1997 to the present and then 
categorizes them into tiers of excellence, with Tier 1 data meeting “the highest geometric and 
radiometric standards.” This tier is the only one used for ARD processing. Images including 
seasonal snow cover are also excluded (Potapov et al. 2020). Some limitations of this dataset 
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include that it is unsuitable for wintertime image processing, surface water extent mapping, and 
precise analysis of land surface reflectance. These limitations did not impact the intent of this 
study. 

 Specifically, the Landsat ARD phenological metrics Type A dataset was used as the 
spectral predictor variables in this study. The variables are summarized in Table 2 below. To 
generate these metrics, reflectance data are normalized by taking every possible ratio of bands 
(e.g., BR=(Blue-Red)/(Blue+Red)) and then multiplying by 10,000 and adding 10,000.5 to 
ensure positive values and the ability to store the data in a 16-bit integer format. Reflectance 
normalizing is important because it improves spectral consistency and addresses factors 
impacting surface reflectance measurements, such as local relief and topography (Potapov et al. 
2020). The processing chain includes generating 16-day composites using best-available data, 
filling gaps resulting from cloud cover with best available data from the prior three years, and 
finally generating the metrics listed in Table 2 from the timeseries of 16-day composites. A total 
of 348 phenological variables from this dataset were used in this study.  

 Statewide DTM raster data were obtained from the National Elevation Dataset (NED) 
at a 1/3-arc second (approximately 10 m) spatial resolution. From these elevation data, a variety 
of metrics were generated to characterize the local terrain, as summarized in Table 3. Other than 
elevation (Elev) and in order to characterize local relief and rugosity, calculated variables include 
slope (Slp), mean slope within a moving window (SlpMn), topographic position index (TPI), 
topographic roughness index (TRI), surface area ratio (SAR), and surface relief ratio (SRR). 
Variables relating to moisture content and local incoming radiation that were used include linear 
aspect (LnAsp), topographic radiation aspect index (TRASP), heat load index (HLI), and site 
exposure index (SEI). A total of 11 terrain variables were used in the analysis. These metrics 
were selected due to potential correlation with forest community type distributions, since they 
characterize different aspects of the terrain surface, and because they can all be derived using 
only a DTM. For variables that rely on defining a local moving window, a circular window with 
a radius of 3 cells, or 30 meters, was used. All terrain derivatives were rescaled to a 30 m spatial 
resolution using pixel aggregation and the mean value from the original cells within the new, 
larger cell to match the scale of the Landsat-derived metrics.  

Species composition data came from the West Virginia Division of Natural Resources’ 
(WVDNR) Natural Heritage Program. The WVDNR’s Natural Heritage Program is responsible 
for collecting and maintaining locally based ecological community characteristics. Natural 
Heritage Program scientists determine the species composition found in a plot using in-field 
observations. A spreadsheet of information gathered directly from West Virginia’s forests was 
provided for this project. To spatially visualize the data, X, Y data were converted to spatial 
point features in ArcGIS and displayed by community type.  
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Table 2. Phenological variables used in analysis from GLAD. Q1 indicates the 1st quartile while 
Q3 indicates the 3rd quartile.  

Spectral Bands Blue 
Green 
Red 
NIR 
SWIR1 
SWIR2 

Derived Indices  (NIR-Red)/(NIR+Red) [RN] 
(NIR-SWIR1)/(NIR+SWIR1) [NS1] 
(Blue-Green)/(Blue+Green) [BG] 
(Blue-Red)/(Blue+Red) [BR] 
(Blue-NIR)/(Blue+NIR) [BN] 
(Green-Red)/(Green+Red) [GR] 
(Green-NIR)/(Green+NIR) [GN] 
(SWIR1-SWIR2)/(SWIR1+SWIR2) [SWSW] 
Spectral variability index (SVVI) 

Statistics Minimum [min] 
Maximum [max] 
Second lowest value [smin] 
Second highest value [smax] 
Median [median] 
Average between smin and Q2 [avsmin50] 
Average between Q2 and smax [av50smax] 
Average between min and Q1 [avmin25] 
Average between Q3 and max [av75max] 
Average between Q1 and Q3 [av2575] 
Average of all values [avminmax] 
Average of all values except min and max [avsminsmax] 

Amplitude max - min 
smax- smin 
av50smax - avsmin50 
av75max - av25min 
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Table 3. Topographic variables used in analysis.  

Variable Abbreviation Description/Equation 

Linear Aspect Asp 270 − 360
2𝜋𝜋

 × arctan2(𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

) 

Elevation Elev Bare-ground surface height 

Topographic Dissection Index TDI 
𝑧𝑧 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 

𝑧𝑧𝑚𝑚𝑚𝑚𝜕𝜕 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚
 

Heat Load Index HLI 
Index for annual direct incoming 
solar radiation based on latitude, 

slope, and aspect 
Topographic Roughness Index Rph3 σ2(z) 

Surface Area Ratio SAR 
Cell Size2 

Cos(Slope in Degrees)
 

Site Exposure Index SEI Slp × cos(𝜋𝜋 𝐴𝐴𝐴𝐴𝐴𝐴 −180
180

) 

Slope (Degrees) Slp arctan(��𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 
�
2

) (180
𝜋𝜋

) 

Mean Slope Slpmn Calculates slope within a moving 
window  

Slope Position TPI z-zmean     
Surface Relief Ratio SRR  𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚 

𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚−𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚
 

Topographic Radiation Aspect 
Index TRASP 

1 − cos (� 𝜋𝜋
180�× (𝐴𝐴𝐴𝐴𝐴𝐴 − 30))

2
 

 

5. Methods  

 To reduce the number of categories of 
different community types and to limit the analysis 
to classes with a sufficient number of samples, Hill 
County deciduous forest and successional classes 
were omitted. Additionally, Calcareous Forests 
and Woodlands were combined with Oak/Hickory 
and Dry/Mesic Oak Forests while Dry Rocky 
Pine/Oak Forests and Woodlands were combined 
with Oak and Pine Forests. The number of 
available samples by class are summarized in 
Table 4. A total of 2,249 samples were used in the 
study. 

Community Type Count 
Oak/Hickory and Dry/Mesic Oak 

Forests 
684 

Floodplain Forests and Swamp 454 
Oak and Pine Forests 417 

Mixed Mesophytic Forests 261 
Hemlock Forests 166 

Northern Hardwoods Forests 159 
Red Spruce Forests 108 

Total Count 2,249 

Table 4. Final West Virginia forest type count 
from the WVDNR. 
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Data analysis and modeling were conducted using the R data science environment and 
language and the RStudio Integrated Development Environment (IDE). R was chosen because of 
its ease of use for exploratory work and due to the large number of available data analysis 
packages. The caret package was used to train and implement the three different algorithms. This 
package calls to randomForest for RF implementation, the class package for kNN, and the 
kernlab package for SVM, which are summarized in Table 5. RF requires the user to define the 
number of trees in the ensemble and the number of predictor variables that can be sampled for a 

Figure 1. Map of point locations of forest type observations from WVDNR.  
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node candidate (mtry). The number of trees used in the RF model was set at 100, which was 
large enough to produce stable results. It has been shown that it is best to use a large number of 
trees and that increasing the number of trees in the ensemble will not result in overfitting 
(Brieman 2001). The mtry hyperparameter was optimized using five-fold cross-validation and a 
grid search over a set of candidate values. For kNN, the k parameter, or the number of nearest 
neighbors in the model, was tuned. For SVM, a radial basis kernel was used, and the cost 
parameter, or decision boundary, was tuned. In order to reduce the number of input predictor 
variables, a recursive feature elimination process was employed which also takes into account 
model parsimony. This algorithm was implemented using the rfUtilities package and the 
rf.modelSel() function, which uses the RF algorithm (Murphy et al. 2010). Within the model, the 
dependent variable is the forest type classification, and the predictor variables are all spectral and 
topographic variables, as described above.  

Based on these results, a subset of variables was selected to use as a final feature space. A 
final model was trained using just these variables, all associated raster grids were stacked into a 
multiband dataset, and hard classifications and probabilistic predictions were made at all cells 
within the extent of West Virginia. This will result in a 30 m spatial resolution hard classification 
and probabilistic predictions of each mapped forest type for the entire state. Areas that were not 
forested were masked out using the NLCD 2019 land cover product. A summary of the main 
packages used in this study is provided in Table 5. 

 

Table 5. Key packages used for analysis in RStudio.  

Package Citation Description 
randomForest Liaw and M. Wiener (2002) Used for classification and prediction of data 

caret Kuhn (2020) Used for training and plotting classification 
and regression models 

terra/raster Hijmans (2020) 
 

Used for display, analysis, and manipulation 
of raster data 

dplyr Hadley et al. (2021) Used for data manipulation 

pROC Robin et al. (2011) Used to display, analyze, smooth, and 
compare ROC curves 

class Venables and Ripley (2002) Used for implementing k-NN 

kernlab Karatzoglou et al. (2004) 
 Used for implementing SVM 

multiROC Wei and Wang (2018) 
 

Used to calculate the multi-class AUC ROC 
and multi-class AUC PR 

rfUtilities Murphy et al. (2010) Used for feature selection 
 

The RF algorithm has been used for variable importance estimation. Traditionally, this 
was undertaken by randomly permutating the predictor variable of interest while maintaining the 
other predictor variables, effectively removing any correlation between the predictor variable and 
the dependent variable. Greater decreases in predicting the out-of-bag (OOB) data with this 
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random permutation would indicate that this variable is of importance (Breiman, 2001). This 
method yields a more marginal assessment of importance in which importance within the entire 
feature set is not consider. It has been shown that this measure tends to underestimate the 
importance of a predictor variables when it is correlated with other predictor variables in the 
model (Debeer and Strobl, 2020; Strobl et al., 2009, 2008, 2007). In order to alleviate this bias, 
Strobl et al. (2007; 2008; 2009) suggested an augmented RF-based variable importance 
assessment method based on conditional inference trees. Using this method, it is possible to 
alleviate the impact of correlated variables and assess both marginal and conditional/partial 
variable importance, in which the correlation between variables is considered in the variable 
importance estimation to assess the added value of including the variable within the model 
(Debeer and Strobl, 2020; Strobl et al., 2009, 2008, 2007). In this study, I used an 
implementation of this method provided by the permimp R package (Debeer and Strobl, 2020). I 
specifically assessed marginal importance, or importance not considering the other predictor 
variables in the model.  

To assess the model’s accuracy, 1/3 of the data were omitted from the training process 
and reserved for testing (Maxwell et al. 2016). The omitted data were selected via a stratified 
random sample, grouped by community type, and extracted without replacement. Trained models 
were used to predict the withheld validation data and generate confusion matrices. From these 
confusion matrices, I calculated overall accuracy (OA) (i.e., the percent of the validation samples 
that were correctly classified) and class-level user’s (UA) (1 – commission error) and producer’s 
(1 – omission error) accuracy (PA) (Congalton and Green, 2019; Stehman, 1997; Stehman et al., 
2009; Stehman and Czaplewski, 1998). It should be noted that the relative proportion of classes 
in the confusion matrix represent those from the Natural Heritage Database, which may not align 
with the true proportions on the landscape. Thus, confusion matrices represent a population 
confusion matrix relative to the Natural Heritage Database but may not represent a true 
population confusion matrix for the mapped landscaped (Stehman, 2014, 2013, 2012).  

Since the commonly used Kappa statistic has come under scrutiny and its use in remote 
sensing is now discouraged (Foody, 2020; Pontius and Millones, 2011), we did not calculate this 
metric. Instead, we calculated map-level image classification efficacy (MICE), which only uses 
the reference class margin totals as opposed to both the reference and classification margin totals 
to correct OA for chance agreement. This method has been suggested to be robust to accuracy 
inflation due to chance agreement and meaningful when the number of samples per class are 
imbalanced while not suffering from the logical flaws of Kappa (Shao et al., 2021). Lastly, we 
also calculated the percent of the validation samples in which the correct classification was 
within the top three predict class probabilities as a means to assess how often the correct class is 
included amongst the top three classes in terms of predicted probability.  

All of the metrics discussed above are based on classification results in which the class 
with the highest predicted probability is compared to the reference class. However, since I also 
wanted to assess the probabilistic products, measures that take into account probabilities at 
varying decision thresholds were also calculated. These metrics include the area under the 
receiver operating characteristic curve (AUC ROC) and area under the precision-recall curve 
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(AUC PR). The ROC curve takes into account only class producers’ accuracies (1 – omission 
error) at varying decision thresholds and can be overly optimistic when classes are imbalanced. 
In contrast, the precision-recall curve considers the producer’s and user’s (1 – commission error) 
accuracy relative to the positive case and can be especially informative when classes are 
imbalanced since user’s accuracy is impacted by class imbalance. Also, since this classification 
task was not a binary classification problem, multi-class versions of the metrics were used.  
Micro-average AUCs were calculated by stacking all groups together. (Cortes and Mohri, n.d.; 
Fan et al., 2006; Saito and Rehmsmeier, 2015; Wandishin and Mullen, 2009). 

 

Table 6. Assessment metrics used for assessment with their description.   

Assessment Metrics Explanation 

Confusion (Error) matrix 

Spatial overlay of the classification results 
and testing data, source of other assessment 
metrics such as the overall accuracy and 
UA/PA 

User’s accuracy (UA) 1 - Commission Error 
Producer’s accuracy (PA) 1 - Omission Error 

Area Under the Receiver Operating 
Characteristic Curve (AUC ROC) 

Area under ROC curve, which takes into 
account multi-class sensitivity and specificity 
and varying decision thresholds 

Area Under the Precision-Recall Curve (AUC 
PR) 

Area under the P-R curve, which takes into 
account multi-class recall and precision at 
varying decision thresholds 

Map-level Image Classification Efficacy 
(MICE) 

Chance adjusted accuracy using reference 
class margin totals for accuracy correction 

 

Chapter 6. Results 

Table 7 lists the full set of 36 variables that were used in the Spectral + Terrain models and 
were selected using the RF-based model selection routine that incorporates parsimony after 
Murphy et al. (2010) whereas Figure 2 highlights the 25 most important predictor variables as 
estimated using the conditional permutation importance measure after Debeer and Strobl (2020). 
All the terrain variables were included along with several blue and green band measurements 
(e.g., BG_anminmax). Additionally, a few near-infrared and short-wave infrared variables were 
of high relative importance within the model (e.g., NS1_max). There were also a high number of 
included variables that combined the two different shortwave-infrared bands, including multiple 
measures of yearly central tendency (e.g., SWSW_smin).  

Table 8 presents the overall accuracy (OA) rates for the different models. The RF model 
using the combined spectral and terrain predictor variables performed the best with an accuracy 
of 61.58%. The kNN and SVM models showed very similar accuracy rates for the three different 
feature spaces; however, the combined predictor variables generally showed an improvement in 
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model performance across all three algorithms. The kNN and RF models performed better with 
just the terrain predictors; however, the SVM model performed better using only the spectral 
predictors.  

Further accuracy measures are noted in Table 9. The MICE values fluctuated with the highest 
measure being for the RF All (i.e., Spectral + Terrain) model at 0.52, which, although low due to 
the complexity of this task, does indicate that the result contains some useful content. A model 
that is not better than random would yield a MICE value close to 0 (Shao et al., 2021). The SVM 
Ter (i.e., only Terrain variables) and the SVM Spec (i.e., only Spectral variables) had the lowest 
values overall. These metrics were converted from percentages to proportions for table 
consistency. The aFS is the average F1-Score for the model which measures the harmonic mean 
of the class-level precision and recall metrics and indicates that the RF algorithm consistently 
outperformed the other algorithms. The estimated confidence intervals for OA are provided in 
the final two columns of Table 9 (OAU and OAL) and generally follow the same overall 
accuracy patterns with the RF All model performing the highest overall. Generally, non-
overlapping confidence intervals for OA suggest that the models are truly different or that 
differences did not arise from sampling variability or random chance. 

The micro-AUC ROC and AUC PR generally suggest stronger performance than the 
threshold-based metrics, which supports the value of the probabilistic outputs. The Top3 metric 
is the percent of samples in which the correct class was one of the three highest predicted class 
probabilities out of all seven classes. These values were relatively high, suggesting that even if 
the correct class was not predicted, it was commonly in the top set of the predicted probabilities. 
This further highlights the utility of the various probabilistic outputs.  

 

Table 7. Full set of variables used in the models.  

BG_av2575 GN_max SVVI_min SWSW_smin 
BG_avminmax GR_max SVVI_smin dem30m 
BG_avsminsmax NS1_av50smax swir2_smin_SVVI diss3 
BG_median NS1_av75smax SWSW_avminmax hli2 
BR_av50smax NS1_max SWSW_avsmin25 rph3 
BR_av75smax NS1_smax SWSW_avsmin50 sar 
BR_smax SVVI_avsmin25 SWSW_avsminsmax sei 
GN_av75smax SVVI_avsmin50 SWSW_median slp 
slpmn3 sp3 ssr3 trasp 
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Figure 2. List of top 25 important variables as estimated using conditional permutation 
importance.      

 

Table 8. Overall model accuracy (OA) rates.    

 

 

 

 

 

 

 

 

 

 

kNN 
All 

kNN 
Terrain 

kNN 
Spectral 

RF All RF 
Terrain 

RF 
Spectral 

SVM 
All 

SVM 
Terrain 

SVM 
Spectral 

53.81 48.88 45.59 61.58 56.35 53.36 52.17 41.55 42.75 
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Table 9. Additional model accuracy rates.    

Run MICE aUA aPA aFS Micro 
AUC ROC 

Micro 
AUC PR Top3 OAU OAL 

RF 
All 

0.52 0.61 0.58 59.0 0.92 0.70 0.92 0.57 0.65 

SVM 
All 

0.40 0.45 0.40 41.4 0.84 0.57 0.83 0.48 0.56 

kNN 
All 

0.42 0.56 0.50 51.0 0.86 0.58 0.87 0.49 0.57 

RF 
Spec 

0.42 0.51 0.52 50.6 0.86 0.54 0.87 0.49 0.57 

SVM 
Spec 

0.28 0.37 0.37 33.4 0.80 0.44 0.79 0.38 0.46 

kNN 
Spec 

0.32 0.49 0.43 44.2 0.81 0.46 0.80 0.41 0.49 

RF 
Ter 

0.45 0.52 0.49 50.0 0.89 0.62 0.91 0.52 0.60 

SVM 
Ter 

0.27 0.41 0.36 33.8 0.80 0.49 0.77 0.38 0.45 

kNN 
Ter 

0.36 0.52 0.44 45.5 0.85 0.53 0.87 0.45 0.53 

 

The resulting probabilities for the best performing model, RF All, for each of the community 
types are provided in Figure 3 while Figure 4 shows the resulting hard classification from the 
same model (i.e., each forested pixel was assigned to the class with the highest predicted 
probability). Darker green areas indicate higher predicted likelihood of occurrence. Higher 
probabilities of Floodplain Forests and Swamps are predicted in lower topographic positions and 
valley bottoms, as expected. Northern Hardwoods and Red Spruce types show higher 
probabilities at higher elevations and within the Allegheny Highlands physiographic region and 
are subsequently differentiated spectrally at a finer spatial scale (see bottom inset map in Figure 
4). Hemlock, Mixed Mesophytic, and both Oak Forest community types are spread across the 
state and are differentiated at the hillslope-scale. Specifically, topographic aspect and its 
association with incoming solar radiation and moisture levels appears to be important for 
differentiating the Mixed Mesophytic and Oak/Hickory types, with Mixed Mesophytic 
dominating in wetter aspects (e.g., northeast facing slopes) and Oak/Hickory dominating in drier 
aspects (e.g., southwest facing slopes) (see top inset map in Figure 4). More generally, 
Oak/Hickory and Oak/Pine forests were predicted to be more abundant than Mixed Mesophytic 
in the drier Valley and Ridge physiographic section in the eastern portion of the state. Generally, 
Floodplain and Swamp, Red Spruce, and Northern Hardwoods were predicted with higher 
probabilities than the other types, suggesting that they are more separable based on spectral 
and/or terrain characteristics.  
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The UA and PA rates were highest overall for Floodplain and Swamps with the highest UA 
being 92.0% for Floodplain and Swamps in the RF All model and the highest PA being 94.9% 
for the SVM All model (Table 10, Table 11). Hemlock had lower accuracy rates as measured 
with UA and PA, and Red Spruce was also notably low with 0.0% in both tables for the SVM 
All and SVM Terrain models. The kNN model using all predictor variables showed confusion 
between the Hemlock and Mixed Mesophytic Forest classes as well as the Oak/Hickory and 
Oak/Pine types. Within the only terrain predictors model, the Hemlock class was confused with 
each of the other community types, suggesting that this class may occupy a range of topographic 
positions on the landscape. The Oak/Pine and Oak/Hickory classes showed higher confusion in 
all models, but were especially confused in the SVM models. This pattern continued in the kNN 
model using only spectral predictor variables. Notably, both classes including Oak trees showed 
higher confusion with Floodplain and Swamp forests. 

The confusion matrices, from which the summary metrics presented above were derived, 
compare the pixels in a class with the number of pixels in the same class in the withheld 1/3rd of 
the WVDNR data. Tables 12 through 14 display accuracy for the kNN model with Table 12 
(model including all variables) showing generally lower confusion at the class level. Within 
these tables there was notable confusion within the Oak/Pine and Oak/Hickory community types, 
which I attribute to these types occurring in similar topographic conditions while also having 
similar spectral signatures. Or, they are not well separated using the provided predictor variables. 
Also, these classes are somewhat similar and may share gradational boundaries. Tables 15 
through 17 show class level-error for the RF models including the final classification output (i.e., 
Table 15 provides an assessment of the classification presented in Figure 4). These tables show a 
higher level of agreement, aligning with the higher accuracy measures from Table 10. 
Specifically, these models seemed better at distinguishing between the Hemlock and Mixed 
Mesophytic classes. Tables 18 through 20 are for the SVM models. This model had the greatest 
issue with classifying Red Spruce with the All variables and terrain only models not properly 
classifying any Red Spruce and with the spectral only model only properly identifying two. 
Overall, the Red Spruce class had the least misclassification by class for the kNN and RF 
models. It appears from the combination of these tables that the mixed classes, such as Mixed 
Mesophytic or Oak/Hickory, had greater confusion when compared with Hemlock or Northern 
Hardwoods.  
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Figure 3. Probability raster grids for each of 
the forest classes in West Virginia.   
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Figure 4. Final map of classification results based on RF using spectral and terrain variables with 
each color representing an individual community type.  
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Table 10. Confusion Matrix from kNN model using all predictor variables.    
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Floodplain 124 3 0 4 0 1 4 136 85.5 
Hemlock 4 20 9 3 3 6 4 49 24.1 

Mix. Meso.  3 17 38 3 13 3 0 77 43.2 
 North. Hard. 1 3 5 23 3 3 8 46 37.7 

Oak/Hick. 9 25 28 12 74 55 2 205 66.1 
Oak/Pine 2 15 8 12 19 55 13 124 44.7 

Red Spruce 2 0 0 4 0 0 26 32 45.6 
 Totals 145 83 88 61 112 123 57   
 PA 91.2 40.8 49.4 50.0 36.1 44.4 81.2   

 

 

 

Table 11. Confusion Matrix from kNN model using only terrain predictor variables.    
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Floodplain 124 7 2 2 0 0 1 136 86.7 
Hemlock 5 11 12 3 8 6 4 49 14.3 

Mix. Meso.  3 14 42 4 12 1 1 77 44.2 
 North. Hard. 2 2 2 19 2 4 15 46 33.9 

Oak/Hick. 5 28 32 10 54 62 14 205 54.0 
Oak/Pine 3 15 5 14 24 50 13 124 40.7 

Red Spruce 1 0 0 4 0 0 27 32 36.0 
 Totals 143 77 95 56 100 123 75   
 PA 91.2 22.4 54.5 41.3 26.3 40.3 84.4   
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Table 12. Confusion Matrix from kNN model using only spectral predictor variables.    
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Floodplain 100 5 11 2 7 7 4 136 60.2 
Hemlock 4 26 5 2 3 5 4 49 26.3 

Mix. Meso.  9 15 24 7 14 8 0 77 32.0 
 North. Hard. 3 2 4 20 4 6 7 46 36.4 

Oak/Hick. 31 31 25 14 66 38 0 205 58.9 
Oak/Pine 17 19 6 6 18 45 13 124 40.9 

Red Spruce 2 1 0 4 0 1 24 32 46.2 
 Totals 166 99 75 55 112 110 52   
 PA 73.5 53.1 31.2 43.5 32.2 36.3 75.0   

 

 

 

Table 13. Confusion Matrix from RF model using all predictor variables.    
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Floodplain 126 1 2 1 4 1 1 136 92.0 
Hemlock 2 17 8 3 10 8 1 49 36.2 

Mix. Meso.  2 9 39 2 24 1 0 77 52.0 
 North. Hard. 0 2 3 27 7 1 6 46 48.2 

Oak/Hick. 4 13 22 11 123 32 0 205 56.4 
Oak/Pine 2 5 1 9 49 53 5 124 55.2 

Red Spruce 1 0 0 3 1 0 27 32 67.5 
 Totals 137 47 75 56 218 96 40   
 PA 92.6 34.7 50.6 58.7 60.0 42.7 84.4   
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Table 14. Confusion Matrix from RF model using only terrain predictor variables.    
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Floodplain 127 3 0 2 4 0 0 136 90.1 
Hemlock 5 5 11 3 17 7 1 49 17.9 

Mix. Meso. 3 7 42 3 20 2 0 77 51.2 
North. Hard. 1 0 4 22 4 4 11 46 38.6 
Oak/Hick. 3 8 20 13 111 48 2 205 53.9 
Oak/Pine 1 5 5 6 49 50 8 124 44.2 

Red Spruce 1 0 0 8 1 2 20 32 47.6 
 Totals 141 28 82 57 206 113 42   
 PA 93.4 10.2 54.5 47.8 54.1 40.3 62.5   

 

 

 

Table 15. Confusion Matrix from RF model using only spectral predictor variables.    
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Floodplain 100 3 4 0 23 4 2 136 60.6 
Hemlock 2 15 7 2 9 13 1 49 31.9 

Mix. Meso.  12 7 28 3 22 5 0 77 45.9 
 North. Hard. 4 2 3 20 7 3 7 46 60.6 

Oak/Hick. 30 6 16 5 124 24 0 205 54.1 
Oak/Pine 13 13 3 1 42 47 5 124 49.0 

Red Spruce 4 1 0 2 2 0 23 32 60.5 
 Totals 165 47 61 33 229 96 38   
 PA 73.5 30.6 36.4 43.5 60.5 37.9 71.9   
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Table 16. Confusion Matrix from SVM model using all predictor variables.    

 

 

 

Table 17. Confusion Matrix from SVM model using only terrain predictor variables.    
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Floodplain 126 6 1 1 2 0 0 136 88.7 
Hemlock 4 12 20 3 5 5 0 49 11.1 

Mix. Meso.  3 7 61 3 3 0 0 77 27.5 
 North. Hard. 1 3 3 29 2 8 0 46 36.2 

Oak/Hick. 5 48 97 15 30 10 0 205 52.6 
Oak/Pine 2 32 40 16 14 20 0 124 33.3 

Red Spruce 1 0 0 13 1 17 0 32 0.0 
 Totals 142 108 222 80 57 60 0   
 PA 92.6 24.5 79.2 63.0 14.6 16.1 0.0   
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Floodplain 129 2 1 0 2 2 0 136 89.6 
Hemlock 2 17 21 3 4 1 1 49 20.0 

Mix. Meso.  3 6 54 3 11 0 0 77 38.3 
 North. Hard. 1 3 3 21 7 11 0 46 39.6 

Oak/Hick. 5 25 46 10 102 17 0 205 61.8 
Oak/Pine 2 31 16 10 39 26 0 124 32.5 

Red Spruce 2 1 0 6 0 23 0 32 0.0 
 Totals 144 85 141 53 165 80 1   
 PA 94.9 34.7 70.1 45.7 47.9 21.0 0.0   
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Table 18. Confusion Matrix from SVM model using only spectral predictor variables.    
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Floodplain 100 10 2 1 22 1 0 136 49.5 
Hemlock 3 30 5 2 7 1 1 49 27.3 

Mix. Meso.  16 14 22 2 23 0 0 77 38.6 
 North. Hard. 5 1 2 11 19 8 0 46 37.9 

Oak/Hick. 45 19 21 8 110 2 0 205 49.8 
Oak/Pine 28 35 5 2 39 11 4 124 25.6 

Red Spruce 5 1 0 3 1 20 2 32 28.6 
 Totals 202 110 57 29 221 43 7   
 PA 73.5 61.2 28.6 23.9 53.7 8.9 6.2   

 

Chapter 7. Discussion  

Forest type classification over large spatial extents and a moderate spatial resolution (i.e., 
the Landsat scale) using remotely sensed data is a difficult task that has not yet been 
operationalized. One component of the issue is that it can be difficult to acquire cloud-free 
imagery for a large extent within a specific timeframe. For example, specific time periods during 
fall senescence or spring leaf-out may be key for differentiating communities; however, cloud-
free data may not be available. Further, key dates would vary over large spatial extents as a result 
of latitudinal and elevational gradients, further complicating the selection of key imagery. This 
study generally supports the use of products that summarize large sets of multi-temporal 
imagery, such as the GLAD Phenology spectral data used in this study or harmonic regression 
coefficients used in prior studies (i.e., Adams et al. 2020 and Pasquarella et al. 2018), as such 
methods offer a means to generally characterize yearly central tendency and seasonal variability 
consistently across large spatial extents and for each individual cell. I argue that globally 
consistent datasets that offer aggregated spectral measurements over broad spatial extents and 
characterize seasonal variability, such as the GLAD Phenology metrics, are generally underused 
in spatial predictive mapping and modeling. Further, I argue that there is a need for the adoption 
of a consistent set of seasonal metrics from the Landsat timeseries to compliment other 
commonly used metrics, such as vegetation indices or the tasseled cap transformation.  

Previous studies have used RF and spectral data for forest type mapping and obtained 
accuracy rates above 80%, such as Liu et al. (2018); however, these studies had much smaller 
spatial extents. I argue that the lower classification accuracies obtained in this study in 
comparison to other forest type mapping studies can be partially attributed to the large spatial 
extent that was mapped (i.e., the entire state of West Virginia), which spans multiple Landsat 
scenes, multiple physiographies with varying hill-slope characteristics, and over 1,400 meters of 
elevation change across approximately 3 degrees of latitude (37◦-40◦ North). Studies that have 
attempted to map smaller spatial extents or areas that are covered by a single Landsat scene may 
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not capture the complexity of mapping over larger extents and, as a result, may offer optimistic 
assessments that may not scale to operational mapping of large spatial extents. 

Another issue with this task is the complexity of mapping fuzzy or gradational classes as 
well as the natural mixed nature of forests. Specifically, this can be seen in the confusion 
between the Oak/Hickory and the Oak/Pine classes in the confusion matrices. This further 
highlights the value of probabilistic output, which I argue provides a more meaningful 
characterization or mapping when class definitions are fuzzy and class boundaries are 
gradational. Probabilistic outputs, such as those generated in this study and by Pasquarella et al. 
(2018),  help highlight complex landscape patterns and should be used alongside hard 
classifications to characterize the landscape and mapping uncertainty more fully.  

It should also be noted that the class definitions used and the number of differentiated 
classes mapped can have a large impact on the reported accuracy of the resulting classification. 
For example, in Table 19 below I have combined the Oak/Hickory and Oak/Pine classes into an 
Oak/Hickory/Pine class. This table was generated from the best obtained classification: RF using 
the spectral and terrain variables. With this change, overall accuracy increased from 61.6% to 
73.0%, and MICE increased from 0.52 to 0.62.    

 

Table 19. Confusion Matrix from RF model using only spectral and terrain variables with the 
Oak/Hickory and Oak/Pine classes combined to an Oak/Hickory/Pine class.   
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Floodplain 126 1 2 1 5 1 136 92.6 
Hemlock 2 17 8 3 18 1 49 34.7 

Mix. Meso.  2 9 39 2 25 0 77 50.6 
 North. Hard. 0 2 3 27 8 6 46 58.7 

Oak/Hick./Pine 6 18 23 20 257 5 329 78.1 
Red Spruce 1 5 1 3 1 27 38 71.1 

 Totals 137 52 76 56 314 40   
 PA 92.0 32.7 51.3 48.2 81.0 67.5   

 

My results support prior findings, such as those of Liu et al. (2018) and Adams et al. 
(2020), that document the value of including digital terrain variables. Terrain variables are 
specifically useful for this task as they help characterize biophysical conditions that impact forest 
community composition. For example, areas where oak species are dominant likely experience 
dryer conditions, which could topographically be linked to  higher sun exposure as experienced 
by southwest facing slopes in the Northern hemisphere. This work suggests that terrain 
derivatives should be included alongside spectral data to potentially improve separation of 
classes that are spectrally similar but occupy locations with varying abiotic conditions. Further, 
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digital elevation data are readily available at a moderate spatial resolution (e.g., the NED dataset 
in the United States). Thus, incorporating such data is generally possible. However, creating 
derivatives from DTMs can be time, memory, and computationally intensive. Making DTM 
derivatives more readily available could aid in their adoption for large-area mapping and 
modeling tasks. Being able to generate such output on-the-fly, such as using the recently 
introduced Raster Functions in the ArcGIS software environment, could speed up and simplify 
the use of such variables in predictive models.  

Of the three tested ML algorithms, RF generally performed best. The highest OA, MICE, 
AUC ROC, and AUC PR metrics were obtained using the RF algorithm and a combination of 
spectral and terrain predictor variables. As noted by Maxwell et al. (2018), a single algorithm has 
not been shown to always perform better than others. Instead, the optimal algorithm is often case 
specific, and multiple algorithms should be assessed in order to gauge and compare performance 
for specific tasks. As a result, I suggest that multiple algorithms should be assessed. Other than 
just generally strong predictive performance, RF has other positive attributes, such as the ability 
to use predictor variables measured on different scales or a mix of continuous and categorical 
predictors, provide an assessment of predictor variable importance, and assess model 
performance using the out-of-bag samples. It is also generally computationally efficient and not 
highly sensitive to hyperparameter values, such as the number of trees in the ensemble and the 
number of variables to randomly select from at each decision node (Brieman 2001). Further, RF 
has been integrated into a variety of computational environments (e.g., Python and R), 
commercial software packages (e.g., ArcGIS Pro and ITT ENVI), and open-source tools (e.g., 
QGIS).  

Based on the output classification raster grid (see Figure 4) it seems that aspect is heavily 
linked to community type across the state, which I attribute to its impact on and association with 
incoming solar radiation and moisture levels. Some specific classes were especially well 
differentiated, such as Floodplains and Swamps, which I attribute the distinct topographic 
position occupied. Also, Northern Hardwoods and Red Spruce were generally well separated 
from the other classes based on elevation. A lot of the confusion within the models resulted from 
differentiating between the mixed community classes such as Oak/Pine and Oak/Hickory types, 
and merging these classes increased accuracy as demonstrated above, potentially suggesting that 
they may not be adequately separable given the spectral and terrain predictor variables used. 
Further, given the fuzzy nature of class definitions, pixels may not fit well into either of these 
groups and may represent a mix of both types. Again, this highlights the value of the 
probabilistic output.   

One other complexity in this modeling process was class imbalance. Generally, ML 
methods have been shown to more accurately predict the more abundant classes in the training 
set (James et al. 2013, Kuhn & Johnson 2013). In this example, I oversampled the minority 
classes to provide a balanced training set. However, this may have resulted in overfitting. Future 
studies could investigate other methods to deal with class imbalance, such as applying class 
weightings in the training process. The issue of class imbalance is an area in need of additional 
research, as many datasets are imbalanced due to true disparities in abundance across real 
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landscapes. In extreme cases of class imbalance, stratified sampling may not be possible, or it 
may simply be too difficult to collect a large number of minority class samples (James et al. 
2013, Kuhn & Johnson 2013). 

Chapter 8. Conclusion  

This project is unique in that it explores operational mapping at the state scale and 
assessed spectral metrics that have not previously been explored for forest type mapping (i.e., the 
GLAD Phenology metrics). This study incorporated both spectral and terrain predictor variables 
along with field plot observations to classify forest types for all forested pixels in the state of 
West Virginia. An overall accuracy of 61.58% was obtained using the RF algorithm and a 
combination of spectral and terrain variables selected from a larger set using recursive feature 
elimination. Both a traditional hard classification output along with probability maps by 
community type were generated. My results highlight the complexity of forest type mapping and 
the value of probabilistic outputs and the inclusion of digital terrain variables. Increased 
knowledge about forest community types and how to classify them is important for modern 
forest management and ecosystem analysis, especially at large spatial extents such as entire 
states or countries. Future research projects might focus on how to better differentiate between 
mixed forest classes and species with overlapping ground distributions within machine learning-
based models.  
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