7 research outputs found

    An efficient parameterless quadrilateral-based image segmentation method

    Get PDF
    This paper proposes a general quadrilateral-based framework for image segmentation, in which quadrilaterals are first constructed from an edge map, where neighboring quadrilaterals with similar features of interest are then merged together to form regions. Under the proposed framework, the quadrilaterals enable the elimination of local variations and unnecessary details for merging from which each segmented region is accurately and completely described by a set of quadrilaterals. To illustrate the effectiveness of the proposed framework, we derived an efficient and high-performance parameterless quadrilateral-based segmentation algorithm from the framework. The proposed algorithm shows that the regions obtained under the framework are segmented into multiple levels of quadrilaterals that accurately represent the regions without severely over or undersegmenting them. When evaluated objectively and subjectively, the proposed algorithm performs better than three other segmentation techniques, namely, seeded region growing, K-means clustering and constrained gravitational clustering, and offers an efficient description of the segmented objects conducive to content-based applications. © 2005 IEEE.published_or_final_versio

    Spline-based medial axis transform representation of binary images

    Get PDF
    Medial axes are well-known descriptors used for representing, manipulating, and compressing binary images. In this paper, we present a full pipeline for computing a stable and accurate piece-wise B-spline representation of Medial Axis Transforms (MATs) of binary images. A comprehensive evaluation on a benchmark shows that our method, called Spline-based Medial Axis Transform (SMAT), achieves very high compression ratios while keeping quality high. Compared with the regular MAT representation, the SMAT yields a much higher compression ratio at the cost of a slightly lower image quality. We illustrate our approach on a multi-scale SMAT representation, generating super-resolution images, and free-form binary image deformation

    Shape representation and coding of visual objets in multimedia applications — An overview

    Get PDF
    Emerging multimedia applications have created the need for new functionalities in digital communications. Whereas existing compression standards only deal with the audio-visual scene at a frame level, it is now necessary to handle individual objects separately, thus allowing scalable transmission as well as interactive scene recomposition by the receiver. The future MPEG-4 standard aims at providing compression tools addressing these functionalities. Unlike existing frame-based standards, the corresponding coding schemes need to encode shape information explicitly. This paper reviews existing solutions to the problem of shape representation and coding. Region and contour coding techniques are presented and their performance is discussed, considering coding efficiency and rate-distortion control capability, as well as flexibility to application requirements such as progressive transmission, low-delay coding, and error robustnes

    Three-Dimensional Motion Estimation of Objects for Video Coding

    Get PDF
    Three-dimensional (3-D) motion estimation is applied to the problem of motion compensation for video coding. We suppose that the video sequence consists of the perspective projections of a collection of rigid bodies which undergo a rototranslational motion. Motion compensation can be performed on the sequence once the shape of the objects and the motion parameters are determined. We show that the motion equations of a rigid body can be formulated as a nonlinear dynamic system whose state is represented by the motion parameters and by the scaled depths of the object feature points. An extended Kalman filter is used to estimate both the motion and the object shape parameters simultaneously. The inclusion of the shape parameters in the estimation procedure adds a set of constraints to the filter equations that appear to be essential for reliable motion estimation. Our experiments show that the proposed approach gives two advantages. First, the filter can give more reliable estimates in the presence of measurement noise in comparison with other motion estimators that separately compute motion and structure. Second, the filter can efficiently track abrupt motion changes. Moreover, the structure imposed by the model implies that the reconstructed motion is very natural as opposed to more common block-based schemes. Also, the parameterization of the model allows for a very efficient coding of the motion informatio

    Joint source-channel multistream coding and optical network adapter design for video over IP

    Full text link

    High-performance compression of visual information - A tutorial review - Part I : Still Pictures

    Get PDF
    Digital images have become an important source of information in the modern world of communication systems. In their raw form, digital images require a tremendous amount of memory. Many research efforts have been devoted to the problem of image compression in the last two decades. Two different compression categories must be distinguished: lossless and lossy. Lossless compression is achieved if no distortion is introduced in the coded image. Applications requiring this type of compression include medical imaging and satellite photography. For applications such as video telephony or multimedia applications, some loss of information is usually tolerated in exchange for a high compression ratio. In this two-part paper, the major building blocks of image coding schemes are overviewed. Part I covers still image coding, and Part II covers motion picture sequences. In this first part, still image coding schemes have been classified into predictive, block transform, and multiresolution approaches. Predictive methods are suited to lossless and low-compression applications. Transform-based coding schemes achieve higher compression ratios for lossy compression but suffer from blocking artifacts at high-compression ratios. Multiresolution approaches are suited for lossy as well for lossless compression. At lossy high-compression ratios, the typical artifact visible in the reconstructed images is the ringing effect. New applications in a multimedia environment drove the need for new functionalities of the image coding schemes. For that purpose, second-generation coding techniques segment the image into semantically meaningful parts. Therefore, parts of these methods have been adapted to work for arbitrarily shaped regions. In order to add another functionality, such as progressive transmission of the information, specific quantization algorithms must be defined. A final step in the compression scheme is achieved by the codeword assignment. Finally, coding results are presented which compare stateof- the-art techniques for lossy and lossless compression. The different artifacts of each technique are highlighted and discussed. Also, the possibility of progressive transmission is illustrated
    corecore