20 research outputs found

    Dissimilarity Based Contrastive Divergence for Anomaly Detection

    Get PDF
    This paper describes training of a Re- stricted Boltzmann Machine(RBM) using dissimilarity-based contrastive divergence to obtain an anomaly detector. We go over the merits of the method over other approaches and describe the method's usefulness to ob- tain a generative model

    End-to-End Localization and Ranking for Relative Attributes

    Full text link
    We propose an end-to-end deep convolutional network to simultaneously localize and rank relative visual attributes, given only weakly-supervised pairwise image comparisons. Unlike previous methods, our network jointly learns the attribute's features, localization, and ranker. The localization module of our network discovers the most informative image region for the attribute, which is then used by the ranking module to learn a ranking model of the attribute. Our end-to-end framework also significantly speeds up processing and is much faster than previous methods. We show state-of-the-art ranking results on various relative attribute datasets, and our qualitative localization results clearly demonstrate our network's ability to learn meaningful image patches.Comment: Appears in European Conference on Computer Vision (ECCV), 201

    Toward a Taxonomy and Computational Models of Abnormalities in Images

    Full text link
    The human visual system can spot an abnormal image, and reason about what makes it strange. This task has not received enough attention in computer vision. In this paper we study various types of atypicalities in images in a more comprehensive way than has been done before. We propose a new dataset of abnormal images showing a wide range of atypicalities. We design human subject experiments to discover a coarse taxonomy of the reasons for abnormality. Our experiments reveal three major categories of abnormality: object-centric, scene-centric, and contextual. Based on this taxonomy, we propose a comprehensive computational model that can predict all different types of abnormality in images and outperform prior arts in abnormality recognition.Comment: To appear in the Thirtieth AAAI Conference on Artificial Intelligence (AAAI 2016

    AMNet: Memorability Estimation with Attention

    Get PDF
    In this paper we present the design and evaluation of an end-to-end trainable, deep neural network with a visual attention mechanism for memorability estimation in still images. We analyze the suitability of transfer learning of deep models from image classification to the memorability task. Further on we study the impact of the attention mechanism on the memorability estimation and evaluate our network on the SUN Memorability and the LaMem datasets. Our network outperforms the existing state of the art models on both datasets in terms of the Spearman's rank correlation as well as the mean squared error, closely matching human consistency

    Spatio-Temporal Anomaly Detection for Industrial Robots through Prediction in Unsupervised Feature Space

    Get PDF
    International audienceSpatio-temporal anomaly detection by unsupervised learning have applications in a wide range of practical settings. In this paper we present a surveillance system for industrial robots using a monocular camera. We propose a new unsupervised learning method to train a deep feature extractor from unlabeled images. Without any data augmentation , the algorithm co-learns the network parameters on different pseudo-classes simultaneously to create unbiased feature representation. Combining the learned features with a prediction system, we can detect irregularities in high dimensional data feed (e.g. video of a robot performing pick and place task). The results show how the proposed approach can detect previously unseen anomalies in the robot surveillance video. Although the technique is not designed for classification, we show the use of the learned features in a more traditional classification application for CIFAR-10 dataset

    Understanding and Predicting Image Memorability at a Large Scale

    Get PDF
    Progress in estimating visual memorability has been limited by the small scale and lack of variety of benchmark data. Here, we introduce a novel experimental procedure to objectively measure human memory, allowing us to build LaMem, the largest annotated image memorability dataset to date (containing 60,000 images from diverse sources). Using Convolutional Neural Networks (CNNs), we show that fine-tuned deep features outperform all other features by a large margin, reaching a rank correlation of 0.64, near human consistency (0.68). Analysis of the responses of the high-level CNN layers shows which objects and regions are positively, and negatively, correlated with memorability, allowing us to create memorability maps for each image and provide a concrete method to perform image memorability manipulation. This work demonstrates that one can now robustly estimate the memorability of images from many different classes, positioning memorability and deep memorability features as prime candidates to estimate the utility of information for cognitive systems. Our model and data are available at: http://memorability.csail.mit.edu.National Science Foundation (U.S.) (Grant 1532591)McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) ProgramMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory. MIT Big Data InitiativeGoogle (Firm)Xerox Corporatio
    corecore