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Abstract

Spatio-temporal anomaly detection by unsupervised
learning have applications in a wide range of practical set-
tings. In this paper we present a surveillance system for
industrial robots using a monocular camera. We propose a
new unsupervised learning method to train a deep feature
extractor from unlabeled images. Without any data aug-
mentation, the algorithm co-learns the network parameters
on different pseudo-classes simultaneously to create unbi-
ased feature representation. Combining the learned fea-
tures with a prediction system, we can detect irregularities
in high dimensional data feed (e.g. video of a robot per-
forming pick and place task). The results show how the pro-
posed approach can detect previously unseen anomalies in
the robot surveillance video. Although the technique is not
designed for classification, we show the use of the learned
features in a more traditional classification application for
CIFAR-10 dataset.

1. Introduction

Reliable working of an industrial pipeline is important to
ensure the high performance of the system. As the sensors
installed in the robot are not sufficient to reveal all kind of
irregularities in the system, it is common for the technicians
to have visual inspections of the machines and robots. This
involves significant human labor and have a risk of human
error and a delay in fault detection. To assist the human
operator in this task, we present a video surveillance sys-
tem for industrial robots and machinery using a monocu-
lar camera. The proposed system learns to perform spatio-
temporal anomaly detection by using unlabeled surveillance
video and warns the human operator in case of an unusual
event.

The anomaly detection system we use is inspired by the
prediction mechanism of human neural system. As shown
in Figure 1, in human brain, anomalies are detected by com-
paring the expectation with the actual observation [9]. In-

Figure 1. Expectation and surprise determine anomaly in human
neural system.

stead of comparing the expectation and observation in im-
age space the brain makes the comparison in an encoded
feature space down the visual cortex.

In this paper, we create a feature representation of the
images by training a deep convolutional neural network
(CNN).Deep convolutional neural networks trained in a
fully supervised manner have shown impressive results on
datasets containing millions of images and thousands of
classes [16]. The state-of-the-art results produced by such
networks [16, 24] were only possible due to the availabil-
ity of large labeled datasets. Creating these datasets is an
expensive process and the amount of labeled data grows
rapidly with the increasing number of model parameters.
For many applications, like anomaly detection, the labeling
of the data might be impossible. For these reasons, unsu-
pervised learning - although underperforming in some ap-
plications - remains an appealing paradigm. Most of these
unsupervised methods use data augmentation by exploiting
both color space and geometric transforms. For our applica-
tion of robotics surveillance, the data augmentation cannot
be used. For example, applying geometric transformations
(e.g. flip, scale, rotate etc.) have no advantage for surveil-
lance of industrial robots from a fixed surveillance camera.

For the previous reasons, we develop a new unsuper-
vised learning method of unlabeled data to train a deep con-



Figure 2. Co-learning on multiple pseudo-classes to learn unbiased
feature representation.

volutional neural network based feature extraction system
without data augmentation. The proposed method co-learns
multiple classification objectives to generate unbiased fea-
ture vectors. The feature representation learned by the net-
work is neutral and does not favor a single classification
task. To detect anomalies in high dimensional input se-
quence (e.g. video), we train a deep prediction network in
the feature domain and any event that cannot be predicted
is treated as an anomaly. Although we demonstrate the pro-
posed method on convolutional network, it is equally appli-
cable to other kind of deep network configurations.

The rest of the paper is organized as follows: Section 2
explains the core idea of this research. Related work is de-
scribed in Section 3. Details of the proposed method is de-
scribed in Section 4. Quantitative analysis of the method is
presented in Section 5. Finally, conclusion and future direc-
tions are given in Section 6.

2. Core Idea

The core idea behind this research is to convert the im-
ages in a sequence to a lower dimensional feature space;
performing a prediction in this feature domain and compar-
ing it with the actual observation can reveal both spatial and
temporal anomalies. A good feature representation should
effectively represent the input data. In supervised learning
the features are learned to help perform a desired classifi-
cation. As the network is trained to perform a single task
the feature vectors may get biased towards that task [7]. In
this paper we present a new method to generate unbiased
features by unsupervised learning.

An assumption for unbiased features is that, if we can
divide the input data in some clusters we should be able to
divide the feature vectors into similar classes. As the data

is not labeled, different image cues are used for clustering
the images to generate pseudo-class labels. Instead of train-
ing on one set of pseudo-classes, we propose simultane-
ous training of the network on different pseudo-class labels.
Figure 2 elaborates this process of co-learning. Co-learning
on different labels at the same time forces the features to
stay neutral and not get biased towards a single problem.
The process is repeated many times with different clusters
to generate more versatile features.

Figure 3 shows how the extracted features can be used to
perform anomaly detection. We use a biologically plausi-
ble system for anomaly detection. According to T. Egner et
al. [9], expectation and surprise determine the anomaly in
human neural system. As it is not feasible to make predic-
tion in a very high-dimensional space (e.g. videos), we use
the compressed feature space to make a prediction. By pre-
dicting the next feature vector that should be observed and
comparing it with the actual observation can find anomalies
both in time and space.

3. Related Work

One of the main challenge in anomaly detection is that
usually very few anomalous data is available. An intuitive
solution is to learn to model or represent what is normal, and
then detect any irregularities as anomalies. In a spatial do-
main, B. Saleh et al. [23] use visual attributes [10] based on
the image appearance, i.e. color, texture and shape to model
a normality of a particular class of object. The anomalous
data is then detected by reasoning about the abnormalities
using a generative model.

Anomaly detection in spatial-temporal domain becomes
more complicated due to the temporal component in the
data. Traditional approaches model the normalities by ex-
plicitly tracking object trajectories. Objects with unusual
trajectories are identified as anomalies. A. Basharat et
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Figure 3. Anomaly detection by comparing the prediction and ob-
servation in feature domain.



al. [2] has provided an in-depth review on these approaches.
W. Lawson et al. [17] define normalities of the different
scenes using a dictionary of deep visual features obtained
from AlexNet [16]. A context of each scene is learned and
used to indicate which objects (deep visual feature clusters)
should appear in the scene. Any image patches whose visual
feature is matched to the cluster not associated to the cur-
rent scene is detected as anomalies. D. Xu et al. [27] treated
an anomaly detection as one-class classification problem.
Autoencoders are used to unsurprisingly learn the feature
for appearance and motion in the scene. Then a multiple
one-class SVM classifiers are trained to separate between
normalities and anomalies. This paper proposed a novel
method to model normalities through prediction. Without
explicitly detect objects or their motion, the method is ca-
pable of detecting anomalies by comparing the future pre-
diction and the next scene appearance in the feature space.

Literature regarding an unsupervised feature learning
are briefly given here as a reference to our novel feature
learning method. Unsupervised feature learning has gained
popularity in recent years due to the ease in data prepa-
ration. One category of an approach is based on using
auto-encoders. Auto-encoder was originally considered as
a dimensional reduction technique [11] similar to Principal
Component Analysis (PCA). It soon became a technique
to perform feature learning [21, 25] for various tasks. The
main drawback is that it is hard to train the auto-encoder
to learn the input distribution. A lot of research has been
proposed to counter this issue [18, 20].

Another category of an approach is based on a K-mean
clustering. Coates et al. [3, 4] proposed a unsupervised
framework to extract features from K-mean. The proposed
method is similar in to a single-layered feature mapping in
a convolutional neural network. Input image is divided into
a small patches and transformed into feature space using a
provided encoding method based on K-mean. Dundar et
al. [8] recently improved the method so that the learned fil-
ters are less redundant. They also extended the idea to allow
K-mean to be trained in a deeper architecture with the inten-
tion to extract a higher-level representation.

A recent research from Dosovitskiy et al. [7] proposed
a unsupervised feature learning method that is novel and
does not belong the above categories. It is based on train-
ing a convolutional neural networks with a pseudo training
data. Image patches are randomly sampled from input im-
ages and pseudo classes are created for each patch. To allow
the networks to effectively learn discriminative features, a
considerable amount of data in each class is required. This
is achieved by applying a set of transformations to each
patch and considering them as the data of the same class.
The authors referred to the method as Exemplar-CNN.

Although Exemplar-CNN and the proposed method have
some similarities, they use different techniques for creat-

Algorithm 1: Algorithm for creating pseudo-classes.
Data: Dtrain; Unlabeled training data
Data: Dtest; Unlabeled testing data
Data: Ntrain; Size of training data
Data: Ndimension; Problem dimension
Input: R; Dimensionality reduction algorithms
Input: C; List of clustering algorithms
Input: Nc; Number of one type of clusters
Input: NC ; Number of clusters to generate
Result: NC labels are generated for both the training

data and the testing data
1 ———START———
/* Loop until NC generated */

2 while Total number of generated clusters > NC do
/* Select algorithm from R */

3 r = RANDSELECTFROM(R)
/* Compute reduced dimensional

components for Dtrain */
4 dtrain = r.FIT(RANDINT(1,Ndimension), Dtrain)

/* Reduce Dtest dimensions */
5 dtest = r.TRANSFORM(Dtest)

/* Select algorithm from C */
6 c = RANDSELECTFROM(C)
7 while Number of generated clusters >= Nc do

/* Create clusters for dtrain */
8 Ctrain = c.FIT(RANDINT(1,Ntrain), dtrain)

/* Create clusters for dtest */
9 Ctest = c.TRANSFORM(dtest)

10 ———END———

ing/utilizing the pseudo-classes and training the network.
Exemplar-CNN relies on data augmentation on each image
to create pseudo-classes. We generate pseudo-classes based
on various image cues (e.g. edge, color), without creating
new image data (data augmentation). Data augmentation
is suitable for learning the feature distribution for classifi-
cation task, but not for the surveillance task where there are
only a few variations in the appearance of the scenes. More-
over, Exemplar-CNN uses one set of pseudo-classes to train
a network, while we use multiple sets of pseudo-classes to
co-learn the network parameters using a single cost func-
tion.

4. Details

In this section we separately discuss different parts of the
proposed unsupervised feature learning and anomaly detec-
tion approach.



Algorithm 2: Proposed co-learning algorithm.
Data: Dtrain; Unlabeled training data
Data: Dtest; Unlabeled testing data
Input: NC ; Total number of clusters (pseudo-classes) available for training
Result: Trained deep feature extractor that is not biased towards a single kind of problem

1 ———START———
/* Create and initialize a deep feature extractor (FE) with random weights. */

2 Fnetwork=Init()
/* Loop until the overall termination criteria is satisfied. */

3 while Not Satisfying the Overall Termination Criteria do
/* Randomly select some clusters from NC set of available pseudo-labels */

4 N=RANDINT(1,NC )
5 Ctrain, Ctest = RANDOMLYSELECTNCLUSTERS(N )

/* Join feature extractor with N RBMs each terminating with a softmax */
6 Tnetwork=JOIN(Fnetwork , N RBM)
7 while Not Satisfying the Termination Criteria do

/* Update the network by sum of softmax cross entropy as cost function */
8 UPDATENETWORK(Tnetwork)

9 ———END———

4.1. Unsupervised Feature Learning

The proposed unsupervised algorithm for training fea-
ture extractor depends on generating a set of pseudo-labels
for training the network. Algorithm 1 elaborates the pro-
cess of creating pseudo-labels. These pseudo-labels, when
co-learned simultaneously, generate feature representation
that is not biased towards single classification task.

4.1.1 Generating Pseudo-Classes

Pseudo-classes can be generated by clustering algorithms.
In this paper, we have used commonly used k-means clus-
tering algorithm [19] with randomly initialized centroids.
For a set of data points (x1, x2, . . . , xn), where each ob-
servation has d-dimensions, k-means clustering algorithm
aims to partition the n observations into k(≤ n) sets S =
S1, S2, . . . , Sk. It does so by minimizing the sum of squares
within each cluster. The objective of the k-means can be
written as: where, µi is the mean of points in set Si.

arg min
S

k∑

i=1

∑

x∈Si

‖x − µi‖2 (1)

where µi is the mean of points in set Si.
k-means is an iterative algorithm but it converges quickly

to a local optimum. Although k-means works well for low
dimensional data, it makes little sense to apply the algo-
rithm directly to a high dimension data like images. Due
to the curse of dimensionality the Euclidean distance looses
its meaning in very high dimensional spaces [1, 26].

In order to make useful clusters dimensionality reduction
is applied based on simple image cues before clustering.
In this paper we use two important features namely color
and gradients. For clustering based on color information we
create a 3D color histogram of the images in the dataset with
different number of bins. The number of bins determine the
ratio of dimensionality reduction. To cluster based on the
edge information in the images, we have used histogram
of oriented gradients (HOG) [5]. The dimensions of the
reduced space depend on the image size, HOG cell size,
number of orientation bins and the stride.

It is common to introduce variations in the input images
by data augmentation. Data augmentation can involve both
color space modifications and geometric transforms. Some
techniques use extreme data augmentation of images to cre-
ate pseudo classes for unsupervised learning [7]. Instead of
using extreme data augmentation we introduce these varia-
tions by co-learning and changing the set of pseudo-classes
that are learned simultaneously. Some kinds of data aug-
mentation while heavily used in both supervised and un-
supervised classification problems, does not help at all in
other applications. For example, applying geometric trans-
formations (e.g. horizontal flip, scale, rotate etc.) to in-
crease training data have no advantage for surveillance of
industrial robots from a fixed surveillance camera. Even
though we don’t use any data augmentation at all for the
evaluation of the proposed approach, depending on the ap-
plication some kind of augmentation might have a positive
effect on the performance.



4.2. Co-Learning

The abstract concept of co-learning is shown in Figure 2.
The idea behind co-learning is that learning to classify many
pseudo-classes at the same time will help to generate more
neutral feature representation. The feature extractor part of
the deep network is followed by more then one softmax for
different pseudo-labels that are co-learned. Each softmax is
represented as:

P (y = j|x) = exT wj

∑K
k=1 e

xT wk

(2)

where, x is the input and W is the weight matrix.
We use cross-entropy loss as the cost function for each

softmax layer. Given, p ∈ {y, 1 − y} and q ∈ {ŷ, 1 − ŷ},
cross entropy defines the similarity between p and q as:

L(w) =
1

N

N∑

n=1

H(pn, qn)

= − 1

N

N∑

n=1

[ynlogŷn + (1− yn)log(1− ŷn)]

(3)

As the network have more than one softmax layers we
use the sum of all the cross-entropy loss functions as our
final cost function for back propagation.

Algorithm 2 shows the training method in detail. The
process of co-learning is repeated with different set of
pseudo-classes until the termination criteria is reached. As
the features are not learned on a single class of labels and
therefore, they are expected to be more general and unbi-
ased. The parameters of the optimizer (e.g. learning rate
etc.) may or may not be updated at the time of changing the
set of pseudo-labels.

4.3. Spatio-temporal anomaly detection

It is difficult if not impossible to make a system that can
predict the next expected input in the high dimensional im-
age space. Instead of applying prediction directly to the im-
ages, we use a deep long short term memory (LSTM) [12]
based recurrent neural network (RNN) to predict the next
video frame in the learned feature space (Figure 3). As the
feature space is an encoding of the original image space,
the difference between the prediction and actual observa-
tion can reveal anomalies. The LSTM prediction network
can encode the feature vectors in a video sequence both in
space and time. Therefore, the proposed system is capable
of detection spatial anomalies as well as temporal anoma-
lies. Note that the prediction happens in feature space and
not the original image space, as a consequence the proposed
technique can generate a warning but cannot localize the po-
sition of anomaly.

Figure 4. Robot surveillance view with the region of interest
(ROI).

5. Results

In this section we show the use of the proposed tech-
nique for the surveillance of an industrial robot. We also
show how the extracted features can be used in a more com-
mon classification task by using the well-known CIFAR-10
dataset [15].

5.1. Industrial robots surveillance

We used the proposed unsupervised feature learning for
surveillance of industrial robots and machinery. As the in-
dustrial robots usually perform same task over and over
again any irregularity in the normal operation can be de-
tected as an anomaly. As shown in Figure 4, we perform
anomaly detection using a Baxter robot [22] that is per-
forming a pick and place operation repeatedly. Gazebo [14]
was used to generate the surveillance video of the task at
10 frames per second. The object is placed at different lo-
cations and the task of the robot is to pick the object from
that location and put it at another random location. Every

Table 1. List of anomalies for quantitative analysis of spatio-
temporal anomaly detection. Anomalies that can be detected from
a single frame are listed as spatial anomalies. The anomalies that
require at least two observations are listed as temporal anomalies.

No. Anomaly type Category Frames
0. No anomaly – –
1. Failed pick/Object fall Spatial 26-62
2. Person entering the view Spatial 60-65
3. Sudden changes in light condition Spatial 20-22
4. Sudden change in motion Temporal 35-100
5. Sudden stop Temporal 96-100



Figure 5. Robot surveillance video sequence (we show only 1
frame in 1 second). Outline color of each frames shows if the
systems recognized it as an anomaly or not. (a) Normal pick and
place operation with no anomaly. (b) Failed operation results in
the ball rolling off the table.

10th frame of a normal pick and place operation is shown
in Figure 5(a). Figure 5(b) shows a failed pick and place
operation with object rolling off the table as a result of hit-
ting the gripper. The proposed system informs the human
operator if the operation is running normally or not. This
is shown by the colored outline of the frame in Figure 5.
Green suggests a normal operation, while red indicates an
anomaly.

To verify the proposed anomaly detection technique, we
have introduced some anomalies by simulation and synthet-
ically. A list of the anomalies that we have introduced for
testing our system is given in Table 1.

The training data consisted of 10, 000 image frames of
the region of interest extracted from the video at the rate
of 10 fps. Each image was of size 3x256x256. Instead of
applying clustering directly to the images, HOG was used
in different configurations to create cluster based on the
edge information. In the first configuration the cell size was
16x16, gradients were discretized into 16 bins, and a stride
of 16 was used to create 4096 dimension vectors for each
image. In another configuration HOG was used with cell
size 32x32, and a stride of 32 to make 1024 dimension out-
put. Raw images were used for HOG based dimensionality
reduction for clustering. K-means clustering with random
initialization of centroids was done on the training data in
the reduced dimension space. We created clusters of size
k = 10, 20, 30, 40, 50, 100, 150 clusters for each configura-

tion of HOG resulting in a set of 14 pseudo-labels.
The feature extraction network we use is a CNN with 3

convolutional layers and 1 fully connected layer in the end.
To train the CNN we have used the raw images of the region
of interest (shown in Figure 4) with size 3x256x256. First
convolutional layer has 10 filters of size 11×11 with a stride
of 2. The convolutional layer is followed by a max-pooling
layer of size 3 × 3 and stride of 2. Second convolutional
layer has 20 filters of size 7 × 7 with a stride of 2. Last
convolutional layer has 40 filters of size 5× 5 with a stride
of 2. The last fully connected layer is of size 512. All the
neurons in the convolutional and fully connected layer are
rectified linear units (ReLUs). 50% dropout is applied to the
output of last convolutional layer and the fully connected
layer during training.

The co-learning was performed by randomly choosing
any 2 of the generated pseudo-labels. They were trained us-
ing stochastic gradient descent (SGD) with initial learning
rate of 0.01 and batch size was 64 for 5 epochs. After that a
different set of 2 pseudo-labels was selected for learn. This
process was repeated 10 times bringing the total number of
epochs performed for co-learning on different labels to 50.
Learning rate of SGD was decreased to 0.001 after first 10
epochs.

After converting our testing data to 512 dimensional fea-
ture space an LSTM based prediction system was used to
learn the prediction of the next frame based on the past ob-
servations. To create testing data, we randomly created 700
sequences of 100 frames each from the long sequence of the
10, 000 feature vector frames. The prediction system con-
sisted of a two layer LSTM of size 512− 256− 256− 512.
The LSTM network is trained to predict the next 512 di-
mensional feature vector in the sequence. Adam [13] was
used as optimizer algorithm for training. Mean square error
was used as a cost function. The network was trained for 50
epochs with batches of size 50. LSTM cell state was reset
after each training batch.

After training the prediction system we can input the cur-
rent image in feature domain and generate a prediction for
the next observation. This prediction is then compared with
the actual observation. Instead of using means square error,
we take the absolute difference of the two feature vectors
and then compute mean of top 5% values in the difference
vector. The reason for using the top 5% values is that if we
use mean square error the values that are more or less sim-
ilar will suppress the values that are significantly different.
Therefore, we only consider the predicted values that are
very different from the actual observation. This assumption
is also consistent with the biological systems where we usu-
ally ignore small anomalies and just concentrate only on the
strong anomalies.

The mean of the top 5% values give us a quantitative
measure for the quality of our prediction. The results we



Figure 6. Anomaly detection results for the 6 test cases mentioned
in Table 1. Red dotted line shows the threshold to decide anomaly.
Green dotted lines define the boundaries of the frame containing
anomaly.

achieve for the test cases presented in Table 1 are given in
Figure 6. We can see that by deciding a threshold (shown
by red dotted line), we can differentiate between a normal
operation and anomaly. We selected a threshold such that
no normal frames are detected as anomaly. As the threshold
defines the tradeoff between false positive and false nega-
tives, choosing an appropriate threshold is problem and data
dependent.

We are using GTX TITAN equipped Intel Xeon 8 core
3.16GHz 10GB machine running Ubuntu 14.04. Training
time includes the time taken by:
• Clustering - on CPU: 2694.2 s
• Feature extractor - on GPU: 1706.5 s
• Anomaly detector - on GPU: 182.3 s

At inference time, we can run the system at over 20fps on
the CPU.

5.2. Using learned features for classification

Even though the proposed technique is not designed for
classification task, we show how it can be used images to
learn feature representation for CIFAR-10. The learned fea-
tures were tested using the ground truth labels of the dataset.

CIFAR images have 3x32x32 dimensions. We applied
k-mean clustering to color and edge based image cues. 3D
color histogram with 8, 8, 8 bins for red, green and blue
color was used to produce 512 dimension vector for each
image. HOG was also used in different configurations to
cluster based on the edge information. In the first config-
uration the cell size was 16x16, gradients were discretized
into 16 bins, and a stride of 16 was used to create 64 dimen-
sion vectors for each CIFAR image. In another configura-
tion HOG was used with cell size 8x8, and a stride of 8 to
make 256 dimension output. The dimensionality reduction
was applied to both the training and the testing images of in
raw form.

K-means clustering with random initialization of cen-
troids was done only on the training data in the re-
duced dimension space. The testing data was assigned
to the closest clusters. We created clusters of size k =
5, 10, 20, 30, 40, 50, 100, 150, 200, 250 clusters for each di-
mensionality reduction method resulting in 30 sets of
pseudo-labels. The result of clustering by color histogram
and HOG is shown in Figure 7. It is clearly visible that the
clusters group the images based on color and edge orienta-
tion respectively.

The feature extractor network had three convolutional
layers followed by a single fully connected layer. The first
convolutional layer has 64 filters of size 5×5 with a padding
of 2 and a stride of 1. This is followed by a max-pooling
layer of filter size 3 × 3 and stride of 2. The next convo-

Figure 7. CIFAR-10 clusters used as pseudo-labels (Each row in
an represent a different class). All clusters were generated on raw
CIFAR-10 images by applying k-means with initial centroids ran-
domly selected. For images in top row k = 10 and for the bottom
row k = 100. Different algorithms were used for dimensionality
reduction. (a) 3D color histogram with 8, 8, 8 bins for red, green
and blue (512 dimensions). (b) HOG is with cell size 16x16, 16
gradient bins, stride of 16 (64 dimensions). (c) HOG is with cell
size 8x8, 16 gradient bins, stride of 8 (256 dimensions).



Figure 8. Filters of first convolutional layer. Different algorithms
were used for dimensionality reduction. (a) Supervised learning.
(b) Proposed unsupervised learning.

lutional layer had same stride and padding with 128 filters.
The third layer again was similar to the previous layers with
256 filters. Both layer 2 and 3 of the network were followed
by a max-pooling layer of size 3 × 3 and stride of 2. This
is followed by a 50% dropout. The fully connected layer
is 4096 × 2048. So our learned features will be of 2048
dimensions. The feature layer is fed to a 50% dropout be-
fore connecting them to the different softmax layers that are
co-learned. All the neurons in the convolutional and fully
connected layer are rectified linear units (ReLUs).

The co-learning was performed by randomly choosing
any 5 of the generated pseudo-labels. They were trained
using stochastic gradient descent (SGD) with initial learn-
ing rate of 0.01 and batch size was 128 for 5 epochs. After
that a different set of 5 pseudo-labels was selected to learn.
This process was repeated 10 times bringing the total num-
ber of epochs performed for co-learning on different labels
to 50. The learning rate of SGD was changed to 0.001 af-
ter first 10 epochs. Even though the clustering was done on
raw CIFAR-10 images, we used the normalized image (sub-
tract mean and divide by standard deviation for each image
independently) for training.

After the training is completed all the training and the
testing data was passed through the deep CNN network to
obtain the feature vectors. The feature vectors were used
to train a 10-way linear SVM using the actual CIFAR-10
dataset labels. The classification accuracy reveals the effec-
tiveness of the technique.

Without any data augmentation we can achieve 68.8%
classification accuracy. The state of the art is 84.3% pre-
sented by Dosovitskiy et al. [6]. However, as discuss above
our goal is not classification and while Dosovitskiy et al.
rely on extreme data augmentation we do none at all. The
filters learned by the first layer of convolutional neural net-
work are shown in Figure 8.

6. Conclusions
In this paper we propose a new technique to detect

anomalies in the operation of industrial robots. We do
this by training a deep feature extractor in a fully unsuper-

vised manner and combining it with a prediction system.
In contrast to recent unsupervised learning techniques the
proposed approach does not rely on data augmentation for
learning. Due to the independence from data augmentation,
the proposed technique can be used to solve the anomaly
detection for industrial robots by unsupervised learning.

The proposed technique co-learns the parameters on
multiple pseudo-classes at once to create unbiased feature
vectors. Pseudo-classes are generated by simple cluster-
ing based on some image cues. We show how the fea-
ture extractor can be effectively combined with a predic-
tion system for spatio-temporal anomaly detection. We
demonstrated the use of such a system as an unsupervised
anomaly detector for the industrial pipeline. Although not
designed for classification task, we show the proposed ap-
proach can achieve reasonable performance for classifica-
tion of CIFAR-10 dataset.

Looking for better image cue based clustering techniques
for generation of pseudo-classes is one of the areas we want
to explore in future. Furthermore, we would like to do theo-
retical analysis of the co-learning in unsupervised learning.

References
[1] C. C. Aggarwal. High-Dimensional Outlier Detection: The

Subspace Method, pages 135–167. Springer New York, New
York, NY, 2013.

[2] A. Basharat, A. Gritai, and M. Shah. Learning object mo-
tion patterns for anomaly detection and improved object de-
tection. In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[3] A. Coates, H. Lee, and A. Ng. An analysis of single-layer
networks in unsupervised feature learning. In G. Gordon,
D. Dunson, and M. Dudk, editors, Proceedings of the Four-
teenth International Conference on Artificial Intelligence
and Statistics, volume 15 of JMLR Workshop and Confer-
ence Proceedings, pages 215–223. JMLR W&CP, 2011.

[4] A. Coates and A. Y. Ng. Learning Feature Representations
with K-Means, pages 561–580. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients
for human detection. In Conference on Computer Vision and
Pattern Recognition, pages 886–893, 2005.

[6] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Ried-
miller, and T. Brox. Discriminative unsupervised feature
learning with exemplar convolutional neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
38(9):1734–1747, Oct 2016. TPAMI-2015-05-0348.R1.

[7] A. Dosovitskiy, J. T. Springenberg, M. A. Riedmiller, and
T. Brox. Discriminative unsupervised feature learning with
convolutional neural networks. CoRR, abs/1406.6909, 2014.

[8] A. Dundar, J. Jin, and E. Culurciello. Convolutional cluster-
ing for unsupervised learning. CoRR, abs/1511.06241, 2015.

[9] T. Egner, J. M. Monti, and C. Summerfield. Expectation and
surprise determine neural population responses in the ventral



visual stream. The Journal of Neuroscience, 30(49), Decem-
ber 2010.

[10] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing
objects by their attributes. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages
1778–1785, June 2009.

[11] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, July 2006.

[12] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, Nov. 1997.

[13] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[14] N. Koenig and A. Howard. Design and use paradigms for
gazebo, an open-source multi-robot simulator. In Intelligent
Robots and Systems, 2004. (IROS 2004). Proceedings. 2004
IEEE/RSJ International Conference on, volume 3, pages
2149–2154 vol.3, Sept 2004.

[15] A. Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. Master’s thesis, Department of Computer Sci-
ence, University of Toronto, 2009.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[17] W. Lawson, L. Hiatt, and K. Sullivan. Detecting anoma-
lous objects on mobile platforms. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, June 2016.

[18] Q. V. Le, M. Ranzato, R. Monga, M. Devin, G. Corrado,
K. Chen, J. Dean, and A. Y. Ng. Building high-level fea-
tures using large scale unsupervised learning. In Proceed-
ings of the 29th International Conference on Machine Learn-
ing, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1,
2012. icml.cc / Omnipress, 2012.

[19] J. MacQueen. Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Proba-
bility, Volume 1: Statistics, pages 281–297, Berkeley, Calif.,
1967. University of California Press.

[20] T. L. Paine, P. Khorrami, W. Han, and T. S. Huang. An anal-
ysis of unsupervised pre-training in light of recent advances.
CoRR, abs/1412.6597, 2014.

[21] M. Ranzato, C. Poultney, S. Chopra, and Y. L. Cun. Effi-
cient learning of sparse representations with an energy-based
model. In B. Schlkopf, J. Platt, and T. Hoffman, editors, Ad-
vances in Neural Information Processing Systems 19, pages
1137–1144. MIT Press, Cambridge, MA, 2006.

[22] Rethink Robotics Inc. Baxter. http://velodynelidar.com/hdl-
64e.html.

[23] B. Saleh, A. Farhadi, and A. Elgammal. Object-centric
anomaly detection by attribute-based reasoning. In Proceed-
ings of the 2013 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’13, pages 787–794, Washing-
ton, DC, USA, 2013. IEEE Computer Society.

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2015.

[25] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.
Manzagol. Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local denoising
criterion. J. Mach. Learn. Res., 11:3371–3408, Dec. 2010.

[26] J. Xie, R. B. Girshick, and A. Farhadi. Unsupervised deep
embedding for clustering analysis. CoRR, abs/1511.06335,
2015.

[27] D. Xu, E. Ricci, Y. Yan, J. Song, and N. Sebe. Learning
deep representations of appearance and motion for anoma-
lous event detection. In X. Xie, M. W. Jones, and G. K. L.
Tam, editors, Proceedings of the British Machine Vision
Conference 2015, BMVC 2015, Swansea, UK, September 7-
10, 2015, pages 8.1–8.12. BMVA Press, 2015.


