189 research outputs found

    Object tracking under illumination variations using 2D-cepstrum characteristics of the target

    Get PDF
    Most video processing applications require object tracking as it is the base operation for real-time implementations such as surveillance, monitoring and video compression. Therefore, accurate tracking of an object under varying scene conditions is crucial for robustness. It is well known that illumination variations on the observed scene and target are an obstacle against robust object tracking causing the tracker lose the target. In this paper, a 2D-cepstrum based approach is proposed to overcome this problem. Cepstral domain features extracted from the target region are introduced into the covariance tracking algorithm and it is experimentally observed that 2D-cepstrum analysis of the target object provides robustness to varying illumination conditions. Another contribution of the paper is the development of the co-difference matrix based object tracking instead of the recently introduced covariance matrix based method. ©2010 IEEE

    Illumination Condition Effect on Object Tracking: A Review

    Get PDF
    Illumination is an important concept in computer science application. A good tracker should perform well in a large number of videos involving illumination changes, occlusion, clutter, camera motion, low contrast, specularities and at least six more aspects. By using the review approach, our tracker is able to adapt to irregular illumination variations and abrupt changes of brightness. In static environment segmentation of object is not complex. In dynamic environment due to dynamic environmental conditions such as waving tree branches, shadows and illumination changes in the wind object segmentation is a difficult and major problem that needs to be handled well for a robust surveillance system. In this paper, we survey various tracking algorithms under changing lighting condition

    Video processing methods robust to illumination variations

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010.Thesis (Master's) -- Bilkent University, 2010.Includes bibliographical references leaves 43-46.Moving shadows constitute problems in various applications such as image segmentation, smoke detection and object tracking. Main cause of these problems is the misclassification of the shadow pixels as target pixels. Therefore, the use of an accurate and reliable shadow detection method is essential to realize intelligent video processing applications. In the first part of the thesis, a cepstrum based method for moving shadow detection is presented. The proposed method is tested on outdoor and indoor video sequences using well-known benchmark test sets. To show the improvements over previous approaches, quantitative metrics are introduced and comparisons based on these metrics are made. Most video processing applications require object tracking as it is the base operation for real-time implementations such as surveillance, monitoring and video compression. Therefore, accurate tracking of an object under varying scene and illumination conditions is crucial for robustness. It is well known that illumination variations on the observed scene and target are an obstacle against robust object tracking causing the tracker lose the target. In the second part of the thesis, a two dimensional (2D) cepstrum based approach is proposed to overcome this problem. Cepstral domain features extracted from the target region are introduced into the covariance tracking algorithm and it is experimentally observed that 2D-cepstrum analysis of the target region provides robustness to varying illumination conditions. Another contribution is the development of the co-difference matrix based object tracking instead of the recently introduced covariance matrix based method. One of the problems with most target tracking methods is that they do not have a well-established control mechanism for target loss which usually occur when illumination conditions suddenly change. In the final part of the thesis, a confidence interval based statistical method is developed for target loss detection. Upper and lower bound functions on the cumulative density function (cdf) of the target feature vector are estimated for a given confidence level. Whenever the estimated cdf of the detected region exceeds the bounds it means that the target is no longer tracked by the tracking algorithm. The method is applicable to most tracking algorithms using features of the target image region.Çoğun, FuatM.S

    Color Constancy Convolutional Autoencoder

    Full text link
    In this paper, we study the importance of pre-training for the generalization capability in the color constancy problem. We propose two novel approaches based on convolutional autoencoders: an unsupervised pre-training algorithm using a fine-tuned encoder and a semi-supervised pre-training algorithm using a novel composite-loss function. This enables us to solve the data scarcity problem and achieve competitive, to the state-of-the-art, results while requiring much fewer parameters on ColorChecker RECommended dataset. We further study the over-fitting phenomenon on the recently introduced version of INTEL-TUT Dataset for Camera Invariant Color Constancy Research, which has both field and non-field scenes acquired by three different camera models.Comment: 6 pages, 1 figure, 3 table

    Pedestrian Detection and Tracking in Video Surveillance System: Issues, Comprehensive Review, and Challenges

    Get PDF
    Pedestrian detection and monitoring in a surveillance system are critical for numerous utility areas which encompass unusual event detection, human gait, congestion or crowded vicinity evaluation, gender classification, fall detection in elderly humans, etc. Researchers’ primary focus is to develop surveillance system that can work in a dynamic environment, but there are major issues and challenges involved in designing such systems. These challenges occur at three different levels of pedestrian detection, viz. video acquisition, human detection, and its tracking. The challenges in acquiring video are, viz. illumination variation, abrupt motion, complex background, shadows, object deformation, etc. Human detection and tracking challenges are varied poses, occlusion, crowd density area tracking, etc. These results in lower recognition rate. A brief summary of surveillance system along with comparisons of pedestrian detection and tracking technique in video surveillance is presented in this chapter. The publicly available pedestrian benchmark databases as well as the future research directions on pedestrian detection have also been discussed

    Recent Trends in Computational Intelligence

    Get PDF
    Traditional models struggle to cope with complexity, noise, and the existence of a changing environment, while Computational Intelligence (CI) offers solutions to complicated problems as well as reverse problems. The main feature of CI is adaptability, spanning the fields of machine learning and computational neuroscience. CI also comprises biologically-inspired technologies such as the intellect of swarm as part of evolutionary computation and encompassing wider areas such as image processing, data collection, and natural language processing. This book aims to discuss the usage of CI for optimal solving of various applications proving its wide reach and relevance. Bounding of optimization methods and data mining strategies make a strong and reliable prediction tool for handling real-life applications

    Audio-Visual Biometrics and Forgery

    Get PDF
    corecore