16,265 research outputs found

    Superquadrics for segmentation and modeling range data

    Get PDF
    We present a novel approach to reliable and efficient recovery of part-descriptions in terms of superquadric models from range data. We show that superquadrics can directly be recovered from unsegmented data, thus avoiding any presegmentation steps (e.g., in terms of surfaces). The approach is based on the recover-andselect paradigm. We present several experiments on real and synthetic range images, where we demonstrate the stability of the results with respect to viewpoint and noise

    OctNetFusion: Learning Depth Fusion from Data

    Full text link
    In this paper, we present a learning based approach to depth fusion, i.e., dense 3D reconstruction from multiple depth images. The most common approach to depth fusion is based on averaging truncated signed distance functions, which was originally proposed by Curless and Levoy in 1996. While this method is simple and provides great results, it is not able to reconstruct (partially) occluded surfaces and requires a large number frames to filter out sensor noise and outliers. Motivated by the availability of large 3D model repositories and recent advances in deep learning, we present a novel 3D CNN architecture that learns to predict an implicit surface representation from the input depth maps. Our learning based method significantly outperforms the traditional volumetric fusion approach in terms of noise reduction and outlier suppression. By learning the structure of real world 3D objects and scenes, our approach is further able to reconstruct occluded regions and to fill in gaps in the reconstruction. We demonstrate that our learning based approach outperforms both vanilla TSDF fusion as well as TV-L1 fusion on the task of volumetric fusion. Further, we demonstrate state-of-the-art 3D shape completion results.Comment: 3DV 2017, https://github.com/griegler/octnetfusio

    Surface and Volumetric Segmentation of Complex 3-D Objects Using Parametric Shape Models

    Get PDF
    The problem of part definition, description, and decomposition is central to the shape recognition systems. In this dissertation, we develop an integrated framework for segmenting dense range data of complex 3-D scenes into their constituent parts in terms of surface and volumetric primitives. Unlike previous approaches, we use geometric properties derived from surface, as well as volumetric models, to recover structured descriptions of complex objects without a priori domain knowledge or stored models. To recover shape descriptions, we use bi-quadric models for surface representation and superquadric models for object-centered volumetric representation. The surface segmentation uses a novel approach of searching for the best piecewise description of the image in terms of bi-quadric (z = f(x,y)) models. It is used to generate the region adjacency graphs, to localize surface discontinuities, and to derive global shape properties of the surfaces. A superquadric model is recovered for the entire data set and residuals are computed to evaluate the fit. The goodness-of-fit value based on the inside-outside function, and the mean-squared distance of data from the model provide quantitative evaluation of the model. The qualitative evaluation criteria check the local consistency of the model in the form of residual maps of overestimated and underestimated data regions. The control structure invokes the models in a systematic manner, evaluates the intermediate descriptions, and integrates them to achieve final segmentation. Superquadric and bi-quadric models are recovered in parallel to incorporate the best of the coarse-to-fine and fine-to-coarse segmentation strategies. The model evaluation criteria determine the dimensionality of the scene, and decide whether to terminate the procedure, or selectively refine the segmentation by following a global-to-local part segmentation approach. The control module generates hypotheses about superquadric models at clusters of underestimated data and performs controlled extrapolation of the part-model by shrinking the global model. As the global model shrinks and the local models grow, they are evaluated and tested for termination or further segmentation. We present results on real range images of scenes of varying complexity, including objects with occluding parts, and scenes where surface segmentation is not sufficient to guide the volumetric segmentation. We analyze the issue of segmentation of complex scenes thoroughly by studying the effect of missing data on volumetric model recovery, generating object-centered descriptions, and presenting a complete set of criteria for the evaluation of the superquadric models. We conclude by discussing the applications of our approach in data reduction, 3-D object recognition, geometric modeling, automatic model generation. object manipulation, and active vision

    Robust similarity registration technique for volumetric shapes represented by characteristic functions

    No full text
    This paper proposes a novel similarity registration technique for volumetric shapes implicitly represented by their characteristic functions (CFs). Here, the calculation of rotation parameters is considered as a spherical crosscorrelation problem and the solution is therefore found using the standard phase correlation technique facilitated by principal components analysis (PCA).Thus, fast Fourier transform (FFT) is employed to vastly improve efficiency and robustness. Geometric moments are then used for shape scale estimation which is independent from rotation and translation parameters. It is numericallydemonstrated that our registration method is able to handle shapes with various topologies and robust to noise and initial poses. Further validation of our method is performed by registering a lung database

    3D Tracking Using Multi-view Based Particle Filters

    Get PDF
    Visual surveillance and monitoring of indoor environments using multiple cameras has become a field of great activity in computer vision. Usual 3D tracking and positioning systems rely on several independent 2D tracking modules applied over individual camera streams, fused using geometrical relationships across cameras. As 2D tracking systems suffer inherent difficulties due to point of view limitations (perceptually similar foreground and background regions causing fragmentation of moving objects, occlusions), 3D tracking based on partially erroneous 2D tracks are likely to fail when handling multiple-people interaction. To overcome this problem, this paper proposes a Bayesian framework for combining 2D low-level cues from multiple cameras directly into the 3D world through 3D Particle Filters. This method allows to estimate the probability of a certain volume being occupied by a moving object, and thus to segment and track multiple people across the monitored area. The proposed method is developed on the basis of simple, binary 2D moving region segmentation on each camera, considered as different state observations. In addition, the method is proved well suited for integrating additional 2D low-level cues to increase system robustness to occlusions: in this line, a naĂŻve color-based (HSI) appearance model has been integrated, resulting in clear performance improvements when dealing with complex scenarios
    • 

    corecore