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Abs t r ac t . Visual surveillance and monitoring of indoor environments 
using múltiple cameras has become a field of great activity in computer 
visión. Usual 3D tracking and positioning systems rely on several in-
dependent 2D tracking modules applied over individual camera streams, 
fused using geometrical relationships across cameras. As 2D tracking sys­
tems suffer inherent difñculties due to point of view limitations (percep-
tually similar foreground and background regions causing fragmentation 
of moving objects, occlusions), 3D tracking based on partially erroneous 
2D tracks are likely to fail when handling multiple-people interaction. 
To overeóme this problem, this paper proposes a Bayesian framework 
for combining 2D low-level cues from múltiple cameras directly into the 
3D world through 3D Particle Filters. This method allows to estímate 
the probability of a certain volume being oceupied by a moving object, 
and thus to segment and track múltiple people across the monitored 
área. The proposed method is developed on the basis of simple, binary 
2D moving región segmentation on each camera, considered as differ-
ent state observations. In addition, the method is proved well suited for 
integrating additional 2D low-level cues to increase system robustness 
to occlusions: in this line, a náive color-based (HSI) appearance model 
has been integrated, resulting in clear performance improvements when 
dealing with complex scenarios. 

1 Introduction 

Tracking múltiple people in bo th indoor and outdoor environments is a very 
active research topic due to its applicability to surveillance systems, security 
and restricted área control, intelligent rooms, etc. Whilst many works have 
largely addressed 2D tracking [8], many potential capabilities of 3D positioning 
and tracking of interest targets in multi-camera environments are not yet been 
studied. 

A frequent approach for tracking múltiple people in multi-camera environ­
ments assumes a ground plañe restriction: interest objects move on a visible 
plañe (ground), making it possible to establish homographies relating different 
views [2], and then combining different trajectories onto the ground plañe. Al-
though this method shows effective in several situations, ground plañe restriction 
does not hold for many interesting environments (specially for indoor scenarios). 
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Calibration of cameras allows more sophisticated processing. It allows, for 
instance, to perform 2D tracking on each of the cameras independently and 
subsequently combining 2D tracks into 3D world using only geometrical consid-
erations [5], or both geometry and appearance consistency [10]. This approach 
relies on 2D tracking, which suffers from certain limitations due to camera point 
of view, occlusions, etc. Mistakes derived from erroneous decisions at 2D tracking 
level transíate into 3D tracking failures. 

Probabilistic combination of múltiple cameras observations avoids the loss of 
valuable information due to hard decisions at 2D tracking level. In [4], occupancy 
probability projection over ground plañe is estimated using background subtrac-
tion on individual cameras. More oriented towards accurate 3D segmentation, 
[11] proposes space voxelization, shape from silhouette and voxel grouping for 
3D positioning and tracking. This approach provides powerful information for 
robust tracking and scene understanding, but voxelization represents a great 
computational cost, specially if detailed 3D segmentation is desired. A non-
uniform volume partition could overeóme this limitation, paying attention only 
to interesting áreas. 

The 3D positioning and tracking system proposed in this paper also intends 
to monitor a limited área, covered with several cameras, where múltiple objeets 
of Ínterest can enter, interact, and exit. It relies on a set of 2 or more fully-
calibrated cameras, each performing independently a standard motion-region 
(binary) segmentation subject to problems such as fragmentation of objeets and 
false detections, and considering also color information. Loss of 2D information 
in hard decisions at 2D level is avoided, as it fuses information directly into 
3D world using 3D Particle Filters [1]. Proposed 3D Particle Filters are spe­
cially suited for 3D tracking over time, and they can even provide accurate 3D 
description of shapes, avoiding the computational cost of voxelization. 

This paper introduces a complete framework for combining different cues from 
múltiple cameras into a single, consistent measure of the observation likelihood 
of the 3D Particle Filter. This measure allows updating a volumetric occu­
pancy probability density function for each tracked person over time, making 
3D segmentation and tracking posible, as described in Section 2. Subsection 2.1 
presents the proposed multi-camera 3D tracking method using motion-region 
(binary) segmentations in each sensor as system measurement, while Subsec­
tion 2.2 extends the system including color as an additional cue for 3D tracking. 
Subsection 2.3 addresses the dynamic models for the 3D Particle Filters of both 
systems, whose results are discussed in Section 3. Finally Section 4 outlines the 
achievements reached by the proposed methods. 

2 State-Space Models for 3D Segmentation and Tracking 

The state-space approach for modeling dynamic systems has proved suitable for 
robust estimation from several noisy information sources. This approach forms 
the basis of the different Bayesian Tracking methods [1] (e.g. Kalman Filter, 



Particle Filters), that are broadly used and specially interesting for real-time 
tasks as they are well suited for recursive implementation. 

The Recursive Bayesian tracking has traditionally been applied for on-line 
probabilistic estimation of trajectories and shapes of isolated targets, and mainly 
for 2D objects. Most problems are modeled as a state vector x t at each 
time step (e.g. position-velocity position-rotation angles, or control points of 
a parametrized contour [9]). This x t is estimated accurately bearing in mind 
every observation up to time step t (Z4) by means of its posterior likelihood 
KxtIZ4). 

The posterior likelihood at time step t can be expressed in terms of that from 
time step t — 1 through 

y(*,iz-) = ""•'*;> ffz'">, ni 
where z t represents observations at time step t. The dynamic model governing 
state evolution is expressed inp(x t |x t_i) , and the prior distributionp(x t_i|Z t _ ) 
is considered available as it has been estimated in the previous time step t — 1. 
The predicted probability density function p(x t |Z '~ ) is updated through (1) 
using p(z t |x t) , which shows the likelihood of the observation z t given the state 
Xf. The posterior likelihood p(x t |Z

4) can be approximated using Monte Cario 
methods [3], which deal with sampled versions of distributions. This approach 
is known as Particle Filter [1], 

The core idea of this paper is to estimate the volumetric occupancy probability 
density function p(x t |Z',iífc) of a person Hk (given that Hk is present in the 
scene) using a 3D Particle Filter, and considering different views from a set of 
fully-calibrated cameras as system observations. Using this pdf, the probability 
that Hk is contained in a volume V is 

P(HkcV\Hk)= [[[ pixtlZ^HJdV (2) 

According to (2), H¡. spatial position could be identified with the mínimum vol­
ume Vk that contains Hk with probability greater or equal to P¡j, given that Hk is 
present in the scene (where, evidently 0 < PH < 1). The volume Vk should then 
be considered as a 3D bounding volume for Hk, analogous to the classical bound-
ing box concept but much more general. The volumetric occupancy pdf evolves 
over time according to the dynamic model p(x t |x t_i) and the observations at 
time step t, allowing 3D tracking. Following the same reasoning, it is possible to 
estimate p(x t |Z

4 , Hk), k = 1 , . . . , Np using one individual 3D Particle Filter for 
each moving object Hk, and thus track several people simultaneously. 

Combining different cues from múltiple cameras into a single and consis-
tent measure of the observation likelihood p(z t |x t) is essential for updating 
p(xt|Z

4,iífc) over time. Supposing that the scene is monitored using M dif­
ferent cameras, the state observation at time step t can break down into camera 
contributions according to 

zt=(z?,z?,...,zc
t"). (3) 



Therefore, the observation likelihood p(z t |x t) can be rewritten as 

p(zt\xt)=p(z?,z?,...,zctM\xt). (4) 

For computation purposes, it would be desirable to decompose p(z t |x t) into 
factors concerning observations from each camera independently. It would be 
possible if we assume that the cameras are conditionally independent given x t . 
Besides, although the F different features (/i, Í2, • • • , / F ) in each camera Cj 
are statistically dependent, they could be considered nearly conditionally inde­
pendent given Xf. Therefore, this reasoning justifies processing each feature on 
each camera view independently using individual likelihood measurement mod-
els. The complete observation likelihood measurep(z t |x t) can be finally obtained 
by simply multiplying all the contributions considered. 

Next subsections propose measurement models for two different cues obtained 
from cameras: moving-region (binary) segmentation and color. The former ex-
presses whether a particular camera has detected movement in the environment 
of the projection of a particle onto the camera plañe, indicating that this particle 
is likely to be contained into a moving object. As for color, it provides a sim­
ple but effective appearance description of objects. Two different systems have 
been implemented to prove the abilities of the proposed method: the first one 
is based only on moving-region segmentations, and the second incorporates also 
color cues into the measurement model. The performance of both methods is 
compared in Section 3. 

2.1 Measurement Model from 2D Motion Segmentation of Views 

A common starting point for tracking systems is motion-region segmentation. 
Detecting moving regions in video sequences usually provides a focus of attention 
for latter processing, as it aims to discover image áreas corresponding to interest 
objects. Conventional methods for motion segmentation are temporal differenc-
ing, optical-flow computation and background subtraction [8]. The quality of 
the motion-region segmentation shows a strong dependency on the complexity 
of the monitored scene, and it conditions clearly the performance of subsequent 
processes: 2D tracking can be seriously damaged as a result of inaccurate seg­
mentations, and thus 3D tracking derived from 2D tracking in several cameras 
is prone to fail. 

The proposed method aims to extract as much information as possible from 
(generally) inaccurate motion-region segmentations from several overlapping 
cameras by combining cues directly in the 3D world. The key point to do it 
is to interpret motion segmentation information as a measurement of the state 
Xt, and then to intégrate them into the 3D Particle Filter framework discussed 
previously 

Let us consider, first of all, only one camera (c¿). Let M^3 be the binary mask 
(image) obtained as a result of the motion-region segmentation performed on 
the image acquired by camera c¿ at time step t. This mask has an associated 
domain R representing image áreas where movement has been detected, and can 
be expressed as 



McUr) = í1 V r G R (5) 
4 v ' y O otherwise v ' 

Let yc . = Pc.(xt) be the projection of the 3D position of x t onto the camera Cj 
image plañe. Thus yc . is a 2D vector expressed in pixel units. If x t is contained in 
a 3D moving object, we might expect M t

3(y c . ) to be 1. Although it is intuitive 
that p(zc

t
3 |xt) is closely related to the valué of M^3 in its projected position. 

some considerations are needed. 

If a spatial position x t is actually part of the tracked person H¡., then certain 
neighborhood of it should be also part of H¡.- So, p(zt

3 |x t) should be determined 
not only by the valué of M^3 at the projected point yc . , but also by its 2D 
neighborhood. As some pixels contain more information about x t than others. 
it is clear that their contribution to p(zc

t
3 |x t) should be weighted bearing in 

mind their distance to the ideal projection of x t . The proposed measurement 
model sets weights according to a bivariate normal distribution J\í(r;yc., E). 
whose covariance matrix is E = <T2Í2 (where I<i is the 2 x 2 identity matrix). 
All considered, and using a discrete versión of the discussed normal distribution 
with probability mass function g(r) centered at r = 0, camera c¿ contribution 
to the observation likelihood can be written as 

p(z? |x t ) = £ < 7 ( r - y c . ) M t
C í ( r ) . (6) 

Vr 

As g(r) is symmetrical with respect to the origin of coordinates, g(r) = g(-r) 
and then p(zt

3 |x t) can be rewritten using the convolution operator as a simple 
image filtering, yielding 

p(z? |x t) = V g(yCi - r) M? (r) = [ g(r) * M? (r)l . . (7) 
Vr r=y 

Although it is not strictly necessary due to the normalization performed at 
weight particle updating, expression (7) can be proved a probability distribution 
given Xf. 

Additionally, it is not possible to assure that person H¡. is not at 3D position 
Xt even if no trace of it can be found in mask M^3. The system must let a certain 
uncertainty to handle these situations in which moving objects are not seen from 
a particular point of view (due to occlusions), and also possible segmentation 
errors. To express this constant uncertainty p(z t

3 |x t) is limited to a minimum 
background probability ps- Thus binary images Mt

3 provided by the motion-
region segmentation module can be transformed into motion likelihood images 
Dc

t
3 according to 

n c í / \ í #( r) * Mt3(r) /oí 
¿V (r) = max < ^ ' l . (8 

[PB 
Finally p(z t

3 |x t) can be directly taken from Dt
3(yc.). Fig. 1 shows a 

particular example of motion likelihood image estimated from a motion-region 
segmentation. 



(a) (b) (c) 

Fig. 1. (a) Original image. (b) Binary motion-region segmentation of (a), (c) Motion 
likelihood image , using a filtering mask with a = 4 pixels and background probability 
PB = 0.2 on (b) (note the greyish background tone due to PB)-

Complete observation likelihood measure p(z t |x t) using motion information 
from all cameras can be combined by multiplying individual contributions. Re-
sults based only on moving-region segmentation from four different cameras are 
discussed in Section 3. 

2.2 Measurement Model from Color Cues 

Motion detection in several overlapping cameras proves to be an effective cue for 
performing 3D tracking. However, an essential limitation should be pointed out: 
due to projective geometry fundamentáis, assumptions made for a particular 
pixel apply equally to every 3D point along its back-projected ray [7]. This leads 
to serious ambiguities when tracking two or more interacting people, yielding 
3D tracking failures (see Section 3). To overeóme this drawback, it is essential to 
disambiguate between binary silhouettes using appearance modeling (e.g. color, 
texture,...). This subsection describes a simple color-based appearance model 
that, combined with the motion segmentation-based model presented in the pre-
vious subsection, results in a clear improvement of the system in robustness to 
occlusions. 

Color is usually described according to the RGB color model, as it is closely 
related to hardware implementations. However, it is not suited for describing 
perceptual proximity of colors and, in addition, is strongly dependent on illu-
mination conditions. This paper proposes thus a color model based on the HSI 
(Hue-Saturation-Intensity) [6], as it decouples intensity information (I channel) 
from the color-carrying information (contained in both H and S channels) and 
provides a perceptual-oriented description of colors. 

Ignoring the resulting I channel, and ignoring possible conversión problems 
arising from low intensity levéis, any RGB color can be robustly represented 
as two valúes: H and S. Hue and saturation describe a circular color model 
where H can be regarded as angular information (contained in the range 0 o -
360°, or between 0 and 1 after normalization) and S as distance from the origin 
(also normalized between 0 and 1). Consequently, appearance A is characterized 
using color according to the discussed color model can break down into 



A = (H,S). (9) 

Initially let us consider a single camera (c¿). The observed appearance at 
each pixel is described in terms of hue and saturation. It is clear that the H and 
S valúes of a certain pixel are not independent. However, once again, they can 
be considered approximately conditionally independent given x t (assuming that 
state xt conveys color information as well as spatial position), as the likelihood 
of measuring H (or S) is strongly conditioned by x t appearance, and is com-
pletely determined when x t is seen directly in camera c¿ (i.e. it is not occluded). 
Therefore the color contribution to observation likelihood in camera c¿ can be 
written as 

p ( ^ | x t ) « p ( í r t
C í | x t ) p ( 5 t

c ' | x t ) . (10) 

Let ht and st be hue and saturation of x t , respectively, and let yc . = Pc .(x t) 
be once again the projection of the 3D position of x t onto camera c¿ image 
plañe. The hue (saturation) of pixel yc . should be approximately ht (s¿), taking 
into account a certain Gaussian measurement noise with standard deviation a^ 
(<rs). Since both H and S have been normalized between 0 and 1, the standard 
deviation of measurement noise must be o7¡,,o\¡ <C 1. Additionally, as discussed 
for the 2D motion segmentation cues, it is necessary to set a certain background 
level (¡IB and SB) to consider the possibility of occlusions. All considered, hue 
and saturation contributions to the observation likelihood measurement can be 
expressed as 

p(H?\xt)=hB + (l-hB)—±?=exp{-U—) ) , (11) 

with 

and 

dh = min {\H?(yCj) - ht\, \ - \H?(yCj) - ht\}, (12) 

P(S?\xt)=8B+{l-8B)^=eXP{-USt'Í7Ci) St) \- (13) 

The use of this appearance measurement model, along with the motion 
segmentation-based model described in Subsection 2.1, proves effective for per-
forming 3D tracking of múltiple people. 

2.3 Dynamic Model 

The dynamic model p(x t |x t_i) represents the evolution of the volumetric oc-
cupancy probability density function p(x t |Z

4 , Hf¡) over time. As the importance 
density </(xt|xt_i, z t) has been selected so that it is equal top(x t | x t _i) , it means 



that, in practice, the dynamic model itself governs the evolution of particles x¿ 
over time. 

Two different systems for 3D tracking have been developed: the first one 
considers only motion-region segmentation from múltiple cameras as state ob-
servation, and the latter integrates color modeling along with visual motion 
detection. 

• The system considering only motion-region segmentation works on x t con-
taining 3D position (x, y and z) and velocity ( i , y and ¿). Dynamic model 
p(x t |x t_i) predicts position assuming constant velocity. Using matrix nota-
tion, prediction can be expressed as 

[xt,yt,zt,xt,yt,zt\ 
\h 
[o3 

/ 31 
h\ 

X t - 1 n t , (14) 

where I3, and O3 are the 3 x 3 identity and zero matrices, respectively, and 
n t represents the process noise vector [1]. Both position and velocity noise 
components follow normal distributions. Every direction is treated equally 
having so identical power noise. 
The system considering both motion-region segmentation and color works on 
x t containing 3D position and velocity, and also two color dimensions: h and 
s. Dynamic model p(x t |x t_i) predicts position assuming constant velocity 
(exactly as explained above), considering constant color dimensions. In this 
case, prediction can be written as 

[xt,yt, zt,xt,yt, ¿t,ht, st]
J \ h 

03 

L°2,3 

h 
h 

02 ,3 

03,2] 
03,2 

h \ 
X f - 1 (15) 

where 0 n m is the n x m zero matrix, and n't the process noise vector for 
position, velocity and color. 

3 Experiments and Results 

This section shows and compares results of both proposed systems for 3D seg­
mentation and tracking (the former using only motion-region segmentation in 
each camera, MS, and the latter considering also color cues, MS+C) on a highly 
cluttered scenario: a typical office room. This working environment has been 
monitored using four fully-calibrated static cameras placed in the four top cor-
ners of the room, having in addition overlapping fields of view (see Fig. 2). The 
complex working environment produces frequent occlusions (due to static, fore-
ground objects) in some of the cameras: however, both MS and MS+C systems 
proves effective for tracking non-interacting targets. Both systems use Ns = 1000 
particles to track each of the targets. Segmentation has been simply performed 
by estimating the V¡. 3D bounding volume for each H¡. as the 3D convex hull of 
the minimum set of particles of the H¡. particle filter accumulating a probability 



Fig. 2. (a)(b)(d)(e) Four different views of the monitored office environment, with con-
vex hull 3D segmentation superimposed (using both motion segmentation and color). 
(c) Volumetric occupancy probability density for two different people (bird's eye view). 

Frame 50 Frame 52 Frame 58 Frame 61 

Fig. 3. Binary motion-region segmentation performed on images acquired by camera 1. 
Note fragmentation and inaccuracy of regions. 

greater or equal to a certain limit PH- The experimentation has proved that 
PH = 0.95 provides good segmentation results. 

Fig. 2 depicts 3D segmentation and tracking results of the M S + C system, 
with two different people in the scene. Fig. 2(c) shows level curves for both 
p (x t |Z

4 , H\) and p ( x t | Z ' , H2) projection into the ground plañe. The volumetric 
probability density p (x t | Z

4 , Hk) has been estimated by applying a 3D Gaussian 
kernel on the Hk particle set {x¿ , w\ }i=fi • The white lines represent the lay-
out of the room furniture (office desks and bookcases), and have been included 
only for displaying purposes. Fig. 2(a)(b)(d)(e) show the four camera views, with 
estimated Vk 3D bounding volumes (convex hulls) for both present people super­
imposed. Tracking has been performed using a real motion detection method on 
images from the cameras, resulting in erroneous splitting and merging of regions 
due to the environment characteristics, as show in Fig. 3. The consistent results 
presented prove system robustness to defective motion segmentations. 



Fig. 4. System using only motion segmentation (MS) versus system using both motion 
and color (MS+C). (a) Spatial segmentation using MS (above) and MS+C (below). 
(b) Failed múltiple people 3D tracking using MS. (c) Múltiple people tracked correctly 
using MS+C. 

Fig. 4(a) compares 3D segmentation precisión for both systems. System us­
ing only motion-region segmentation shows better behavior as it proves able 
to distribute partióles across targets. Motion segmentation and color-based sys­
tem, however, tends to undergo particle degeneracy into one single dominant 
color. This tendency transí ates usually into characterization and tracking of 
people torsos (see Fig. 2 and 4), as they represent the higher uniform-color 
visible 

Although the MS system performs more accurate 3D segmentations of tracked 
objects, it is prone to fail when handling occlusions between two or more spatially 
cióse people (Fig. 4(b)). This is a result of an erroneous weight updating of 
partióles due to proximity. However, Fig. 4(c) shows MS+C system ability to 
handle occlusions. Color consistency ensures correct weight updating of partióles 
from both people with no external help, resulting in excellent robustness to 
people interaction. 

4 Conclusions 

This paper proposes a Bayesian framework for performing 3D segmentation and 
tracking of múltiple people using múltiple cameras, allowing consideration of 
several features or cues in each camera. This features can be similar for the 
whole set of cameras, or even different, allowing thus the utilization of different 
type of sensors (CCD, IR, thermal imaging,...). The framework uses independent 
3D particle filters to fuse directly in the 3D world cues observed in each sensor, 
avoiding losing information across intermedíate hard decisions. It is based on 



the estimation of a volumetric occupancy probability density of a moving target 
over time, sampled using 3D partióles, and updated according to camera obser-
vations. Thus 3D segmentation can be performed by setting a volume with a 
high probability (0.95) of containing the target. 

Multi-camera and multi-feature observation likelihood has been simplified us­
ing conditional independence assumptions. Working on a set of CCD cameras, 
two different cues or features have been proposed: motion-region segmentation 
on each camera, and color characterization. Using exclusively motion región 
segmentation allows accurate 3D segmentation and tracking of non-interacting 
targets, but fails to overeóme interaction of spatially cióse objeets. However, in-
tegrating both motion segmentation and (HSI based) color results in excellent 
3D tracking robustness, even in situations involving múltiple interacting people. 
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