1,134 research outputs found

    Object recognition in hyperspectral images using Binary Partition Tree representation

    Get PDF
    In this work, an image representation based on Binary Partition Tree is proposed for object detection in hyperspectral images. This hierarchical region-based representation can be interpreted as a set of hierarchical regions stored in a tree structure, which succeeds in presenting: (i) the decomposition of the image in terms of coherent regions and (ii) the inclusion relations of the regions in the scene. Hence, the BPT representation defines a search space for constructing a robust object identification scheme. Spatial and spectral information are integrated in order to analyze hyperspectral images with a region based perspective. For each region represented in the BPT, spatial and spectral descriptors are computed and the likelihood that they correspond to an instantiation of the object of interest is evaluated. Experimental results demonstrate the good performances of this BPT-based approach. (C) 2015 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author’s final draft

    Hyperspectral Image Segmentation Using a New Spectral Unmixing-Based Binary Partition Tree Representation

    No full text
    International audienceThe Binary Partition Tree (BPT) is a hierarchical region-based representation of an image in a tree structure. BPT allows users to explore the image at different segmentation scales. Often, the tree is pruned to get a more compact representation and so the remaining nodes conform an optimal partition for some given task. Here, we propose a novel BPT construction approach and pruning strategy for hyperspectral images based on spectral unmixing concepts. Linear Spectral Unmixing (LSU) consists of finding the spectral signatures of the materials present in the image (endmembers) and their fractional abundances within each pixel. The proposed methodology exploits the local unmixing of the regions to find the partition achieving a global minimum reconstruction error. Results are presented on real hyperspectral data sets with different contexts and resolutions

    Hyperspectral image representation and processing with binary partition trees

    Get PDF
    The optimal exploitation of the information provided by hyperspectral images requires the development of advanced image processing tools. Therefore, under the title Hyperspectral image representation and Processing with Binary Partition Trees, this PhD thesis proposes the construction and the processing of a new region-based hierarchical hyperspectral image representation: the Binary Partition Tree (BPT). This hierarchical region-based representation can be interpreted as a set of hierarchical regions stored in a tree structure. Hence, the Binary Partition Tree succeeds in presenting: (i) the decomposition of the image in terms of coherent regions and (ii) the inclusion relations of the regions in the scene. Based on region-merging techniques, the construction of BPT is investigated in this work by studying hyperspectral region models and the associated similarity metrics. As a matter of fact, the very high dimensionality and the complexity of the data require the definition of specific region models and similarity measures. Once the BPT is constructed, the fixed tree structure allows implementing efficient and advanced application-dependent techniques on it. The application-dependent processing of BPT is generally implemented through a specific pruning of the tree. Accordingly, some pruning techniques are proposed and discussed according to different applications. This Ph.D is focused in particular on segmentation, object detection and classification of hyperspectral imagery. Experimental results on various hyperspectral data sets demonstrate the interest and the good performances of the BPT representatio

    GraphBPT: An Efficient Hierarchical Data Structure for Image Representation and Probabilistic Inference

    Get PDF
    International audienceThis paper presents GraphBPT, a tool for hierarchical representation of images based on binary partition trees. It relies on a new BPT construction algorithm that have interesting tuning properties. Besides, access to image pixels from the tree is achieved efficiently with data compression techniques, and a textual representation of BPT is also provided for interoperability. Finally, we illustrate how the proposed tool takes benefit from probabilistic inference techniques by empowering the BPT with its equivalent factor graph. The relevance of GraphBPT is illustrated in the context of image segmentation

    Hyperspectral image representation through alpha-trees

    Get PDF
    International audienceα-trees provide a hierarchical representation of an image into partitions of regions with increasing heterogeneity. This model, inspired from the single-linkage paradigm, has recently been revisited for grayscale images and has been successfully used in the field of remote sensing. This article shows how this representation can be adapted to more complex data here hyperspectral images, according to different strategies. We know that the measure of distance between two neighbouring pixels is a key element for the quality of the underlying tree, but usual metrics are not satisfying. We show here that a relevant solution to understand hyperspectral data relies on the prior learning of the metric to be used and the exploitation of domain knowledge

    Gas Plume Detection and Tracking in Hyperspectral Video Sequences using Binary Partition Trees

    No full text
    International audienceThanks to the fast development of sensors, it is now possible to acquire sequences of hyperspectral images. Those hyperspectral video sequences are particularly suited for the detection and tracking of chemical gas plumes. However, the processing of this new type of video sequences with the additional spectral diversity, is challenging and requires the design of advanced image processing algorithms. In this paper, we present a novel method for the segmentation and tracking of a chemical gas plume diffusing in the atmosphere, recorded in a hyperspectral video sequence. In the proposed framework, the position of the plume is first estimated, using the temporal redundancy of two consecutive frames. Second, a Binary Partition Tree is built and pruned according to the previous estimate, in order to retrieve the real location and extent of the plume in the frame. The proposed method is validated on a real hyperspectral video sequence and compared with a state-of-the-art method

    Hyperspectral Image Representation and Processing With Binary Partition Trees

    Full text link
    • …
    corecore