8 research outputs found

    Real-time detection and tracking of multiple objects with partial decoding in H.264/AVC bitstream domain

    Full text link
    In this paper, we show that we can apply probabilistic spatiotemporal macroblock filtering (PSMF) and partial decoding processes to effectively detect and track multiple objects in real time in H.264|AVC bitstreams with stationary background. Our contribution is that our method cannot only show fast processing time but also handle multiple moving objects that are articulated, changing in size or internally have monotonous color, even though they contain a chaotic set of non-homogeneous motion vectors inside. In addition, our partial decoding process for H.264|AVC bitstreams enables to improve the accuracy of object trajectories and overcome long occlusion by using extracted color information.Comment: SPIE Real-Time Image and Video Processing Conference 200

    Video Object Tracking Using Motion Estimation

    Get PDF
    Real time object tracking is considered as a critical application. Object tracking is one of the most necessary steps for surveillance, augmented reality, smart rooms and perceptual user interfaces, video compression based on object and driver assistance. While traditional methods of Segmentation using Thresholding, Background subtraction and Background estimation provide satisfactory results to detect single objects, noise is produced in case of multiple objects and in poor lighting conditions. Using the segmentation technique we can locate a target in the current frame. By minimizing the distance or maximizing the similarity coefficient we can find out the exact location of the target in the current frame. Target localization in current frame was computationally much complex in the conventional algorithms. Searching an object in the current frame using these algorithms starts from its location of the previous frame in the basis of attraction probably the square of the target area, calculating weighted average for all iteration then comparing similarity coefficients for each new location. To overcome these difficulties, a new method is proposed for detecting and tracking multiple moving objects on night-time lighting conditions. The method is performed by integrating both the wavelet-based contrast change detector and locally adaptive thresholding scheme. In the initial stage, to detect the potential moving objects contrast in local change over time is used. To suppress false alarms motion prediction and spatial nearest neighbour data association are used. A latest change detector mechanism is implemented to detect the changes in a video sequence and divide the sequence into scenes to be encoded independently. Using the change detector algorithm (CD), it was efficient enough to detect abrupt cuts and help divide the video file into sequences. With this we get a sufficiently good output with less noise. But in some cases noise becomes prominent. Hence, a method called correlation is used which gives the relation between two consecutive frames which have sufficient difference to be used as current and previous frame. This gives a way better result in poor light condition and multiple moving objects

    Compressive Sensing for Background Subtraction

    Get PDF
    Compressive sensing (CS) is an emerging field that provides a framework for image recovery using sub-Nyquist sampling rates. The CS theory shows that a signal can be reconstructed from a small set of random projections, provided that the signal is sparse in some basis, e.g., wavelets. In this paper, we describe a method to directly recover background subtracted images using CS and discuss its applications in some communication constrained, multi-camera computer vision problems. We show how to apply the CS theory to recover object silhouettes (binary background subtracted images) when the objects of interest occupy a small portion of the camera view, i.e., when they are sparse in the spatial domain. We cast the background subtraction as a sparse approximation problem and provide different solutions based on convex optimization and total variation. In our method, as opposed to learning the background, we learn and adapt a low dimensional compressed representation of it, which is sufficient to determine spatial innovations; object silhouettes are then estimated directly using the compressive samples without any auxiliary image reconstruction. We also discuss simultaneous appearance recovery of the objects using compressive measurements. In this case, we show that it may be necessary to reconstruct one auxiliary image. To demonstrate the performance of the proposed algorithm, we provide results on data captured using a compressive single-pixel camera. We also illustrate that our approach is suitable for image coding in communication constrained problems by using data captured by multiple conventional cameras to provide 2D tracking and 3D shape reconstruction results with compressive measurements

    Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements

    Full text link
    Background subtraction has been a fundamental and widely studied task in video analysis, with a wide range of applications in video surveillance, teleconferencing and 3D modeling. Recently, motivated by compressive imaging, background subtraction from compressive measurements (BSCM) is becoming an active research task in video surveillance. In this paper, we propose a novel tensor-based robust PCA (TenRPCA) approach for BSCM by decomposing video frames into backgrounds with spatial-temporal correlations and foregrounds with spatio-temporal continuity in a tensor framework. In this approach, we use 3D total variation (TV) to enhance the spatio-temporal continuity of foregrounds, and Tucker decomposition to model the spatio-temporal correlations of video background. Based on this idea, we design a basic tensor RPCA model over the video frames, dubbed as the holistic TenRPCA model (H-TenRPCA). To characterize the correlations among the groups of similar 3D patches of video background, we further design a patch-group-based tensor RPCA model (PG-TenRPCA) by joint tensor Tucker decompositions of 3D patch groups for modeling the video background. Efficient algorithms using alternating direction method of multipliers (ADMM) are developed to solve the proposed models. Extensive experiments on simulated and real-world videos demonstrate the superiority of the proposed approaches over the existing state-of-the-art approaches.Comment: To appear in IEEE TI

    Recent Advances in Region-of-interest Video Coding

    Get PDF

    Vision-Aided Navigation for GPS-Denied Environments Using Landmark Feature Identification

    Get PDF
    In recent years, unmanned autonomous vehicles have been used in diverse applications because of their multifaceted capabilities. In most cases, the navigation systems for these vehicles are dependent on Global Positioning System (GPS) technology. Many applications of interest, however, entail operations in environments in which GPS is intermittent or completely denied. These applications include operations in complex urban or indoor environments as well as missions in adversarial environments where GPS might be denied using jamming technology. This thesis investigate the development of vision-aided navigation algorithms that utilize processed images from a monocular camera as an alternative to GPS. The vision-aided navigation approach explored in this thesis entails defining a set of inertial landmarks, the locations of which are known within the environment, and employing image processing algorithms to detect these landmarks in image frames collected from an onboard monocular camera. These vision-based landmark measurements effectively serve as surrogate GPS measurements that can be incorporated into a navigation filter. Several image processing algorithms were considered for landmark detection and this thesis focuses in particular on two approaches: the continuous adaptive mean shift (CAMSHIFT) algorithm and the adaptable compressive (ADCOM) tracking algorithm. These algorithms are discussed in detail and applied for the detection and tracking of landmarks in monocular camera images. Navigation filters are then designed that employ sensor fusion of accelerometer and rate gyro data from an inertial measurement unit (IMU) with vision-based measurements of the centroids of one or more landmarks in the scene. These filters are tested in simulated navigation scenarios subject to varying levels of sensor and measurement noise and varying number of landmarks. Finally, conclusions and recommendations are provided regarding the implementation of this vision-aided navigation approach for autonomous vehicle navigation systems
    corecore