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Abstract. Compressive sensing (CS) is an emerging field that provides a frame-

work for image recovery using sub-Nyquist sampling rates. The CS theory shows

that a signal can be reconstructed from a small set of random projections, pro-

vided that the signal is sparse in some basis, e.g., wavelets. In this paper, we

describe a method to directly recover background subtracted images using CS

and discuss its applications in some communication constrained multi-camera

computer vision problems. We show how to apply the CS theory to recover ob-

ject silhouettes (binary background subtracted images) when the objects of in-

terest occupy a small portion of the camera view, i.e., when they are sparse in

the spatial domain. We cast the background subtraction as a sparse approxima-

tion problem and provide different solutions based on convex optimization and

total variation. In our method, as opposed to learning the background, we learn

and adapt a low dimensional compressed representation of it, which is sufficient

to determine spatial innovations; object silhouettes are then estimated directly

using the compressive samples without any auxiliary image reconstruction. We

also discuss simultaneous appearance recovery of the objects using compressive

measurements. In this case, we show that it may be necessary to reconstruct one

auxiliary image. To demonstrate the performance of the proposed algorithm, we

provide results on data captured using a compressive single-pixel camera. We

also illustrate that our approach is suitable for image coding in communication

constrained problems by using data captured by multiple conventional cameras to

provide 2D tracking and 3D shape reconstruction results with compressive mea-

surements.

1 Introduction

Background subtraction is fundamental in automatically detecting and tracking moving

objects with applications in surveillance, teleconferencing [1, 2] and even 3D model-

ing [3]. Usually, the foreground or the innovation of interest occupies a sparse spatial

support, as compared to the background and may be caused by the motion and the ap-

pearance change of objects within the scene. By obtaining the object silhouettes on a

single image plane or multiple image planes, a background subtraction algorithm can

be performed.

In all applications that require background subtraction, the background and the test

images are typically fully sampled using a conventional camera. After the foreground

estimation, the remaining background images are either discarded or embedded back

into the background model as part of a learning scheme [2]. This sampling process is
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inexpensive for imaging at the visible wavelengths as the conventional devices are built

from silicon, which is sensitive to these wavelengths; however, if sampling at other

optical wavelengths is desired, it becomes quite expensive to obtain estimates at the

same pixel resolution as new imaging materials are needed. For example, a camera

with an array of infrared sensors can provide night vision capability but can also cost

significantly more than the same resolution CCD or CMOS cameras.

Recently, a prototype single pixel camera (SPC) was proposed based on the new

mathematical theory of compressive sensing (CS) [4]. The CS theory states that a sig-

nal can be perfectly reconstructed, or can be robustly approximated in the presence of

noise, with sub-Nyquist data sampling rates, provided that it is sparse in some linear

transform domain [5, 6]. That is, it has K nonzero transform coefficients with K ≪ N ,

where N is the dimension of the transform space. For computer vision applications, it

is known that natural images can be sparsely represented in the wavelet domain [7].

Then, according to the CS theory, by taking random projections of a scene onto a set

of test functions that are incoherent with the wavelet basis vectors, it is possible to

recover the scene by solving a convex optimization problem. Moreover, the resulting

compressive measurements are robust against packet drops over communication chan-

nels with graceful degradation in reconstruction accuracy, as the image information is

fully distributed.

Compared to conventional camera architectures, the SPC hardware is specifically

designed to exploit the CS framework for imaging. An SPC fundamentally differs from

a conventional camera by (i) reconstructing an image using only a single optical pho-

todiode (infrared, hyperspectral, etc.) along with a digital micromirror device (DMD),

and (ii) combining the sampling and compression into a single nonadaptive linear mea-

surement process. An SPC can directly scale from the visual spectra to hyperspectral

imaging with only a change of the single optical sensor. Moreover, enabled by the CS

theory, an SPC can robustly reconstruct the scene from much fewer measurements than

the number of reconstructed pixels which define the resolution, given that the image of

the scene is compressible by an algorithm such as the wavelet-based JPEG 2000.

Conventional cameras can also benefit by processing in the compressive sensing

domain if their data is being sent to a central processing location. The naı̈ve approach

is to transmit the raw images to the central location. This exacerbates the communi-

cation bandwidth requirements. In more sophisticated approaches, the cameras trans-

mit the information within the background subtracted image, which requires an even

smaller communication bandwidth than the compressive samples. However, the em-

bedded systems needed to perform reliable background subtraction are power hungry

and expensive. In contrast, the compressive measurement process only requires cheaper

embedded hardware to calculate inner products with a previously determined set of test

functions. In this way, the compressive measurements require comparable bandwidth to

transform coding of the raw data. They trade off expensive embedded intelligence for

more computational power at the central location, which reconstructs the images and is

assumed to have unlimited resources.

The communication bandwidth and camera hardware limitations make it desirable

to directly reconstruct the sparse foreground innovations within a scene without any

intermediate image reconstruction. The main idea is that the background subtracted im-
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ages can be represented sparsely in the spatial image domain and hence the CS recon-

struction theory should be applicable for directly recovering the foreground. For natural

images, we use wavelets as the transform domain. Pseudo-random matrices provide an

incoherent set of test functions to recover the foreground image. Then, the following

questions surface (i) how can we detect targets without reconstructing an image? and

(ii) how can we directly reconstruct the foreground without reconstructing auxiliary

images?

In this paper, we describe a method based on CS theory to directly recover the

sparse innovations (foreground) of a scene. We first show that the object silhouettes

(binary background subtracted images) can be recovered as a solution of a convex opti-

mization or an orthogonal matching pursuit problem. In our method, the object silhou-

ettes are learned directly using the compressive samples without any auxiliary image

reconstruction. We then discuss simultaneous appearance recovery of objects using the

compressive measurements. In this case, we show that it may be necessary to recon-

struct one auxiliary image. To demonstrate the performance of the proposed algorithm,

we use field data captured by a compressive camera and provide background subtrac-

tion results. We also show results on field data captured by conventional CCD cameras

to simulate multiple distributed single-pixel cameras and provide 2D tracking and 3D

shape reconstruction results.

While the idea of performing background subtraction on compressed images is not

novel, there exist no cameras that record MPEG video directly. Both Aggarwal et al. [8]

and Lamarre and Clark [9] perform background subtraction on a MPEG-compressed

video using the DC-DCT coefficients of I frames, limiting the resolution of the BS

images by 64. Our technique is tailored for CS imaging, and not compressed video

files. Lamarre et al. [9] and Wang et al. [10] use DCT coefficients from JPEG pictures

and MPEG videos, respectively, for representation. Toreyin et al. [11] similarly oper-

ate on the wavelet representation. These methods implicitly perform decompression by

working on every DCT/wavelet coefficient of every image. We never have to go to the

high dimensional images or representations during background subtraction, making our

approach particularly attractive for embedded systems and demanding communication

bandwidths. Compared to the eigenbackground work of Oliver et al. [12], random pro-

jections are universal so there is no need to update bases - the only basis needed is the

sparsity basis for difference images, hence no training is required. The very recent work

of Uttam, Goodman and Neifeld [13] considers background subtraction from adap-

tive compressive measurements, with the assumption that the background-subtracted

images lie in a low-dimensional subspace. While this assumption is acceptable when

image tiling is performed, background-subtracted images are sparse in an appropriate

domain, spanning a union of low-dimensional subspaces rather than a single subspace.

Our specific contributions are as follows:

1. We cast the background subtraction problem as a sparse signal recovery problem

where convex optimization and greedy methods can be applied. We employ Ba-

sis Pursuit Denoising methods [14] as well as total variation minimization [5] as

convex objectives to process field data.

2. We show that it is possible to recover the silhouettes of foreground objects by learn-

ing a low-dimensional compressed representation of the background image. Hence,
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we show that it is not necessary to learn the background itself to sense the innova-

tions or the foreground objects. We also explain how to adapt this representation so

that our approach is robust against variations of the background such as illumina-

tion changes.

3. We develop an object detector directly on the compressive samples. Hence, no fore-

ground reconstruction is done until a detection is made to save computation.

2 The Compressive Sensing Theory

2.1 Sparse Representations

Suppose that we have an image X of size N1 × N2 and we vectorize it into a col-

umn vector x of size N × 1 (N = N1N2) by concatenating the individual columns

of X in order. The nth element of the image vector x is referred to as x(n), where

n = 1, . . . , N . Let us assume that the basis Ψ = [ψ1, . . . ,ψN ] provides a K-sparse

representation of x:

x =

N∑

n=1

θ(n)ψn =

K∑

l=1

θ(nl)ψnl
, (1)

where θ(n) is the coefficient of the nth basis vectorψn (ψn: N×1) and the coefficients

indexed by nl are the K-nonzero entries of the basis decomposition. Equation (1) can

be more compactly expressed as follows

x = Ψθ, (2)

where θ is an N ×1 column vector with K-nonzero elements. Using ‖·‖p to denote the

ℓp norm where the ℓ0 norm simply counts the nonzero elements of θ, we call an image

X as K-sparse if ‖θ‖0 = K .

Many different basis expansions can achieve sparse approximations of natural im-

ages, including wavelets, Gabor frames, and curvelets [5, 7]. In other words, a natural

image does not result in an exactly K-sparse representation; instead, its transform coef-

ficients decay exponentially to zero. The discussion below also applies to such images,

denoted as compressible images, as they can be well-approximated using the K largest

terms of θ.

2.2 Random/Incoherent Projections

In the CS framework, it is assumed that the K-largest θ(n) are not measured directly.

Rather, M < N linear projections of the image vector x onto another set of vectors

Φ = [φ′
1, . . . ,φ

′
M ]′ are measured:

y = Φx = ΦΨθ, (3)

where the vector y (M × 1) constitutes the compressive samples and the matrix Φ

(M × N ) is called the measurement matrix. Since M < N , recovery of the image x

from the compressive samples y is underdetermined; however, as we discuss below, the

additional sparsity assumption makes recovery possible.
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The CS theory states that when (i) the columns of the sparsity basis Ψ cannot

sparsely represent the rows of the measurement matrix Φ and (ii) the number of mea-

surements M is greater than O
(
K log

(
N
K

))
, then it is possible to recover the set of

nonzero entries of θ from y [5, 6]. Then, the image x can be obtained by the linear

transformation of θ in (1). The first condition is called the incoherence of the two bases

and it holds for many pairs of bases, e.g., delta spikes and the sine waves of the Fourier

basis. Surprisingly, incoherence also holds with high probability between an arbitrary

basis and a randomly generated one, e.g., i.i.d. Gaussian or Bernoulli/Rademacher ±1
vectors.

2.3 Signal Recovery via ℓ1 Optimization

There exists a computationally efficient recovery method based on the following ℓ1-

optimization problem [5, 6]:

θ̂ = argmin ‖θ‖1 s. t. y = ΦΨθ. (4)

This optimization problem, also known as Basis Pursuit [6], can be efficiently solved

using polynomial time algorithms.

Other formulations are used for recovery from noisy measurements such as Lasso,

Basis Pursuit with quadratic constraint [5]. In this paper, we use Basis Pursuit Denoising

(BPDN) for recovery:

bθ = arg min ‖θ‖1 +
1

2
β‖y − ΦΨθ‖2

2, (5)

where 0 < β < ∞ [14]. When the images of interest are smooth, a strategy based on

minimizing the total variation of the image works equally well [5].

3 CS for Background Subtraction

With background subtraction, our objective is to recover the location, shape and (some-

times) appearance of the objects given a test image over a known background. Let us

denote the background, test, and difference images as xb, xt, and xd, respectively.

The difference image is obtained by pixel-wise subtraction of the background im-

age from the test image. Note that the support of xd, denoted as Sd = {n|n =
1, . . . , N ; |xd(n)| 6= 0}, gives us the location and the silhouettes of the objects of

interest, but not their appearance (see Fig. 1).

3.1 Sparsity of Background Subtracted Images

Suppose that xb and xt are typical real-world images in the sense that when wavelets

are used as the sparsity basis for xb, xt, and xd, these images can be well approx-

imated with the largest K coefficients with hard thresholding [15], where K is the

corresponding sparsity proportional to the cardinality of the image support. The im-

ages xb and xt differ only on the support of the foreground, which has a cardinality of

P = |Sd| pixels with P ≪ N . Moreover, we assume that images have uniform com-

plexity in space. We model the sparsity of the real world images as a function of their



6 V. Cevher et al.

Fig. 1. (Left) Example background image. (center) Test image. (Right) Difference image. Note

that the vehicle appearance also shows the curb in the background, which it occludes. The images

and are from the PETS 2001 database.

size: Kscene = Kb = Kt = (λ0 log N + λ1)N , where (λ0, λ1) ∈ R
2. We assume that

the difference image is also a real-world image on a restricted support (see Fig. 1(c)),

and similarly we approximate its sparsity as Kd = (λ0 log P + λ1)P .

The number of compressive samples M necessary to reconstruct xb, xt, and xd

in N dimensions are then given by Mscene = Mb = Mt ≈ Kscene log (N/Kscene) and

Md ≈ Kd log (N/Kd). When Md < Mscene, a smaller number of samples is needed to

reconstruct the difference image than the background or foreground images. We empir-

ically show in Section 5 that this condition is almost always satisfied when the sizes of

the difference images are smaller than original image sizes for natural images.

3.2 The Background Constraint

Let us assume that we have multiple compressive measurements ybi (M × 1, i =
1, . . . , B) of training background imagesxbi, wherexb is their mean. Each compressive

measurement is a random projection of the whole image, whose distribution we approx-

imate as an i.i.d. Gaussian distribution with a constant variance ybi ∼ N
(
yb, σ

2I
)
,

where the mean value is yb = Φxb. When the scene changes to include an object

which was not part of the background model and we take the compressive measure-

ments, we obtain a test vector yt = Φxt, where xd = xt − xb is sparse in the spatial

domain.

In general, the sizes of the foreground objects are relatively smaller than the size

of the background image; hence, we model the distribution of the literally background

subtracted vector as yd = yt−yb ∼ N
(
µd, σ

2I
)

(M×1), whereµd is the mean. Note

that the appearance of the objects constructed from the samples yd would correspond

to the literal subtraction of the test frame and the background; however, their silhouette

is preserved (Fig. 1(c)).

The number of samples M in yb is greater than Md as discussed in Sect. 3.1, but

is not necessarily greater than or equal to Mb or Mt; hence, it may not be sufficient

to reconstruct the background. However, the background image xb still satisfies the

constraint yb = Φxb. To be robust against small variations in the background and

noise, we consider the distribution of the ℓ2 distances of the background frames around

their mean yb:

‖ybi − yb‖
2
2 = σ2

M∑

n=1

(
ybi(n) − yb(n)

σ

)2

. (6)
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When M is greater than 30, this sum can be well approximated by a Gaussian distribu-

tion due to the central limit theorem. Then, it is straightforward to show that we have

‖ybi−yb‖
2
2 ∼ N

(
Mσ2, 2Mσ4

)
. When we have a test frame with a foreground object,

the same distribution becomes ‖yt−yb‖
2
2 ∼ N

(
Mσ2 + ‖µd‖

2
2, 2Mσ4 + 4σ2‖µd‖

2
2

)
.

Since σ2 scales the whole distribution and 1/M ≪ 1, the logarithm of the ℓ2 dis-

tances in (6) can be approximated quite accurately with a Gaussian distribution. That

is, since u ≪ 1 implies 1 + u ≈ eu, we have N
(
Mσ2, 2Mσ4

)
= Mσ2N

(
1, 2

M

)
=

Mσ2

(
1 +

√
2

M
N (0, 1)

)
≈ Mσ2 exp

{√
2

M
N (0, 1)

}
. This derivation can also mo-

tivated by the fact that the square-root of the Chi-squared distribution can be well ap-

proximated by a Gaussian [16].

Hence, (6) can be used to approximate

log ‖ybi − yb‖
2
2 ∼ N

(
µbg, σ

2
bg

)
, (7)

where µbg is the mean and σ2
bg is the variance term, which does not depend on the addi-

tive noise in pixel measurements. Equation (7) allows some variability around the con-

straint yb = Φxb that the background image needs to satisfy in order to cope with the

small variations of the background and the measurement noise. However, the samples

yd = yt − yb can be used to recover the foreground objects. We learn the log-Normal

parameters in (7) from the data using maximum likelihood techniques.

3.3 Object Detector based on CS

Before we attempt any reconstruction, it is a good idea to determine if the test image has

any differences from the background. Using the results from Sect. 3.2, the ℓ2 distance

of yt from yb can be subsequently approximated by

log ‖yt − yb‖
2
2 ∼ N

(
µt, σ

2
t

)
. (8)

When the object is small, σ2
t should be on the same order size of σ2

bg , while µt is

different from µbg in (7). Then, to test the hypothesis of whether there is a new object,

the optimal detector would be a simple threshold test since we would be comparing two

Gaussian distributions with similar variances. When σ2
t is significantly different from

σ2
bg , the optimal test can be a two sided threshold test [17]. For our case, we simply use

a constant times the standard deviation of the background as a threshold and declare

that there is a new object if
∣∣log ‖yt − yb‖

2
2 − µbg

∣∣ ≥ cσbg .

3.4 Foreground Reconstruction

For foreground reconstruction, we use BPDN with a fixed point continuation method [18]

and total variation (TV) optimization with an interior point method [5] on the back-

ground subtracted compressive measurements. The BPDN solver is the fastest among

the proposed algorithms because it solves an unconstrained optimization problem. Dur-

ing the reconstruction, we lose the actual appearance of the objects as the obtained mea-

surements also contain information about the background. Although it is known that the

subtracted image is a sum of two components that exclusively appear in xb and xt, it

is difficult, if not impossible, to unmix them without taking enough measurements to
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recover xb or xt. Hence, if the appearances of the objects are needed, a straightforward

way to obtain them would be to either reconstruct the test image by taking enough com-

pressive samples and then use the binary foreground image as a mask, or reconstruct

and mask the background image and then add the result to the foreground estimate.

3.5 Adaptation of the Background Constraint

We define two types of changes in a background: drifts and shifts. A background drift

consists of gradual changes that occur in the background such as illumination changes

in the scene and may result in immediate unwanted foreground estimates. A background

shift is a major and sudden change in the definition of the background, such as a new

vehicle parked within the scene. Adapting to background shifts at the sensing level is

quite difficult because high level logical operations are required, such as detecting the

new object and deciding that it is uninteresting. However, adapting to background drifts

is essential for a robust background subtraction system as it has immediate impacts on

the foreground recovery.

The background constraint yb needs to be updated continuously if the background

subtraction system is to be robust against the background drifts. Otherwise, the drifts

may accumulate and trigger unwanted detections. In the compressive sensing frame-

work, this can be done as follows. Once we obtain an estimate of the difference image

x̂d with one of the reconstruction algorithms discussed in the previous section, we de-

termine the compressive samples that should be generated by it: ŷd = Φx̂d. Since we

already have yd = yt−yb, we can substitute the de-noised difference estimate to obtain

the background estimate of the current frame: ŷb = yt − ŷd. Then, a running average

can be used to update the background with a learning rate of α ∈ (0, 1) as follows:

y
{j+1}
b = α

(
y
{j}
t − ŷ

{j}
d

)
+ (1 − α)y

{j}
b , (9)

where j is the time index.

Unfortunately, this update rule does not suffice for compensating background shifts,

such as new stationary targets. Consider a pixel whose intensity value changes because

of a background shift. This pixel will then be identified as an outlier in the background

model. The corresponding pixel in the background model will not be updated in (9).

Hence, for all future frames, the pixel will continue to be classified as part of the fore-

ground. This problem can be handled by allowing for a second moving average of the

frames, which updates all pixels within the image as in [19].

Hence, we use the following updates:

y{j+1}
ma = γy

{j}
t + (1 − γ)y{j}

ma ,

y
{j+1}
b = α

(
y
{j}
t − ŷ{j}

e

)
+ (1 − α)y

{j}
b ,

(10)

where yma is the simple moving average, γ ∈ (0, 1) is the moving average learning

rate, and ŷe = Φx̂ma. Consider a global illumination change. The moving average up-

date integrates the pixel’s illumination change over time, whose speed depends on γ. In

subsequent frames, the value of the moving average will approach the intensity value
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Fig. 2. Block diagram of the proposed method.

observed at the pixel. This implies that when used as a detection image, the moving

average will stop detecting the pixel as foreground. Once this happens, the pixel will

be updated in the background update, making the background model adaptive to global

changes in illumination. A disadvantage of this approach is that if the targets stay sta-

tionary for extended periods of time, they become part of the background. However, if

they move again, they can be detected. Figure 2 illustrates the outline of the proposed

background subtraction method.

4 Limitations

In this section, we discuss some of the limitations of the specific compressive sensing

approach to the background subtraction presented in this paper. Some of these limita-

tions can be caused by the hardware architecture, whereas others are due to our image

models. Note that our formulation is general enough that we do not require an SPC

for operation. CS can be used for rateless coding of BS images. If a centralized vision

system is used with no background subtraction at the camera, then our methods can

be used at conventional cameras for processing in the compressive domain to reduce

communication bandwidth and be robust against packet drops.

The SPC architecture uses a DMD to generate a random sampling pattern and sends

the resulting inner product of the incident light field from the scene with the random

pattern to the optical sensor to create a compressive measurement. By changing the

random pattern in time, a set of M consecutive measurements can be made about the

scene using the same optical sensor, which form the measurement vector y. The current

DMD arrays can change their geometric configuration approximately 10 to 40K times

per second. For example, with a rate of 30K times per second, we can construct at

most a 300×300 resolution background subtracted image with 1% compression ratios

at 30fps. Although the resolution may not be sufficient for some applications, it will

improve as the capabilities of the DMD arrays increase.

In our background modeling, we assume that the background and foreground im-

ages exhibit sparsity. We argued that the background subtracted image has a lower spar-

sity and hence can be reconstructed with fewer samples that is necessary to reconstruct

the background or the foreground images. When the images of interest do not show
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sparsity (e.g., they are white noise), our approach can still be applied. That is, the dif-

ference image xd is always sparse regardless of the sparsities of xb and xt if its support

cardinality P is much smaller than N .

5 Experiments

5.1 Background Subtraction with an SPC

We performed background subtraction experiments with an SPC; in our test, the back-

ground xb consists of the standard test Mandrill image, with the foreground xt con-

sisting of a white rectangular patch as shown in Fig. 3. Both the background and the

foreground were acquired using pseudorandom compressive measurements (yb and yt,

respectively) generated by a Mersenne Twister algorithm with a 64 × 64 pixel reso-

lution [20]. We obtain measurements for the subtraction image as yd = yt − yb. We

reconstructed both the background, test, and difference images, using TV minimization.

The reconstruction is performed using several measurement rates ranging from 0.5% to

50%. In each case, we compare the subtraction image reconstruction with the difference

between the reconstructed test and background images. The resulting images are shown

in Fig. 3, and show that for low rates the background and test images are not recovered

accurately, and therefore the subtraction performs poorly; however, the sparser fore-

ground innovation is still recovered correctly from the difference of the measurements,

with rates as low as 1% being able to recover the foreground at this low resolution.

5.2 The Sparsity Assumption

In our formulation, we assumed that the sparsity of natural images has the following

form: K = (λ0 log N + λ1)N . To test this assumption, we used the Berkeley Segmen-

tation Data Set (BSDS) as a natural image database [21] and obtained wavelet approxi-

mations of various block sizes varying from 2× 2 to 256× 256 pixels. To approximate

the sparsity K of any given tile size, we determined the minimum number of wavelet

coefficients that results in a compression with -40dB distortion with respect to the im-

age itself. Figure 4 shows that our sparsity assumption is justified for natural images,

and illustrates that the necessary number of compressive samples is monotonic with the

tile size. Therefore, if the innovations in the image are smaller than the image, it takes

fewer compressive samples to recover them. In fact, the total number of samples neces-

sary to reconstruct is rather close to linear: M ≈ κN1−δ where δ ≪ 1. In general, the λ
parameters are scene specific (Fig. 4(Right)). Hence, the exact number of compressive

measurements needed may vary.

5.3 Multi-view Ground Plane Tracking

Background subtraction forms an important pre-processing component for many vision

applications. In this regard, it is important to see if the imagery generated using com-

pressive measurements can be used in such applications. In this section, we demonstrate

a multi-view tracking application where accurate background subtraction is key in de-

termining overall system performance.
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Fig. 3. Background subtraction experimental results using an SPC. Reconstruction of background

image (top row) and test image (second row) from compressive measurements. Third row: con-

ventional subtraction using the above images. Fourth row: reconstruction of difference image

directly from compressive measurements. The columns correspond to measurement rates M/N
of 50%, 5%, 2%, 1% and 0.5%, from left to right. Background subtraction from compressive

measurements is feasible at lower measurement rates than standard background subtraction.
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Fig. 4. (Left) Average sparsity over N as a function of the tile size for the images in BSDS.

(center) Number of compressive measurements needed to reconstruct an image of different sizes

from BSDS. (Right) Average sparsity over N as a function of the tile size for the images in PETS

2001 data set.

In Figure 5, we show results on a multi-view ground plane tracking algorithm over

a sequence of 300 frames with 20% compression ratio. We first obtain the object silhou-

ettes using the compressive samples at each view. We use wavelets as the sparsifying

basis Ψ . At each time instant, the silhouettes are mapped on to the ground planes and

averaged. Objects on the ground plane (e.g., the feet) combine in synergy while those

off the plane are in parallax and do not support each other. We then threshold to obtain

potential target locations as in [22]. The outputs indicate the background subtracted

images are sufficient to generate detections that compare well against the detections

generated using the full non-compressed images. Hence, using our method, the com-
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Fig. 5. Tracking results on a video sequence of 300 frames. (Left) The first two rows show sample

images and background subtraction results using the compressive measurements, respectively.

The background subtracted blobs are used to detect target location on the ground plane. The right

figure shows the detected points using CS (blue dots) as well as the detected points using full

images (black). The distances are in meters.

munication bandwidth of a multi camera localization system can be reduced to one-fifth

if the estimation is done at a central location.

5.4 Adaptation to Illumination Changes

To compare the performance of the background constraint adaptations (9) (drift adap-

tive) and (10) (shift adaptive), we test them on a sequence where there is a global illu-

mination change due to sunlight. To emphasize the differences, we use the delta basis

(0/1 in spatial domain) as the sparsifying basis Ψ . This basis creates much noisier back-

ground subtraction images than wavelets, but it is quite illustrative for the purposes of

this comparison.

Figure 6 shows the results of the comparison. The images on top are the original

images. The middle row corresponds to the update in (10) whereas the bottom row

images correspond to the update in (9). The update in (10) allows the background con-

straint to keep track of the sudden change in illumination. Hence, the resulting images

are cleaner and continue to improve. This results in much lower false alarm rates for

the same detection probability (see Fig. 6(Right)). For the receiver operating character-

istics (ROC) curves, we use the full images, run the background subtraction algorithm

proposed in [19], and obtain baseline background subtracted images. We then compare

the pixels on the resulting target from different updates to calculate the detection rate.

We also compare the spurious detections in the rest of the images to generate the ROC

curve.

5.5 Silhouettes vs. Difference Images

We have used a multi camera set up for a 3D voxel reconstruction using the compres-

sive measurements. Figure 7(Left) shows the ground truth and the difference image

reconstructed using CS, which incorporates elements from the background, such as the

camera setup behind the subject, affecting the final reconstruction. Hence, the difference

images do not always result in the desired silhouettes. Figure 7(Right) shows the voxel

reconstruction with four cameras with 40% compression, which is visually satisfactory

despite the artifacts in the difference images.



Compressive Sensing for Background Subtraction 13

10

9

Fig. 6. Background subtraction results on a sequence with changing illumination using (9) and

(10) for background constraint updates. Outputs are shown with identical parameters used for

both models. Note that for the same detection output, the update rule (10) produces much less

false alarm. However, (10) has twice the computational cost as (9).

Fig. 7. (Left) Ground truth detections marked in white and unthresholded background difference

image reconstruction using compressive samples with 40% compression. (Right) Reconstructed

3D point clouds of the target.

6 Conclusions

We demonstrated that the CS framework can be used to directly reconstruct sparse in-

novations on a background scene with a significantly fewer data samples than the con-

ventional methods. As opposed to acquiring the minimum amount of measurements to

recover a background and the test image, we can exploit the sparsity of the foreground to

perform background subtraction by using even fewer measurements (Md measurements

as opposed to Mb). We illustrated that due to the linear nature of the measurements, it is

still possible to adapt to the changes in the background directly in the compressive do-

main. In addition, it is possible to formulate an object detector. By exploiting sparsity in

background subtracted images in multi-view tracking and 3D reconstruction problems,

we can reduce sampling costs and alleviate communication and storage burdens while

obtaining comparable estimation performance.
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