48,331 research outputs found

    A formal soundness proof of region-based memory management for object-oriented paradigm.

    Get PDF
    Region-based memory management has been proposed as a viable alternative to garbage collection for real-time applications and embedded software. In our previous work we have developed a region type inference algorithm that provides an automatic compile-time region-based memory management for object-oriented paradigm. In this work we present a formal soundness proof of the region type system that is the target of our region inference. More precisely, we prove that the object-oriented programs accepted by our region type system achieve region-based memory management in a safe way. That means, the regions follow a stack-of-regions discipline and regions deallocation never create dangling references in the store and on the program stack. Our contribution is to provide a simple syntactic proof that is based on induction and follows the standard steps of a type safety proof. In contrast the previous safety proofs provided for other region type systems employ quite elaborate techniques

    Reusable Knowledge-based Components for Building Software Applications: A Knowledge Modelling Approach

    Get PDF
    In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach

    Simplifying the construction of domain-specific automatic programming systems: The NASA automated software development workstation project

    Get PDF
    An overview is presented of the Automated Software Development Workstation Project, an effort to explore knowledge-based approaches to increasing software productivity. The project focuses on applying the concept of domain specific automatic programming systems (D-SAPSs) to application domains at NASA's Johnson Space Center. A version of a D-SAPS developed in Phase 1 of the project for the domain of space station momentum management is described. How problems encountered during its implementation led researchers to concentrate on simplifying the process of building and extending such systems is discussed. Researchers propose to do this by attacking three observed bottlenecks in the D-SAPS development process through the increased automation of the acquisition of programming knowledge and the use of an object oriented development methodology at all stages of the program design. How these ideas are being implemented in the Bauhaus, a prototype workstation for D-SAPS development is discussed

    Amortised resource analysis for object-oriented programs

    Get PDF
    As software systems rise in size and complexity, the need for verifying some of their properties increases. One important property to be verified is the resource usage, i.e. how many resources the program will need for its execution, where resources include execution time, memory, power, etc. Resource usage analysis is important in many areas, in particular embedded systems and cloud computing. Thus, resource analysis has been widely researched and some different approaches to this have been proposed based in particular on recurrence solving, abstract interpretation and amortised analysis. In the amortised analysis technique, a nonnegative number, called potential, is assigned to a data structure. The amortised cost of operations is then defined by its actual cost plus the difference in potential of the data structure before and after performing the operation. Amortised analysis has been used for automatic resource analysis of functional and object-oriented programs. The potentials are defined using refined types and typing rules then ensure that potential and actual resource usage is accounted for correctly. The automatic inference of the potential functions can then be achieved by type inference. In the case of functional programs, the structure of the types is known. Thus, type inference can be reduced to solving linear arithmetic constraints. For object-oriented programs, however, the refined types are more complicated because of the general nature of objects: they can be used to define any data structure. Thus, the type inference must discover not only the potential functions for the data structure but also the data structures themselves. Other features of object-oriented programs that complicate the analysis are aliasing and imperative update. Hofmann and Jost presented in 2006 a type system for amortised heap-space analysis of object-oriented programs, called Resource Aware JAva (RAJA). However, they left the problem of type inference open. In this thesis we present a type inference algorithm for the RAJA system. We were able to reduce the type inference problem to the novel problem of satisfiability of arithmetic constraints over infinite trees and we developed a heuristic algorithm for satisfiability of these constraints. We proved the soundness of the type inference algorithm and developed an OCaml implementation and experimental evaluation that shows that we can compute linear upper-bounds to the heap-space requirements of many programs, including sorting algorithms for lists such as insertion sort and merge sort and also programs that contain different interacting objects that describe real-life scenarios like a bank account. Another contribution of this thesis is a type checking algorithm for the RAJA system that is useful for verifying the types discovered by the type inference by using the \emph{proof carrying code} technology
    corecore