5,838 research outputs found

    Object grouping in EOS

    Get PDF
    Projet RODINEos is an environment for building distributed object-based systems. Leos, the language for Eos, provides transparency for distribution and persistence. In this paper, we address the problem of declustering the object graph into a number of nodes and of locally clustering objects within pages with minimal impact on the programming process. We propose a grouping model which on the one hand achieves full transparency. The grouping is dynamically achieved by the run-time system as directed by user-provided hints. This dynamic object grouping copes automatically with evolutions of the object graph. The implementation incurs little overhead it is a side-effect of garbage collection. On the other hand, our model supplies Eos users with an explicit and fine control over data and computation placement so they can load balance the overall system

    What can quasi-periodic oscillations tell us about the structure of the corresponding compact objects?

    Full text link
    We show how one can estimate the multipole moments of the space-time, assuming that the quasi-periodic modulations of the X-ray flux (quasi-periodic oscillations), observed from accreting neutron stars or black holes, are due to orbital and precession frequencies (relativistic precession model). The precession frequencies Ωρ\Omega_{\rho} and Ωz\Omega_z can be expressed as expansions on the orbital frequency Ω\Omega, in which the moments enter the coefficients in a prescribed form. Thus, observations can be fitted to these expressions in order to evaluate the moments. If the compact object is a neutron star, constrains can be imposed on the equation of state. The same analysis can be used for black holes as a test for the validity of the no-hair theorem. Alternatively, instead of fitting for the moments, observations can be matched to frequencies calculated from analytic models that are produced so as to correspond to realistic neutron stars described by various equations of state. Observations can thus be used to constrain the equation of state and possibly other physical parameters (mass, rotation, quadrupole, etc.) Some distinctive features of the frequencies, which become evident by using the analytic models, are discussed.Comment: accepted in MNRAS; changes made to match version in prin

    Main Belt Asteroids with WISE/NEOWISE: Near-Infrared Albedos

    Get PDF
    We present revised near-infrared albedo fits of 2835 Main Belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. As our sample requires reflected light measurements, it undersamples small, low albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the Main Belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 um. Conversely, the 4.6 um albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 um albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 um albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are an important indicator of asteroid taxonomy and can identify interesting targets for spectroscopic followup.Comment: Accepted for publication in ApJ; full version of Table1 to be published electronically in the journa

    Shock Breakout in Core-Collapse Supernovae and its Neutrino Signature

    Get PDF
    (Abridged) We present results from dynamical models of core-collapse supernovae in one spatial dimension, employing a newly-developed Boltzmann neutrino radiation transport algorithm, coupled to Lagrangean hydrodynamics and a consistent high-density nuclear equation of state. We focus on shock breakout and its neutrino signature and follow the dynamical evolution of the cores of 11 M_sun, 15 M_sun, and 20 M_sun progenitors through collapse and the first 250 milliseconds after bounce. We examine the effects on the emergent neutrino spectra, light curves, and mix of species of artificial opacity changes, the number of energy groups, the weak magnetism/recoil corrections, nucleon-nucleon bremsstrahlung, neutrino-electron scattering, and the compressibility of nuclear matter. Furthermore, we present the first high-resolution look at the angular distribution of the neutrino radiation field both in the semi-transparent regime and at large radii and explore the accuracy with which our tangent-ray method tracks the free propagation of a pulse of radiation in a near vacuum. Finally, we fold the emergent neutrino spectra with the efficiencies and detection processes for a selection of modern underground neutrino observatories and argue that the prompt electron-neutrino breakout burst from the next galactic supernova is in principle observable and usefully diagnostic of fundamental collapse/supernova behavior. Though we are not in this study focusing on the supernova mechanism per se, our simulations support the theoretical conclusion (already reached by others) that spherical (1D) supernovae do not explode when good physics and transport methods are employed.Comment: 16 emulateapj pages, plus 24 postscript figures, accepted to The Astrophysical Journal; text revised; neutrino oscillation section expanded; Fig. 22 correcte

    MonetDB/XQuery: a fast XQuery processor powered by a relational engine

    Get PDF
    Relational XQuery systems try to re-use mature relational data management infrastructures to create fast and scalable XML database technology. This paper describes the main features, key contributions, and lessons learned while implementing such a system. Its architecture consists of (i) a range-based encoding of XML documents into relational tables, (ii) a compilation technique that translates XQuery into a basic relational algebra, (iii) a restricted (order) property-aware peephole relational query optimization strategy, and (iv) a mapping from XML update statements into relational updates. Thus, this system implements all essential XML database functionalities (rather than a single feature) such that we can learn from the full consequences of our architectural decisions. While implementing this system, we had to extend the state-of-the-art with a number of new technical contributions, such as loop-lifted staircase join and efficient relational query evaluation strategies for XQuery theta-joins with existential semantics. These contributions as well as the architectural lessons learned are also deemed valuable for other relational back-end engines. The performance and scalability of the resulting system is evaluated on the XMark benchmark up to data sizes of 11GB. The performance section also provides an extensive benchmark comparison of all major XMark results published previously, which confirm that the goal of purely relational XQuery processing, namely speed and scalability, was met
    corecore