9 research outputs found

    Autonomous detection of damage to multiple steel surfaces from 360° panoramas using deep neural networks

    Get PDF
    Structural health assessments are essential for infrastructure. By using an autonomous panorama vision‐based inspection system, the limitations of the human cost and safety factors of previously time‐consuming tasks have been overcome. The main damage detection challenges to panorama images are (1) the lack of annotated panorama defect image data, (2) detection in high‐resolution images, and (3) the inherent distortion disturbance for panorama images. In this paper, a new PAnoramic surface damage DEtection Network (PADENet) is presented to solve the challenges by (a) using an unmanned aerial vehicle to capture panoramic images and a distorted panoramic augmentation method to expand the panoramic dataset, (b) employing the proposed multiple projection methods to process high‐resolution images, and (c) modifying the faster region‐based convolutional neural network and training via transfer learning on VGG‐16, which improves the precision for detecting multiple types of damage in distortion. The results show that the proposed method is optimal for surface damage detection

    Object Pose Detection to Enable 3D Interaction from 2D Equirectangular Images in Mixed Reality Educational Settings

    Get PDF
    In this paper, we address the challenge of estimating the 6DoF pose of objects in 2D equirectangular images. This solution allows the transition to the objects’ 3D model from their current pose. In particular, it finds application in the educational use of 360° videos, where it enhances the learning experience of students by making it more engaging and immersive due to the possible interaction with 3D virtual models. We developed a general approach usable for any object and shape. The only requirement is to have an accurate CAD model, even without textures of the item, whose pose must be estimated. The developed pipeline has two main steps: vehicle segmentation from the image background and estimation of the vehicle pose. To accomplish the first task, we used deep learning methods, while for the second, we developed a 360° camera simulator in Unity to generate synthetic equirectangular images used for comparison. We conducted our tests using a miniature truck model whose CAD was at our disposal. The developed algorithm was tested using a metrological analysis applied to real data. The results showed a mean difference of 1.5° with a standard deviation of 1° from the ground truth data for rotations, and 1.4 cm with a standard deviation of 1.5 cm for translations over a research range of ±20° and ±20 cm, respectively

    Object Detection in Omnidirectional Images

    Get PDF
    Nowadays, computer vision (CV) is widely used to solve real-world problems, which pose increasingly higher challenges. In this context, the use of omnidirectional video in a growing number of applications, along with the fast development of Deep Learning (DL) algorithms for object detection, drives the need for further research to improve existing methods originally developed for conventional 2D planar images. However, the geometric distortion that common sphere-to-plane projections produce, mostly visible in objects near the poles, in addition to the lack of omnidirectional open-source labeled image datasets has made an accurate spherical image-based object detection algorithm a hard goal to achieve. This work is a contribution to develop datasets and machine learning models particularly suited for omnidirectional images, represented in planar format through the well-known Equirectangular Projection (ERP). To this aim, DL methods are explored to improve the detection of visual objects in omnidirectional images, by considering the inherent distortions of ERP. An experimental study was, firstly, carried out to find out whether the error rate and type of detection errors were related to the characteristics of ERP images. Such study revealed that the error rate of object detection using existing DL models with ERP images, actually, depends on the object spherical location in the image. Then, based on such findings, a new object detection framework is proposed to obtain a uniform error rate across the whole spherical image regions. The results show that the pre and post-processing stages of the implemented framework effectively contribute to reducing the performance dependency on the image region, evaluated by the above-mentioned metric
    corecore