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1 | INTRODUCTION

Summary

Structural health assessments are essential for infrastructure. By using an
autonomous panorama vision-based inspection system, the limitations of the human
cost and safety factors of previously time-consuming tasks have been overcome. The
main damage detection challenges to panorama images are (1) the lack of annotated
panorama defect image data, (2) detection in high-resolution images, and (3) the
inherent distortion disturbance for panorama images. In this paper, a new PAnoramic
surface damage DEtection Network (PADENet) is presented to solve the challenges
by (a) using an unmanned aerial vehicle (UAV) to capture panoramic images and
a distorted panoramic augmentation method to expand the panoramic dataset, (b)
employing the proposed multiple projection methods to process high-resolution
images, and (c) modifying the faster region-based convolutional neural network
(Faster R-CNN) and training via transfer learning on VGG-16, which improves the
precision for detecting multiple types of damage in distortion. The results show that

the proposed method is optimal for surface damage detection.

systems are vital to public safety and economy. The main-
stream approach of regular monitoring is primarily performed
through visual inspections by trained workers. However, eye-

Under harsh working environments, long-term utilization or
lack of maintenance, multiple regions of surface damage
appear and alert us to the life span, safety and workability
of civil infrastructures (Huang & Pan, 2015; Jiang & Adeli,
2010; Koch, Zhu, Paal, & Brilakis, 2015), as shown in Figure
1 . The visual changes on the surface of a civil infrastruc-
ture, such as cracks, exfoliation, efflorescence and corrosion,
reflect the structural health conditions by encoding damage
information (Chen & Perng, 2016; Cho, Chung, & Park, 2005;
Koch et al., 2014; Kumar, 2008). Note that visual inspection
is currently the principal approach for maintenance and assess-
ment. Therefore, the reliability and efficiency of inspection

based visual inspection is inefficient and experience-dependent
and can even be dangerous when the conditions of structures
are hazardous (Adeli & Jiang, 2008; Agnisarman, Lopes,
Madathil, Piratla, & Gramopadhye, 2019).

Hence, automatic visual inspection is highly desirable for
addressing the limitations of the human-based visual method.
Various approaches for efficiently assessing infrastructure
have been studied (Abdel-Qader, Abudayyeh, & Kelly, 2003;
Vaghefi et al., 2011). Most studies on damage detection focus
on image-processing techniques (IPTs)(Fan et al., 2019; Jiang
& Adeli, 2010; Uijlings, Van De Sande, Gevers, & Smeulders,
2013). With this type of computer vision-based method, some
specific types of damage, such as cracks, concrete spalling
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FIGURE 1 High-rise structure exhibiting apparent defects on
the surface after several years of outdoor service. (a) Infras-
tructure in good condition. (b) Infrastructure in poor condition
after several years of service.

and steel defects, can be detected (Abdel-Qader et al., 2003;
Chen & Perng, 2016). Furthermore, automatic damage detec-
tion algorithms have been successfully utilized in autonomous
moving platforms (Y.-F. Liu, Nie, Fan, & Liu, 2019; Morgen-
thal & Hallermann, 2014; Zhou, Li, & Cheng, 2005).

Although previous researchers have demonstrated various
methods for autonomous inspection (Ahmadlou & Adeli,
2010; Alam, Siddique, & Adeli, 2020; Pereira, Piteri, Souza,
Papa, & Adeli, 2020; Rafiei & Adeli, 2017a), the current
inspection approaches cannot be utilized to assess images
taken by panoramic cameras. Damage detection in 360°
images is challenging in three aspects. First, there are no public
panoramic datasets available. Previous researchers used their
own datasets to evaluate panoramic approaches (Deng, Zhu, &
Ren, 2017; Fan et al., 2019; Lenjani, Yeum, Dyke, & Bilio-
nis, 2020; Y. Li, Tong, et al., 2019). Second, the panoramic
pictures containing damage account for only a small fraction
of the images that are analyzed, which have cluttered back-
grounds (Cha, Choi, Suh, Mahmoudkhani, & Biiyiikoztiirk,
2018; Jang, An, Kim, & Cho, 2020; Zhang, Xiao, & Yang,
2017). Third, the dataset quality significantly depends on the
flight conditions and time of day. The season and weather also
influence the quality of the images taken by drones (Kang
& Cha, 2018). Therefore, visual inspection of the condition
of construction systems plays a crucial role in avoiding vital
accidents and ensuring safe construction operations.

In response to these challenges, we propose a method that
employs a deep neural network for detecting various damage
to multiscale steel surfaces in panoramic images.

The key technical contributions of this article are summa-
rized as follows:

(1) A highly efficient PAnoramic surface damage DEtection
Network (PADENet) is proposed for identifying multi-
ple types of high-rise infrastructure surface damage from
360° images. This design helps to localize defects at vari-
ous distortions and ensures a relatively high accuracy rate
while improving autonomous infrastructure assessment
efficiency.

(2) A distorted panoramic augmentation method is demon-
strated. We show how to efficiently extend the panoramic
image dataset and train the proposed method by transfer
learning and knowledge sharing. With an insufficient num-
ber of training images, the novel network can retain a high
accuracy with affordable computation costs.

(3) By using an unmanned aerial vehicle (UAV) equipped
with a panoramic camera, we present a real industrial
application scenario for our proposed method of detect-
ing multiple types of steel surface damage from theoreti-
cal and experimental perspectives. With our autonomous
steel defect detection and classification approach, workers
can prepare repair equipment effectively according to the
damage type.

To test the performance of the proposed neural network,
comprehensive validation tests are conducted. Using our col-
lected panoramic image dataset, we evaluate the proposed
method with state-of-the-art neural network object detection
algorithms. The results show that our approach has high steel
surface damage detection accuracy and reliably matches the
ground truth of damage classification.

2 | RELATED WORK
2.1 | Infrastructure surface damage inspection
using autonomous vehicles

To increase the frequency of structural health inspection while
decreasing the working time and improving the working envi-
ronment of human inspectors, autonomous moving platforms
have been widely applied to visual inspection tasks. Previ-
ously, the visual sensors explicitly designed for damage detec-
tion were heavy and large. Only unmanned ground vehicles
(UGVs) are capable of carrying these devices to assessment
locations. Many successful applications of UGVs have been
performed, such as (Dueholm, Kristoffersen, Satzoda, Moes-
lund, & Trivedi, 2016).

However, due to the restrictions of movement, there are still
many places that UGVs cannot reach. For example, it is chal-
lenging to assess surface health conditions of tall civil struc-
tures, bridges, and storage areas with narrow paths without the
aid of specially designed inspection equipment. Additionally,
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remarkable progress has been made in flying platforms such as
UAVs in recent years. Because UAVs can be deployed in iso-
lated or hazardous sites, these vehicles are increasingly used
for automotive visual inspection works.

2.2 | Panoramic image dataset of
infrastructure surface damage

Recent automotive visual inspection works, such as damage
detection, corrosion segmentation, stereo-road inspection, and
monocular depth estimation, have mainly focused on the study
of downward- and forward-facing platform-mounted vision
sensors. To be able to cover the entire assessment area, an
inspector needs to plan a go-return routine for UAVs due to
the limitation of the view angle of the camera. This require-
ment severely increases the inspection time and decreases the
efficiency of an autonomous assessment system.

To overcome the potential effects of the limited view angle,
future autonomous inspection vehicles will require a 360°
inspection ability for reliability and efficiency across clustered
working environments. Equipped with panoramic visual sen-
sors, UAVs are able to detect damage in 360° without rotating
the cameras. With the recent advances in panoramic sensors,
UGVs equipped with digital cameras provide new choices for
infrastructure visual assessment, for example, as described in
(Bertozzi, Castangia, Cattani, Prioletti, & Versari, 2015; Y. Li,
Tong, et al., 2019). Although the aforementioned UGV-based
detection system can recognize multiple objects, annotated
360-degree datasets for damage detection are lacking. Addi-
tionally, UGVs cannot reach many locations, which are more
likely to be inaccessible for regular visual inspection. There-
fore, the use of UAVs for 360-degree visual inspection is
becoming increasingly important (Fan et al., 2019; Kang &
Cha, 2018).

2.3 | Deep neural network damage detection

Previous studies mainly used pre- and postprocessing meth-
ods to detect specific types of structural damage. For example,
Chun proposed a pavement crack detection algorithm that uses
a naive Bayes machine learning method (Chun, Hashimoto,
Kataoka, Kuramoto, & Ohga, 2015). Abdel-Qader showed
that fast Harr transfer (FHT) performed well for the detec-
tion of cracks in bridges (Abdel-Qader et al., 2003). A
nonlinear dynamics measure based on the fractal dimension
was validated for quantifying damage in high-rise buildings
(Amezquita-Sanchez & Adeli, 2015). Loosened bolts can be
detected by the methods proposed by German, Brilakis, &
DesRoches (2012). Potholes in asphalt pavement were ana-
lyzed in the work of Koch & Brilakis (2011). However, IPT-
based visual inspection methods can only detect one specific

type of damage, and noise in real applications, such as illu-
mination and distortion, greatly affects the detection results.
To optimize the robustness and diversity of IPT-based algo-
rithms in industry applications, machine learning approaches,
such as AdaBoost, the K-nearest neighbors algorithm and the
restricted Boltzmann machine, have been used to find the
desired solution for defect detection. For example, the deep
Boltzman machine was proposed to estimate concrete com-
pression strength based on mixture proportions, and the model
demonstrates more accurate results than the back-propagation
neural network and support vector machine methods (Rafiei,
Khushefati, Demirboga, & Adeli, 2017). To extract hidden
features in high-rise building structures, a neural dynamic clas-
sification algorithm was proposed to detect the global health
of the structure (Rafiei & Adeli, 2017b). The accuracy of this
method was tested in a 3D 1:20 scaled building structure,
and the results showed that this method improved the detec-
tion accuracy. However, these algorithms are suboptimal for
handling images with cluttered backgrounds.

The advent of deep learning approaches is promising for
addressing these limitations (Cha et al., 2018; Gao & Mos-
alam, 2018; Liang, 2019; Narazaki et al., 2020; Ni, Zhang,
& Chen, 2019; Rafiei & Adeli, 2018; Sajedi & Liang, 2020).
Convolutional neural networks (CNNSs) have attracted much
attention because they can detect multiple damage types (Ren,
He, Girshick, & Sun, 2015; Uijlings et al., 2013). CNNs have
been used to assess concrete cracks, road cracks and other
types of damage. Undeniably, these works achieve excellent
performance in real-world applications.

3 | METHODOLOGY

This section presents a novel three-step methodology for
detecting surface damage in panoramic images of tall struc-
tures. The first step includes the following tasks: (a) merging of
the front and back fisheye images into panoramic images and
(b) stereo-projection of the panoramic image into four subwin-
dows. The second step includes the following tasks: (a) transfer
learning, (b) region proposal network (RPN) training, and (c)
Fast R-CNN training. The third step includes the following
tasks: (a) bounding box alignment and (b) soft selection.

3.1 | Spherical panoramic to planar projection

Compared with traditional forward-facing planar images,
which record only a small portion of the 3D scene, panoramic
images capture all the virtual information of the surrounding
world. Panoramic images eliminate the need to take a series of
pictures at a 360° rotation.
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Panoramic vision sensors provide an ultrawide view of the
angle by bending the incident light. To use both the front
and back images at the same time, the two distorted spherical
images must be converted into an ordinary planar image, as
shown in Figure 2 .

FIGURE 2 Merging the front and back images into a 360°
panoramic image. (a) and (b) Original front and back fisheye
images, respectively. (c) Generated panoramic image.

In the tests, we use a circular fisheye projection model to
accomplish the equirectangular transfer tasks as illustrated in
Figure 3 . A fisheye transformation is necessary to obtain a
natural outcome. The algebraic form (Yang, Qian, Kamérii-
nen, Cricri, & Fan, 2018) of the fisheye projection can be
described as follows:

d+1 .
*» = 7T Reosig) (@)

ey
yo=—94*L  Rin)
7 d +Rcos(f)
where R denotes the spherical radius and d is the equirectan-
gular projection center.

3.2 | Multiple surface damage classifier

Faster R-CNN is the most popular detector for detecting and
localizing multiple types of surface damage (Girshick, 2015;
Ren et al., 2015). The architecture of this work is inspired by
Faster R-CNN, and its neural network is modified to automat-
ically identify surface defects in panoramas in our proposed
algorithm, which is explained in detail in the following section.

FIGURE 3 Fisheye projection (Yang et al., 2018).

3.2.1 | Layers in the deep learning model

The aforementioned Faster R-CNN is composed of an RPN
and a Fast R-CNN that share the same CNN to capture object
features. In this section, the main layer of the CNN, the con-
volutional layer, is presented. A convolutional layer performs
the convolution operation through an input array. Compared
with classical neural networks with full connectivity, the units
called the filter or kernel are sparsely connected. The convo-
lutional layer performs unit-by-unit multiplications between
the input array and the filter, where the filter slides across the
input array with a predefined step size of s. The number of
multiplication operators is significantly decreased by employ-
ing the aforementioned sparse connections. The rectified linear
unit (ReLU) is implemented after the convolution results. As
an activation function, the ReLLU facilitates faster computa-
tional speed than traditional functions such as sigmoid, tanh
and arctan.

To further reduce the spatial size of an input array, a max
pooling layer is usually added after ReLU processing. Max
pooling calculates the maximum value from an input array’s
subarrays. This process performs downsampling operations
that reduce the computational burden and achieve some spe-
cial functions, such as decreasing overfitting and reducing
distortion.

To classify the input array, a softmax layer is added to the
last layer of the neural network processing line. The softmax
layer normally takes features from a FC layer that connects to
all cells in the previous max pooling layer. The softmax layer
calculates the probabilities of the damage type and outputs the
strongest prediction.
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3.2.2 | Architecture of the region proposal
network

The goal of an RPN is to propose a region where an object
can be potentially located. As shown in Figure 4 , the RPN
takes input feature maps of any size and outputs a rectangu-
lar object proposal region. The RPN uses the aforementioned
shared CNN to extract a feature map and slide another convo-
lutional layer across the map. The RPN reshaping, followed by
the ReLU, is then used to feed the features into the regression
and softmax layers. Another key reason to use an RPN as the
backbone of our network is the advantage of weight knowledge
sharing between the RPN and the Fast R-CNN detector which
can reduce computational costs significantly (Cha et al., 2018)

cls layer

r
O[]

Sliding wipdow
———

Intermediate layer

NN \ 4k coordinates

\ N
N ~ reg layer
\ N
\ N
N
\ N
N N K anchor boxes

FIGURE 4 Architecture of the region proposal network.
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FIGURE 5 Multiprojection processing. (a) Generated 360°
panoramic image. (b-e¢) To compensate for the distortion in
stereographic projections, four stereographic images with 180°
horizontal and vertical spans are adopted.

TABLE 1 The detail specification of the proposed PADENet

layers.

Layer Type Depth  Size Stride Paddings
1 Convl_1 64 3 1 SAME
2 Convl_2 64 3 1 SAME
3 Max pooling1 64 2 2 VALID
4 Conv2_1 128 3 1 SAME
5 Conv2_2 128 3 1 SAME
6 Max pooling2 128 2 2 VALID
7 Conv3_1 256 3 1 SAME
8 Conv3_2 256 3 1 SAME
9 Conv3_3 256 3 1 SAME
10 Max pooling3 256 2 2 VALID
11 Conv4_1 512 3 1 SAME
12 Conv4_2 512 3 1 SAME
13 Conv4_3 512 3 1 SAME
14 Max pooling4 512 2 2 SAME
15 Conv5_1 512 3 1 SAME
16 Conv5_2 512 3 1 SAME
17 Conv5_3 512 3 1 SAME
18 Max pooling5 512 2 2 SAME
19 Conv6_1 512 3 1 SAME
20 Conv6_2 512 3 1 SAME
21 Conv6_3 512 3 1 SAME
22 Rol Pooling - - - -

23 Fully connected_1 4096 - - -

24 Dropout_1 - - - -

25 Fully connected_2 4096 - - -

26 Dropout_2 - - - -

27 Fully connected_3 5 - - -

26 Softmax & Regressor - - - -

TABLE 2 Specifications of the proposed RPN layers.

Layer Type Depth  Size Stride Paddings

1-13  Shared CNN layers - - - -
as shown in Table 1

14 Add_1 512 - - -
15 ConvRPNI_1 256 1 1 SAME
16 ConvRPNI1_2 512 3 1 SAME
17 ConvRPNI1_3 256 1 1 SAME
18 ConvRPNI1_4 512 3 1 SAME
19 ConvRPNI_5 54 1 1 VALID
20 RPN reshape_1 - - - -
21 Softmax & Regressor - - - -

3.3 | Architecture of the panoramic surface
damage detection network

Our goal is to propose a machine learning algorithm that can
process full panoramic images. By using panoramic images,
our method can detect surface defects in 360° from all angles.
Traditional methods are unable to detect distorted surface
defects. Inspired by the works of Wenyan Yang et al. (Yang,
Qian, Kidmériinen, Cricri, & Fan, 2018), we propose a multi-
projection approach with a Faster R-CNN-based PADENet to
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FIGURE 6 Schematic architecture of PADENet.

overcome the problem of distortion and conduct a structural
health assessment (Yang et al., 2018). In the multiprojection
step, to compensate for the distortion in stereographic pro-
jections, four stereographic images with 180° horizontal and
vertical spans, which means that the overlap between each
neighboring image in the horizontal direction is 90°, are used,
as shown in Figure 5 .

After the multiprojection step, each subwindow uses the
shared bottom layers to compute the feature maps and employs
PADENet to detect defects. The architecture of PADENet is
shown in Figure 6 . Three scale-sensitive Fast R-CNN net-
works are proposed to detect defects of different scales and
aspect ratios. In the case of long and thin defects, the region
of interest (Rol) pooling region likely has few pixels, which
makes these defects difficult to predict and classify. To over-
come this challenge, we adopt a straightforward strategy with
a multiscale region proposal network (M-RPN) to improve the
precision for long and thin defects. Based on their percent-
ages of coverage on the feature map, the groups are named
small, medium, and large. To generate feature maps for differ-
ent scales, the Conv6 module is added to VGG 16. Moreover,
feature fusion is adopted to improve the representation of the
feature maps. This process improves the detection precision for
multiscale images of defects with a complicated background
(R. Li, Yuan, Zhang, & Yuan, 2018; Ren et al., 2015).

Table 1 shows the details of the proposed PADENet’s lay-
ers. Additionally, one of the RPNs used in this study is shown
in Table 2 . The main difference among the three RPN is the
number of CNN layers shared with Fast R-CNN. RPN_2 shares
1-17 layers as shown in Table 1 , while RPN_3 shares 1-21
layers. The RPN aims to generate potential bounding boxes
for object detection, and it can influence the performance of

the detector significantly. Thus, in addition to Conv5, Conv6 is
added to generate more potential bounding boxes based on the
feature map, which contains more abstract or global features.
Moreover, Conv4 is also used to generate potential bounding
boxes based on the feature map, which contains more sim-
ple features. All of these bounding boxes proposed by the 3
RPNs will be processed by the RMS to generate more reli-
able bounding boxes compared to a single RPN. Additionally,
compared to Conv5, Conv6 has high convolutional layers and
contains more abstract (global) features. The high convolu-
tional layers will compress the features of small steel defects so
that these small defects are ignored by the detection network.
However, we still want to detect small steel defects. More-
over, receptive fields will also influence the performance of the
detector(Y. Li, Chen, Wang, & Zhang, 2019). ZFNet (Zeiler &
Fergus, 2014), VGGNet (Simonyan & Zisserman, 2014) and
ResNet (He, Zhang, Ren, & Sun, 2016) are popular backbones
for the detection of objects that have the same receptive field
of the last convolutional layer. Thus, we follow their structure
and use the outputs from Conv5 rather than Conv6 to maintain
the same receptive fields. Conv6 aims to generate a bounding
boxing at a different scale to improve the performance of the
detector. Padding is applied to the input image so that the input
image is fully covered by the filter, as indicated by "SAME".
When the stride is 1, the output data are the same size as the
input data. With the "VALID" indicator, there is no padding
applied to the input image. In this case, the filter stays at the
valid position inside the input image.

To obtain a well-trained CNN, a sufficient amount of train-
ing data is a prerequisite. However, a large annotated damage
dataset is difficult to obtain for this type of research due to
the human resource requirements needed for annotation (Bang,
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Park, Kim, & Kim, 2019). To accelerate the convergence of
the network and avoid overfitting the proposed method with a
limited amount of data, the transfer learning method is used to
pretrain the proposed CNN by using sufficient data from other
domains. Since there is no need to start from randomly initial-
ized neural network weights, CNNs with transfer learning have
been successfully used in the fields of construction tools, pave-
ment defect detection and plant disease detection (R. Li et al.,
2018; S. Li, Zhao, & Zhou, 2019).

4 | PROPOSED DATASET AND
IMPLEMENTATION DETAILS

4.1 | Building dataset

To develop a panoramic image dataset containing bar corro-
sion, fastener corrosion, nubby corrosion and exfoliation, 2270
images (with a resolution of 4992 x 2496 pixels) are collected
using a GoPro Fusion camera.

We mount the camera under the UAV as shown in Figure
7 and shoot six image bursts every two seconds. Images
are taken during spring and summer under various illumina-
tion conditions at midday and sunset times at three different
locations in an aging industrial factory that is equipped with
containers, an oil derrick, drilling equipment, a cabinet, trans-
mission lines and steel scaffolding located in Tsingtao, China.
The first location is an outside storage place near the seaside,
where the surface of gas/oil containers is much easier to be
damaged by wind erosion. The second location is an indus-
trial operation area with high construction devices. It provides
a complex building combination for our detection algorithm,
which includes an oil derrick, drilling equipment and a power
distribution cabinet. The third location is on the far side of the
factory, with an abundance of trees, bushes, transmission lines,
and an unattended steel scaffolding. The trees and bushes block
parts of the surface defects, and some of the leaves of the trees
have a similar color to the corrosion during autumn, which
are challenges to surface damage detection algorithms. The
attended devices can be employed as a platform that we can use
to apply artificial corrosion on surfaces in order to assess the
robustness of the steel surface defect detection algorithm. Con-
sidering that the classification performance may be affected by
the camera’s view angle, several images are taken from multi-
ple view angles. A damage region aspect ratio of less than 1:2
in the images is considered to be nubby corrosion. Corrosion
is treated as bar corrosion when the aspect ratio of the defect
region is more than 1:2. The fastener corrosion mainly includes
bolt and nut corrosion, and cracked coatings are treated as
exfoliation corrosion.

The ground truths of the captured images are annotated
manually using Labellmg software. These labels are saved as

TABLE 3 Numbers and Classification standard for steel sur-
face damage.

Classes Numbers Definition
Fastener 4,380 Bolt and nut corrosion
Exfoliation 3,160 Cracked coating
Nubby 5,270 Aspect ratio of less than 1:2
Bar 3,190 Aspect ratio of more than 1:2
@)
|-

FIGURE 7 Panoramic camera carried by a UAV to collect
surface data from tall structures. (a) A UAV with a panoramic
sensor is collecting high-altitude image data. (b) Enlarged
UAYV image that shows that a panoramic sensor is attached to
the landing structure of the UAV.

XML files in PASCAL VOC format (Everingham, Van Gool,
Williams, Winn, & Zisserman, 2010). In the labeling process,
a surface damage area smaller than 4 mm? is ignored because
very small amounts of damage are not harmful to structures,
and resources are not required to repair them at this stage.
For a deep neural network, the limited supply of 360° images
makes training a defect detector challenging. To effectively
use the collected images and decrease the probability of over-
fitting, we propose a distorted data augmentation method, as
shown in Figure 8 to increase the number of distorted train-
ing data. The database is further improved by an increase in the
amount of training data. We first fuse the fisheye images into
panoramic images. The objects at the bottom of the panoramic
images are more significantly distorted when passing through
the projection. Based on this characteristic, we generate dis-
torted objects through the projection procedure. We implement
an annotation tool in which the user is capable of changing
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FIGURE 8 Data augmentation procedure. (a) Original image.
(b) Horizontal movement for data augmentation.

the center of the field of view. During the annotation process,
the annotators are asked to rotate a random chosen defect to a
position near the center of the image.

The ground truths of the damage are annotated using Labe-
IImg software. Finally, after performing multiprojection pro-
cessing as shown in Figure 5 , the labels and bounding boxes
for 27,042 objects are specified in 16,000 images. A total of
16,000 images are divided into 12,800 images for training and
3,200 images for testing.

S | MODEL TRAINING

In the training procedure, the base layer is initialized with the
pretrained VGG (Simonyan & Zisserman, 2014) weights on
ImageNet (Krizhevsky, Sutskever, & Hinton, 2012) and the
transfer learning method described in Section 3.4 is carried
out. The multitask loss function used by PADENet to learn
defect region proposal classification is inspired by the work of
Ren et al. (2015), and it is shown as follows:

Lpspenet ({Pi} > {loci}) = N%lh Zi L (Pi’P}k>
+At X P} Lyeg (loc;, loc})

where i denotes the anchor number and p; indicates the defect
probability. If the anchor i is labeled positive, the ground
truth p¥ is marked as 1, and p is marked as 0 for a negative
anchor. The variables /oc; and loc are the vectors of the pre-
dicted bounding box and the ground truth region, respectively.
N, indicates the size of the minibatch, and N, denotes the
number of anchors. L, and L,,, are the classification and
regression losses, respectively.

(@)

The L, is calculated using the log loss function as follows:

Lo=-+ gXl-log (p(X,))+(1 = X,)-log (1-p (X))

3
and the L,,, can be denoted as follows:
2.
Loy () = { D80 - <!
1 — X,| — 0.5 otherwise
“4)

where X and X, represent the sample variables.

6 | EXPERIMENTS

6.1 | Testing, validation and results

A training process, as shown in Figure 9 , is implemented to
improve the generalization of PADENet. We take inspiration
from a previous study (Ren et al., 2015) for training the ini-
tialized weight and bias parameters. The initial learning rate is
set to 0.0002 with a weight decay of 0.0005 after 50,000 itera-
tions. All the described works are trained with TensorFlow on
a PC equipped with a Tesla V100 GPU and an Intel Xeon Gold
5120 CPU @ 2.20 GHz. It took 84 hours to train the PADENet

Test process flow diagram

Investigation . . .
Dataset PADENet Comparative study Further testing

Methods used:

i Fast R-CNN,
16,000 images: -aini 3
, B T a“.lmg-' YOLO and SSD. Novel
12,800 images o
27,042 objects in panoramic
. . Performance of images were
4 categories Testing: the Dataset: e
3,200 images

Cross-validation
assessment

FIGURE 9 Sample images taken in different conditions with
detection results and class labels. (a) Bar-corrosion detection.

with the set-up described in Section 3.3. The processing time
for obtaining the detection results is 103 ms per image.

In this study, a true-positive detection is achieved if the inter-
section over union (IoU) is over 50%, which is the ratio of
the overlap area between the suspicious zone and ground truth
zone. To evaluate the surface damage detection accuracy, we
apply the average precision (AP) and mean AP (mAP) as the
evaluation metrics, which is the same procedure applied in the
PASCAL VOC challenge. We record the AP and mAP for the
four types of damage. The IoU threshold is 0.5, and the training
step is 100,000.
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To ensure that PADENet can detect small-scale defects, each
panoramic image is separated into 4 subimages as described in
Section 3.3, and then each subimage is input into the network.
The outputs yield an mAP of 87.34% and APs of 92.41 88.36,
80.78, and 87.81 for fastener corrosion, exfoliation, bar cor-
rosion and nubby corrosion, respectively. The output images
are shown in Figure 10 . Images that include bar corrosion are
shown in Figure 10 al-a3. Here, different sizes of bar corro-
sion are successfully detected. One incident of misdetection is
shown in Figure 10 a3, and it may have been related to the
smaller area of corrosion relative to that in the training set.
Figure 10 b1-b3 includes images of multiple types of defects
under a complex background. The background includes simi-
lar colors to that of nubby corrosion and similar shapes to that
of bar corrosion. As we can see from the results, the majority
of defects are classified correctly and only one case of fastener
corrosion is classified as nubby corrosion. D efects under var-
ious lighting conditions are demonstrated in Figure 10 c1-c3.
Fastener corrosion under intense light is positively detected as
well as nubby corrosion on a foggy day.

There are 57 simple damaged areas, and three different types
are shown in Figure 10 . All the defect types in Figure 10 are
successfully indicated and classified. The predicted damage
bounding boxes match well with the ground truths.

6.2 | Comparative study with state-of-the-art
detectors

The performance of the proposed PADENet approach is com-
pared with that of different machine learning-based detectors.
Figure 11 shows the precision-recall (PR) curves of the
PADENet, Fast R-CNN(Girshick, 2015), you only look once
(YOLO) (Redmon & Farhadi, 2018) and single-shot detector
(SSD)(W. Liu et al., 2016) methods for the panoramic defect
dataset.

6.2.1 | Comparison of the methods on different
types of defects

Table 4 summarizes the testing results obtained using differ-
ent detection methods, and Table 5 demonstrates the average
GPU usage percentage in panoramic images. The effectiveness
of PADENet, Faster R-CNN, YOLO and SSD was evaluated
by comparing the networks trained with transfer learning. As
demonstrated in Table 4 , the detection results show that the
nubby corrosion and bar-corrosion performances are subopti-
mal due to the relatively small size of these defects, which are
easily blocked with trees and buildings.

Optimal results are obtained for fastener corrosion and exfo-
liation defects attributed to their large size, making them
difficult to block. PADENet achieves the best precision, fol-
lowed by YOLO. The mAP results of Fast R-CNN are lower

TABLE 4 mAP results for the evaluation of baseline surface

defects in panorama steel images with the PADENet, Fast R-
CNN, YOLO and SSD methods.

PADENet Fast R-CNN YOLO SSD
Fastener 92.41 82.83 85.16  86.63
Exfoliation 88.36 76.81 86.02 81.92
Nubby 87.81 81.21 8295 81.37
Bar 80.78 69.28 7547 72779
mAP 87.34 77.53 82.40 80.18

TABLE 5 Average GPU usage percentage in panoramic
images with the PADENet, Fast R-CNN, YOLO and SSD
methods.

PADENet
95

Fast R-CNN YOLO SSD
90 83 87

Percentage

than those of the others, which is possibly due to its shallow
backbone network and single-scale detection structure.

6.2.2 | Comparison of methods with different
detection approaches

Precision and recall concepts are adopted to compare the
performance of PADENet with that of other methods. The
precision was defined as the number of true positives (TPs)
divided by the sum of the TPs and false positives (FPs). The
recall is represented by the number of TPs divided by the sum
of TPs and false negatives (FNs), as shown in the following
equation:

TP TP )
TP+ FP TP+ FN

As demonstrated by the curves in Figure 11 , the PADENet
approach produces higher quality results than the other
approaches. These results suggest that the improvement in the
multiscale prediction strategy results in better performance.
Figure 12 presents the detection results of PADENet and the
original Faster R-CNN. One of the reasons for the variations
is that PADENet can obtain more useful information from
small-scale defects. PADENet fuses the features and proposes
potential defect areas at three different scales. The defect detec-
tion of other approaches degrades for relatively small training
instances.

Precision = , Recall =
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fastener-corrosion

FIGURE 10 Sample images taken in different conditions with detection results and class labels. (a) Bar-corrosion detection.
(b) Multitype defect detection. (c) Defects under various light conditions.

6.2.3 | Comparison of the method performance
in different seasons

The performance can be further explored by examining the
detection results in each season. The results show that defect
features can be easily affected by the season and dynamic
environmental illumination, as shown in Figure 13 .

The results illustrate that the detection performance
decreases as the leaves change in autumn. The obtained results
justify further development of the method for long-term detec-
tion requirements.

6.2.4 | Comparison of the methods using
cross-validation assessment

To ensure the credibility of the results, the performance of
the panoramic defect dataset must be determined by the 4-
fold cross-validation method. The cross-validation assessment
is repeated four times, with each of the four groups used only
one time as the validation data, and the results are shown in
Table 6 . The training images are randomly partitioned into
four equal-sized groups according to the 4-fold principle.

In general, the PADENet method offers advantages over the
other three detection methods, which can be explained in part
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FIGURE 11 PR curves of the 4 detection methods. The experiments are conducted on a PC equipped with a Tesla V100
graphic processing unit (GPU) and an Intel Xeon Gold 5120 CPU @ 2.20 GHz. As the results demonstrate, the PR curve of
PADENet is the outermost curve, showing that it has the best detection performance for steel surface damage detection.

TABLE 6 Performance of PADENet, Fast R-CNN, YOLO and SSD for the 4-fold validation assessment of the panoramic defect
dataset.

Test fold  Approach Average precision (%)
Exfoliation Fastener corrosion Nubby corrosion  Bar corrosion
1* fold PADENet 87.71 93.36 88.36 81.78
Fast R-CNN 77.31 82.37 80.51 71.12
YOLO 85.37 86.28 81.53 77.26
SSD 81.21 87.11 81.03 73.11
27 fold PADENet 88.64 92.38 87.41 78.89
Fast R-CNN 78.63 84.27 83.21 68.57
YOLO 84.25 85.81 83.12 76.82
SSD 82.81 86.21 82.32 72.12
374 fold PADENet 87.62 92.81 87.22 79.36
Fast R-CNN 76.08 83.12 80.97 67.91
YOLO 86.82 85.32 84.18 75.11
SSD 81.13 87.41 80.71 71.39
4'h fold PADENet 88.13 93.18 87.02 79.74
Fast R-CNN 72.23 82.45 81.43 68.22
YOLO 85.82 85.69 82.51 75.72
SSD 80.32 86.13 81.45 72.43
Average PADENet 88.03 92.93 87.50 79.94
Fast R-CNN 76.06 83.05 81.53 68.96
YOLO 85.57 85.78 82.84 76.23
SSD 81.37 86.72 81.38 72.26

by the different results obtained for defects with different fea- 6.3 | Test images with compound challenges
tures in each category. The implementation of the panoramic

. . . T th i f the trained PADENet, i
defect dataset is unbiased in most cases (Kumar, 2008). 0 assess the periormance ot Hie trane e, Images

with compound challenges are chosen for evaluation. The cho-
sen images contain some ambient disturbances, such as trees,
intense lights, shadows, fog, and unrelated buildings.
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FIGURE 12 Detection comparison between Faster R-CNN
and PADENet. (a) Small-scale defects cannot be detected by
Faster R-CNN. (b) PADENet can successfully detect small-
scale defects with the aid of the multiscale RPN.

FIGURE 13 Comparison of detection in different seasons and
under dynamic environmental illumination. (a) Defect detec-
tion results in spring/summer with a green leaf background. (b)
Defect detection results in autumn/winter with a yellow/brown
leaf background.

As shown in Figure 14 , the test results for the images with
cluttered backgrounds are suboptimal. All the defects in Figure
14 are successfully detected and classified. The results show
that all the damage is correctly detected under the disturbance
of a background with similar clutter. The defects in Figure
14 a-b were partially in shadows. The defects in Figure 14 ¢
have land with a similar color to corrosion as the background.
All the defects in Figure 14 d were also detected and classi-
fied without the effect of unrelated buildings. All defects are
successfully detected and classified.

6.4

Figure 15 presents detected faults and wrongly classified
results. The steel defect in Figure 15 a was correctly detected
as nubby corrosion but mislabeled as only one defect that is
supposed to be three defects. The rust stain between defects
may have caused PADENet to detect the three parts as an
entire single defect. In Figure 15 b, there is one instance of
fastener corrosion that is not detected. Since this image was
taken on a sunny day, the nondetected fastener was covered by

| Demonstration of misdetected defects

FIGURE 14 Images with compound challenges chosen for
the evaluations. (a-b) Defects are partially in shadows. (c) Land
with a similar color to corrosion. (d) Defects detected with
unrelated buildings as background.

the shadow from the infrastructure. The PADENet still can-
not distinguish the defect in low visibility. Figure 15 ¢ shows
another example that is misclassified by PADENet. The defects
in Figure 15 c are a group of small nubby corrosions. There
are many overlap areas between defects; therefore, it is diffi-
cult to label the border of each small defect clearly. We gave a
unique challenge to PADENet in Figure 15 d. We chose spe-
cial rust painting (QO1003, Q01004, Q01005, Q01006) from
the J.N.Model Pigment series to mimic the steel defects. As
the results presented in Figure 15d indicate, PADENet can suc-
cessfully detect the real nubby corrosion. Due to the texture
and color of model painting that are truly similar to the real
rust, the fake corrosions are faultily labeled by PADENet.

Considering that only through the visible light reflected
by the surface can the detection method tell the differences
between real steel defects and fake defects with similar colors
and textures, we plan to use hyperspectral sensors to overcome
this challenge in future work.

6.5 | Further testing on newly captured
panoramas

To further evaluate how well the trained PADENet detects
infrastructural defects, we arrange an additional 5 new tests
using novel 4992 x 2496 pixel panoramic images that have
not been previously used in the testing procedure. These new
images are taken by a UAV under various illumination situa-
tions.

Images that are not separated into subimages are evaluated.
As seen in Figure 16 , the majority of defects are correctly
detected, leaving only some small-scale damage unclassified.
This result shows that the performance of PADENet is better
than the performance of the original Faster R-CNN.
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FIGURE 15 Demonstration of misdetected defects. (a)
Defect mislabeled with only one damage. (b) One fastener
corrosion not being detected. (c) A group of small defects is
wrongly detected as two large groups. (d) Defects that mimic
rust are faultily labeled.

Sangs _Sonl,

FIGURE 16 An image not separated into subimages is eval-
uvated by PADENet. The majority of defects are correctly
detected, leaving only some small-scale damage unclassified.

In summary, PADENet successfully detects and classifies
all the different sizes and types of surface damage. PADENet
manages to perform effectively under the challenges of irreg-
ular topology and camera distortion.

7 | CONCLUSIONS

A surface damage detection method is proposed for detecting
four types of defects in 360 ° panoramas: bar corrosion, nubby
corrosion, fastener corrosion, and exfoliation. The panoramic
images required for the training and testing are taken by a
UAV equipped with a dual fisheye camera. The raw images
are horizontally flipped for data augmentation. Then, a total
of 16,000 images are divided into 12,800 images for training
and 3,200 images for testing. The robustness of the trained
PADENet is evaluated on 5 extra-large images with a reso-
lution of 4992x2496 pixels that are not used for the testing
procedure. The performance of the trained PADENet is further
compared with that of the Fast R-CNN, YOLO and SSD meth-
ods. We demonstrate that the AP ratings for the four damage

types (bar corrosion, fastener corrosion, nubby corrosion, and
exfoliation) are 80.78, 92.41, 87.81 and 88.36, respectively. In
addition, the 4-fold cross-validation method is used to assess
the panoramic dataset. The comparative study shows that the
proposed PADENet can provide optimal results, and large bias
errors do not occur in the panoramic dataset.

In general, the fact that the Faster R-CNN-based method can
detect damage features from a large number of training images
to train a reliable classifieris a very large advantage. How-
ever, this feature also limits the implementation of the Faster
R-CNN-based method due to the requirement of vast amounts
of training data.

In future detection tests, more samples with various kinds of
surface damage under different challenges will be captured and
added to the dataset. Additionally, more kinds of UAV plat-
forms with longer flight times and wider coverage ranges need
to be tested to improve the usage of autonomous systems to
replace human-oriented visual inspection assessments.
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