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Abstract: In this paper, we address the challenge of estimating the 6DoF pose of objects in 2D
equirectangular images. This solution allows the transition to the objects’ 3D model from their current
pose. In particular, it finds application in the educational use of 360° videos, where it enhances the
learning experience of students by making it more engaging and immersive due to the possible
interaction with 3D virtual models. We developed a general approach usable for any object and
shape. The only requirement is to have an accurate CAD model, even without textures of the item,
whose pose must be estimated. The developed pipeline has two main steps: vehicle segmentation
from the image background and estimation of the vehicle pose. To accomplish the first task, we
used deep learning methods, while for the second, we developed a 360° camera simulator in Unity
to generate synthetic equirectangular images used for comparison. We conducted our tests using
a miniature truck model whose CAD was at our disposal. The developed algorithm was tested
using a metrological analysis applied to real data. The results showed a mean difference of 1.5°
with a standard deviation of 1° from the ground truth data for rotations, and 1.4 cm with a standard
deviation of 1.5 cm for translations over a research range of ±20° and ±20 cm, respectively.

Keywords: image processing; 6DoF pose estimation; mixed reality; human empowerment;
educational setting

1. Introduction

Mixed Reality (MR) has the potential to increase the learning experiences in several
scenarios [1] such as industrial maintenance training [2,3]; in Industry 4.0, cyber-physical
engineering can be made experienceable and tangible [4]; construction training stressing
safety aspects using Augmented Virtuality to enhance hazard recognition [5,6]; and human-
ities disciplines such as history [7], medicine [8], public speaking [9], and others. In general,
MR technologies allow students to “visit” places, such as production plants, power plants,
mine sites, and plants for which special permits are mandatory. Moreover, there are often
limited resources for practical lessons in the education sector. MR technologies can help
to overcome these limits and improve learning. In Europe, there are already education
projects that propose this new paradigm, such as MiReBooks [10]. MiReBooks aims to
produce a series of Virtual Reality (VR) and Augmented Reality (AR) based interactive
mining handbooks as a new digital standard for higher mining education across Europe.
Current challenges in mining education are met in an innovative new way, combining
classical paper-based teaching materials with MR materials and their transformation into
pedagogically and didactically coherent MR handbooks for integrative classroom use [11].
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From a technological point of view, it is possible to use immersive solutions that
exploit VR gears that are able to display virtual environments augmented with real content,
a real environment fully reconstructed in 3D or, enabled by a modern high-resolution whole
field of view cameras—360° videos. A great effort is needed to accurately replicate real 3D
environments in virtual scenarios: acquiring 360° videos is a much simpler process. On the
other hand, 360° videos are not able to provide 3D perception.

For this reason, we propose a method to generate 2D to 3D transitions starting from
360° source equirectangular images: when an interaction with an object is needed, we can
propose to the user the 3D virtual model of the latter. To accomplish this, there is the need
to develop a robust algorithm capable of estimating the object’s pose inside the 360° frame.
6DoF estimation is one of the main challenging research topics in computer vision [12–14].

Specifically, in this study we present a novel pipeline whose aim is to infer the pose of a
vehicle given a single 2D equirectangular image. The proposed algorithms are described in
Section 5, and the experimental results are provided in Section 6. Although the exploitation
is very general, we furthermore demonstrate the application of our approach. Therefore,
in Section 2 we show the effects of human neuropsychological empowerment through MR,
and we provide an example implementation in Section 3, which demonstrates the proposed
pipeline for enabling 2D to 3D transitions in MR environments.

2. Human Neuropsychological Empowerment in Learning Scenarios through
Mixed Reality

While MR can enhance the human capabilities in several contexts such as clinics [15],
personalized support for mild cognitive impaired users in cooking [16], cognitive training
system for mild cognitive impairment [17], can enhance the human-robot interaction while
sharing the same virtual-real (mirrored) environment [18]. Regarding the interaction chan-
nel, MR can fully exploit a natural interface [19,20] while as input MR can exploit a wide set
of channels such as visual text, 2D, 3D, auditory, and kinesthetics [21]. In training, a recent
meta-analysis [22] shows that whether one trains in a virtual or a real setting, the results
are essentially equivalent. In teaching, MR can enhance the learner’s neuropsychological
functions during the comprehension and memorization of the educational concepts. More
specifically, in the following, we take into consideration the human perception-action loop
(interface and interaction modality) and the whole patterns of neuropsychological functions
highlighting the impact of each of them.

Regarding Orientation, immersive MR simulations allow the understanding of com-
plex 3D phenomena that would be difficult to comprehend through other media [23,24].
Collaborative MR can transmit procedural knowledge in manufacturing training almost
perfectly, replacing other forms of face-to-face training [25].

Regarding Attention, within MR, information can be spatially and temporally aligned
with physical items and the learners’ activities. This solves the problem of the human
brain, which has a limited capacity for processing information from sensory channels
(too much information results in cognitive overload/poor performances of the selective
function and thus poor quality in learning). In fact, in MR it is possible to enhance the
spatial and the temporal contiguity effect that makes students learn better when multiple
representations of the same information are presented closer in space rather than far apart
and/or when multiple representations of the same information are presented at the same
time, rather than separated in time [26]. This contextualizes the different information
content in an aggregated form within the learning scenario and uses different sensor
modalities such as auditory, visual, and tactile, which are processed in parallel within
our brain. Furthermore, the “digital augmentation” of reality can direct user attention
toward the relevant content. This mechanism effectively enhances learning tasks involving
visuospatial information. The system presented in [27] highlights organs to effectively
teach students about human anatomy.

Regarding Memory, an enhanced memory encoding is stimulated by the physical
immersion of MR experiences, and the fact that users interact with their senses, body,



Appl. Sci. 2022, 12, 5309 3 of 16

and limbs, which cause learners to encode sensing and proprioceptive information along
with the educational content [28].

Regarding Language, MR can leverage current translation technologies to temporally
align the verbal translated content to the user.

Regarding Visual perception, recent advances in display technologies are attempting
to fill the gap between the natural view and the one mediated by the display. This is not
the appropriate place to focus on this topic.

Regarding Motion planning and control, MR can increase depth perception as in [29]
where the perception of 3D obstacles is enhanced via 2D projection onto the ground plane
with perspective correction based on the subject’s head position. Another way MR can be of
benefit is augmenting user exproprioception. Visual exproprioception provides information
about the body position in relation to the environment, and it can yield positive effects
on position control and gait biomechanics in AR systems. As an example, in [30] an AR
application was implemented using Microsoft HoloLens. The experiment revealed that the
interface projected in front of the user (instead of the ground), and, from a third-person
point of view, improves posture, visual stimuli, and safety.

3. 2D to 3D Objects Transitioning and Its Use in MR Settings

The 360° cameras support capturing dynamic environments from a single point of
view. In addition, VR headsets enable viewing the captured environments by supporting
head rotations around all three axes. While this enables immersive experiences, the missing
translations may cause several perceptual issues [31], and it limits explorations to the
pre-defined viewpoint. To enable full 3D object explorations, we propose combining 2D
panoramic video data with renderings of registered 3D models. In addition, we propose
providing a transitional interface [32,33] for switching between the 2D and 3D data. Thus,
an essential requirement for a smooth transition is that the object must first be identified,
localized in 6DoF, and augmented with its 3D model when it transitions from video
to 3D. Then, after transitioning to the 3D virtual environment, the model can be freely
explored (Figure 1).

(a) (b)

(c) (d)

Figure 1. Transitioning from 2D video to the 3D virtual object: (a) 2D video. (b) Object replacement
after detection and localization. (c) Object rotating in front of the user viewpoint. (d) Digital
information contextualized with the vehicle model. The corresponding videos can be found here
(https://youtu.be/E1fwuexrCo0, accessed on 20 April 2022).

4. Related Work

6DoF pose estimation using RGB images involves different fields such as bin picking
problems [34], robot manipulation [35], autonomous vehicles [36], and MR applications [37].

 https://youtu.be/E1fwuexrCo0
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Usually, to accomplish this task, deep learning methods are used. One of the main
approaches to 6DoF pose estimation, as described in [38], is to decouple the translation
and the rotation estimation. The translation is estimated by localizing the centre of the
object in the image and predicting its distance from the camera. After that, the rotation is
estimated by regressing to a quaternion representation. A 6DoF Object detection system
with two stages is also proposed in [39]. A single Shot Multibox Detector (SSD) [40] extracts
the object bounding boxes and an Augmented AutoEncoder (AAE) estimates the object
rotation. Similar to the previous approach, DCS-PoseNet [41] uses a two-step process to
estimate 6DoF from 2D object bounding-boxes. First, the framework segments the object
from the cropped image, followed by predicting 6DoF pose using DSC-PoseNet, which
employs a differential renderer.

Some solutions try to regress rotation and translation simultaneously. For example,
6D-VNet [42] uses an end-to-end deep learning network to estimate the 6DoF pose of
vehicles. The network extends the Mask R-CNN object detector and takes its intermediate
outputs and further regresses for rotation and translation of the object in 3D space.

Other approaches instead try to solve a Perspective-n-Point problem [43]. For example,
the pose estimation method Pix2Pose [44] proposes a deep learning network to supplement
a 2D detection pipeline to enable pose estimation. It regresses pixel-wise 3D coordinates
from images using texture-less 3D models. The pixel-wise prediction is used to form 2D–3D
correspondences. Finally, the PnP algorithm can be applied.

In Ref. [45], the authors propose an extension of the EfficientDet architecture [46]
used for 2D object detection to predict the rotation and the translation of the object in the
3D space.

Most current works describe the problem statement and solution for regular RGB
images. The application of the algorithms of these works to equirectangular images is
tricky. The main reason is that equirectangular images present severe distortion and there
is a lack of training data related to these types of images. To the best of our knowledge,
some works try to perform 2D object detection in equirectangular images [47,48], but none
perform an estimate of the 6DoF pose.

For this reason, our work contributes moving toward objects pose estimation also for
this kind of images. Indeed, 360° videos are becoming more popular in the educational
context, as they provide students with a more engaging learning activity [49]. The method
presented in this paper shows an example of how this media, together with VR technolo-
gies, can create contemporary virtual learning environments, which enable students to
experience and interact with virtual content [50]. 360° videos, in contrast with 2D movies,
offer an immersive experience not only by giving the perception of being physically present
in a virtual environment but also allowing interaction with objects. This is only possible
when knowing the pose of the object with which we want to interact with inside the scene.

Our pipeline specifically solves the problem of 6DoF pose estimation for objects in
equirectangular images. Additionally, while other methods primarily rely on deep learning
models to perform the task, ours uses deep learning only for segmentation, which is the
first step. It then uses an optimization technique for pose estimation that does not require
a trained network and that can be applied with no effort to any type of object. Indeed,
a benefit of the proposed method, in comparison to the related works presented in this
section, is that there is no need to create a training dataset for the pose estimation, avoiding
a task that can be quite a time consuming and difficult in terms of the acquisition of the
ground truth pose, scalability, and full coverage of possible poses [51]. Other approaches
use synthetic data for the training to avoid the this cumbersome task [52,53]. However,
this method has the handicap of the gap domain between real and synthetic data [54]. To
resume, in comparison to the traditional methods, the object pose detection phase of our
method can be directly tested on the data that must be processed, ensuring a considerable
time saving.
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5. Algorithm Description

We can subdivide the developed algorithm into two main steps:

• Vehicle segmentation from the equirectangular image;
• Vehicle pose detection with respect to the camera reference frame (6DoF).

To accomplish the first task, we made use of Yolact++ [55], a convolutional model
for real-time instance segmentation. Yolact++ proved to be pretty accurate for the seg-
mentation of trucks, also in equirectangular images, in which the distortion is significant.
However, to make the vehicle segmentation more robust, we trained Yolact++ with 500
equirectangular images by manually labelling trucks in frames taken from 360° videos of
open-pit mining operations. Figure 2 shows the result of the trained Yolact++ model.

(a) (b)

Figure 2. The result of the trained convolutional model Yolact++ for an equirectangular image of a
truck. (a) An example of an input image showing a truck in a mining environment. (b) Result of the
segmentation in which the truck is correctly segmented.

The only requirement for the vehicle pose detection is to have an accurate CAD model
even without textures of the item, whose pose must be estimated. For the tests described in
this paper, we used the CAD model of a Komatsu HD785 truck. We used the CAD model
inside Unity 3D, a cross-platform game engine. In this case, we used Unity to create a
simulation environment. We implemented a 360° camera simulator in this environment to
capture equirectangular images of the CAD model.

Using the output given by Yolact++, we can perform the vehicle pose detection. To
accomplish this task, we developed the algorithm schematically described in Figure 3.

Figure 3. Scheme of the pose detection algorithm.

Through a connection based on the ZMQ protocol, we allow data exchange between
Unity and Matlab. We put the vehicle in a random pose inside Unity. Then we take a picture
of the scene using the 360° camera simulation. We will call this picture the synthetic image.
In Matlab, we compare this synthetic image with the output of Yolact++ (the segmented
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real-world image). A score is given for the similarity between the two pictures. A Particle
Swarm (PS) optimizer is in charge of finding the optimal solution. At each new iteration,
the algorithm sends a new pose to Unity. The 360° simulated camera takes a new picture,
and we repeat the previous steps until convergence or the maximum number of iterations
are reached.

Hereafter, the expression of the Cost Function (CF):

CF = SE + SA + SC + SV , (1)

where its terms depend on:

• Edges (SE);
• Area (SA);
• Difference in the centroids of the edges (SC);
• Difference in the eigen vectors of the edges (SV);

In the following subsections, we explain the various term of the cost function in detail.
It is important to highlight that the terms of the cost function also work for texture-less
objects because they mainly rely on shape features than on texture. To show the potential
of the developed algorithm, we choose to apply it to a vehicle model whose CAD was at
our disposal. The CAD model does not perfectly match the real object in every detail but
we will show that the results are accurate enough.

The real-world and synthetic images in Figure 4 are taken as an example to show the
computations made for the different terms of the cost function.

(a) (b)

Figure 4. Real-world and synthetic images taken as example to illustrate the different terms of the
cost function. (a) Real-world image. (b) Synthetic image.

5.1. Edges

The first term of the cost function is relative to edges. Using the “Canny” algorithm [56],
we computed the images of the edges of the real-world (Er) and synthetic image (Es). Since
a perfect correspondence between the CAD model and the actual vehicle is impossible, we
smoothed the edges of Es by applying a Gaussian filter with a standard deviation of 0.5. We
will call this last image Esg. The two images are then multiplied pixel by pixel, computing
Em as:

Em = Er · Esg. (2)

Figure 5 shows the images involved in the computation.
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(a) Er. (b) Es.

(c) Esg. (d) Em.

Figure 5. The images involved in the computation of the cost function term relative to edges. (a) Er,
edges of the real-world image. (b) Es, edges of the synthetic image. (c) Esg, edges of the synthetic
image after the Gaussian filter. (d) Em, pixel-wise multiplication between Er and Esg.

The score term is computed as follows:

SE = 1.0− nm

ns
, (3)

where nm and ns are the number of pixels of Em and Es, which are greater than zero.

5.2. Areas

The corresponding binary images (BWr and BWs) are computed from the real-world
and the synthetic ones. We call As the area of BWs, which is the number of pixels whose
value is greater than 0. A dilated version of BWs, called BWsd, is also computed using a
disk with a diameter of 7 pixels as the morphological structuring element. Let us indicate
with BWd the difference between BWsd and BWs:

BWd = BWsd − BWs. (4)

Ad is the area of BWd.
Now, it is possible to compute the images Ma and Md, i.e., the result of the pixel-wise

multiplication between BWr and BWs, and between BWr and BWd:

Mrs = BWr · BWs, (5)

Mrd = BWr · BWd. (6)

Figure 6 shows the images involved in the computations.
We can compute the score relative to the areas with the following equation:

SA = 1.0− Ars/As + Ard/Ad, (7)

where Ars and Ard are the corresponding areas of Mrs and Mrd.
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(a) BWr. (b) BWs.

(c) BWsd. (d) BWd.

(e) Mrs. (f) Mrd.

Figure 6. The images involved in the computation of the cost function term relative to the areas.
(a) BWr, binary image of the real-world image. (b) BWs, binary image of the synthetic image. (c) BWsd,
synthetic binary image dilated. (d) BWd, result of the subtraction between BWsd and BWs. (e) Mrs,
result of the multiplication between BWr and BWs. (f) Mrd, result of the multiplication between BWr

and BWd.

5.3. Difference in the Centroids of the Edges

This part of the cost function is in charge of computing the difference between the
centroids of the images Er and Em. The formula to compute the centroids of the images is
as follows:

xc =
∑N

i=1 I(xi, yi) · xi

∑N
i=1 I(xi, yi)

, (8)

yc =
∑N

i=1 I(xi, yi) · yi

∑N
i=1 I(xi, yi)

, (9)

where (xc, yc) are the coordinates of the centroid of the image I, N is the number of pixels
whose value is greater than 0, (xi, yi) are the general coordinates of the pixel i, and I(xi, yi)
is the grey value of the pixel in position (xi, yi).

The cost function term is computed as:

SC =

√
(xcr − xcm)2 + (ycr − ycm)2

√
R2 + C2

, (10)

where (xcr, ycr) and (xcm, ycm) are the coordinates of the centroids of Er and Em, and R and
C are the number of rows and columns of Er.
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5.4. Difference in the Eigen Vectors of the Edges

The last term of the cost function can be explained as a constraint for the edge matching
to be uniform on all the parts of the edge images, i.e., Er and Esg. To reach this aim, we can
arrange the image coordinates (xi, yi) of the pixels whose value is greater than 0 in a matrix
of dimension N × 2, where N is the number of pixels whose value is greater than 0. Then
we can compute the covariance matrices Cr and Cm of this matrix for Er and Em. Once Cr
and Cm are obtained, we can compute the eigenvectors for both. Let us call ~vr and ~vm the
two eigenvectors that correspond to the highest eigenvalue for Cr and Cm (Figure 7).

(a) Eigenvector representation of Er. (b) Eigenvector representation of Em.

Figure 7. Em and Er with their respective eigenvectors centred in the centroids of the two images. (a)
Er and its eigenvectors. (b) Em and its eigenvectors.

The cost function term is the dot product between ~vr and ~vm:

SV = 1.0− ~vr · ~vm. (11)

6. Results

Figure 8 shows the experimental setup used to test the developed algorithm. A 360°
camera, such as the Insta360 ONE X, is placed on a rotary stage which in turn is placed on
a translation stage. The camera frames a miniature model of a Komatsu HD785 truck.

Figure 8. Experimental setup to test the developed algorithm. A 360° camera is placed on a rotary
and a translation stage. The camera frames the miniature model of a truck.

We acquired 10 images by translating the translation stage 8 cm of each new acquisition,
and 11 images by rotating the camera 5° of each new acquisition (Figure 9).

Concerning the parameters used for the PS optimization, we set the swarm size to
150 and the maximum number of iterations to 75. The research range was set to ±20° for
rotations and to ±20 cm for translations. The initial pose conditions were set randomly
from nominal values within the imposed research ranges. The algorithm ran on an Intel(R)
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Core(TM) i7-9700KF CPU. The mean computational time to find the optimum was about
20 min.

Table 1 and Figure 10 show the results obtained for the imposed rotations.

Figure 9. Scheme of the rotations and translations imposed to the camera.

Table 1. Results obtained by the algorithm, applying a rotation of 5° at each step.

Nominal Angle [°] Measured Angle [°] Difference [°]

5.0 6.4 1.4
10.0 10.1 0.1
15.0 17.3 2.3
20.0 19.7 −0.3
25.0 26.3 1.3
30.0 31.0 1.0
35.0 37.0 2.0
40.0 41.9 1.9
45.0 48.2 3.2
50.0 52.1 2.1

0 5 10 15 20 25 30 35 40 45 50 55

imposed rotation [°]

0

5

10

15
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m
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Ground Truth

Algorithm

Figure 10. Comparison of the imposed rotations with the measured ones.
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Table 2 and Figure 11 show the results obtained for the imposed translations.

Table 2. Results obtained by the algorithm applying a translation of 8 cm at each step.

Nominal Translation [cm] Measured Translation [cm] Difference [cm]

8.0 8.4 0.4
16.0 16.0 0.0
24.0 24.9 0.9
32.0 32.9 0.9
40.0 40.8 0.8
48.0 49.0 1.0
56.0 57.1 1.1
64.0 67.9 3.9
72.0 76.0 4.0

0 8 16 24 32 40 48 56 64 72 80

imposed translation [cm]

0

8

16

24

32

40

48

56

64
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80

m
e
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u
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n
s
la

ti
o
n
 [
c
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]
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Algorithm

Figure 11. Comparison of the imposed translations with the measured ones.

Figure 12 shows an example of the results obtained; in this case the camera was rotated
by 15° with respect to the initial orientation.

(a) (b)

Figure 12. Cont.
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(c)

Figure 12. An example of the optimization result where the camera was rotated by 15°. (a) Portion of
the input equirectangular image taken by the 360° camera. (b) Result of the segmentation. (c) Opti-
mization result in which the CAD is rendered in the final pose found by the optimization algorithm.

7. Discussion

Results show that the developed algorithm achieved good results for both translations
and rotations. In particular, the maximum difference in the rotation estimation was 3.2°
for the nominal rotation of 45° (see Table 1). Figure 13 shows the optimization result for
this case.

(a) (b)

(c)

Figure 13. Optimization result where the camera was rotated by 45°. (a) Input equirectangular image
taken by the 360° camera. (b) Result of the segmentation. (c) Optimization result in which the CAD is
rendered in the final pose found by the optimization algorithm.

The mean difference for the rotation is 1.5°, while the standard deviation is 1.0°.
The maximum difference in the translation estimation was instead 4 cm for the nominal

translation of 72 cm (see Table 2). As shown in Figure 11, it seems that, at the increase of
the amount of the translation, the difference increases. Most likely, looking at Figure 14,
this is due to how the vehicle appears in the equirectangular image. In this case, the vehicle
appears quite far and small translations cannot be appreciated from the image point of
view. Indeed, also in this case, at least visually, the difference between the real world and
the synthetic image does not seem to be relevant (Figure 14).
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(a) (b)

(c)

Figure 14. Optimization result where the camera was translated by 72 cm. (a) Input equirectangular
image taken by the 360° camera. (b) Result of the segmentation. (c) Optimization result in which the
CAD is rendered in the final pose found by the optimization algorithm.

The mean difference for the translation is 1.4 cm, while the standard deviation is 1.5 cm.
The computational time of 20 min makes use of the proposed algorithm to be used offline.
However, in the case of a video, once the pose is estimated in the first frame, the search
field for the next frame is very limited because the vehicle will be in a pose very near to
one of the previous frames. This will speed up the elaboration and the pose detection.

8. Conclusions

We presented an innovative method to estimate the 6DoF pose of vehicles in equirect-
angular images. This method relies on deep learning methods only for the object seg-
mentation, while the pose is estimated through a cost function optimization. Only the
CAD model of the object is needed for this step even without textures for the nature of
the cost function used. This makes our method quite flexible to be applied to any kind of
object and lighting conditions due to the lack of colour-affected terms in the comparison
for pose estimation. We tested the results of our algorithm through an experimental setup,
comparing them to measured rotations and translations applied to the camera in the real
world. We obtained a maximum difference of 3.2° from the ground truth data for rotations,
and 4 cm for translations over a research range of ±20° and ±20 cm, respectively. Future
works will try to improve the computational time and reduce the pose detection error.
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