56 research outputs found

    Object's tracking by advection of a distance map

    Get PDF
    International audienceThis paper has two coupled objectives: estimating motion and tracking a given object on an image sequence. It relies on a data assimilation approach, that solves evolution equations of motion, those of image brightness, and those of the distance map modeling the object's boundary. The two last express the optical flow constraint, which assumes that image brightness and distance map are advected by velocity. The method assimilates contour points by an innovative approach combining two criteria. First, the boundary of the object should match contour points at acquisition dates; second, the control of the distance between each pixel and the object's boundary allows to better motion estimation on the whole domain. The method is tested on synthetic data and satellite acquisitions

    High resolution solar observations in the context of space weather prediction

    Get PDF
    Space weather has a great impact on the Earth and human life. It is important to study and monitor active regions on the solar surface and ultimately to predict space weather based on the Sun\u27s activity. In this study, a system that uses the full power of speckle masking imaging by parallel processing to obtain high-spatial resolution images of the solar surface in near real-time has been developed and built. The application of this system greatly improves the ability to monitor the evolution of solar active regions and to predict the adverse effects of space weather. The data obtained by this system have also been used to study fine structures on the solar surface and their effects on the upper solar atmosphere. A solar active region has been studied using high resolution data obtained by speckle masking imaging. Evolution of a pore in an active region presented. Formation of a rudimentary penumbra is studied. The effects of the change of the magnetic fields on the upper level atmosphere is discussed. Coronal Mass Ejections (CMEs) have a great impact on space weather. To study the relationship between CMEs and filament disappearance, a list of 431 filament and prominence disappearance events has been compiled. Comparison of this list with CME data obtained by satellite has shown that most filament disappearances seem to have no corresponding CME events. Even for the limb events, only thirty percent of filament disappearances are associated with CMEs. A CME event that was observed on March 20, 2000 has been studied in detail. This event did not show the three-parts structure of typical CMEs. The kinematical and morphological properties of this event were examined

    Three-dimensional user interfaces for scientific visualization

    Get PDF
    The focus of this grant was to experiment with novel user interfaces for scientific visualization applications using both desktop and virtual reality (VR) systems, and thus to advance the state of the art of user interface technology for this domain. This technology has been transferred to NASA via periodic status reports and papers relating to this grant that have been published in conference proceedings. This final report summarizes the research completed over the past three years, and subsumes all prior reports

    Assessment of the visibility impairment caused by the emissions from the proposed power plant at Boron, California

    Get PDF
    The current atmospheric conditions and visibility were modeled, and the effect of the power plant effluent was then added to determine its influence upon the prevailing visibility; the actual reduction in visibility being a function of meteorological conditions and observer-plume-target geometry. In the cases investigated, the perceptibility of a target was reduced by a minimum of 10 percent and a maximum of 100 percent. This significant visual impact would occur 40 days per year in the Edwards area with meteorological conditions such as to cause some visual impact 80 days per year

    Quantifying Antarctic icebergs and their melting in the ocean.

    Get PDF
    From the Antarctic Ice Sheet calves every year into the Southern Ocean, an average of 2000 km3 of icebergs. The meltwater is spread over a large area in the Southern Ocean but the large temporal variability in iceberg calving and the clustering of iceberg distribution means that meltwater injection can be locally very high. This study quantifies iceberg distribution, movement and melting using remote sensing observations and modelling. Icebergs were detected and tracked on Synthetic Aperture Radar images using a new computer-based iceberg detection method. The method allows an efficient and systematic processing of large volumes of SAR images, necessary to build a climatology of icebergs in the Southern Ocean. Tests were conducted using ground data from a field campaign and against manual image classification. The method was applied to several SAR image collections, namely the RADARS AT RAMP mosaic for the totality of coastal Antarctica, providing the first picture of iceberg distribution over such a large area. Giant icebergs (icebergs above 100 km2 in area) were shown to carry over half the total mass of the Antarctic iceberg population. Estimates of the spatial distribution of giant iceberg melting over the ocean were made using observed tracks and modelling the melting and spreading along its path. The modelling of basal melting was tested using ICESat laser altimetry to measure the reduction in the freeboard of three giant icebergs in the Ross. The distribution of meltwater for giant icebergs was combined with an existing simulation of meltwater distribution from smaller icebergs to produce the first map of total iceberg meltwater for the Southern Ocean. The iceberg contribution to the freshwater flux is shown to be relevant to both the Weddell Sea and the Southern Ocean south of the Polar Front

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    Proceedings of the Augmented VIsual Display (AVID) Research Workshop

    Get PDF
    The papers, abstracts, and presentations were presented at a three day workshop focused on sensor modeling and simulation, and image enhancement, processing, and fusion. The technical sessions emphasized how sensor technology can be used to create visual imagery adequate for aircraft control and operations. Participants from industry, government, and academic laboratories contributed to panels on Sensor Systems, Sensor Modeling, Sensor Fusion, Image Processing (Computer and Human Vision), and Image Evaluation and Metrics

    St. Lawrence Island polynya: Ice circulation and dense water production

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 1999The St. Lawrence Island polynya (SLIP) opens every winter off the coast of St. Lawrence Island as winds move ice away from the shore. The SLIP is an important site for production of the dense water that flows northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter 1991/1992 ERS-1 SAR, thermal infrared, and passive microwave imagery are analyzed in combination with regional climate system and analytical simulations to investigate SLIP ice circulation, heat fluxes, and dense water production. Emphasis is on the February 1992 southern SLIP event. Satellite-based measurements show this polynya extended ~165km offshore and ~100km along shore at maximum extent. ERS-1 SAR GPS-derived ice motion indicated maximum ice speeds of ~30km day -1 during polynya expansion. Ice along the polynya boundary drifted parallel to the wind at 3--4% of the wind speed during north/northeasterly winds >7m s-1 Heat fluxes associated with the SLIP varied depending on method of calculation, but indicated increasing trends during polynya development. Associated ice production rates of 4.218.9cm day-1 were computed via different models. Dense water production, derived from ice production rates and polynya size, ranged from 0.011--0.017Sv, suggesting that the SLIP could account for 19--27% of the Bering Sea's contribution and 1--2% of the total Arctic contribution to Arctic Ocean halocline maintenance. Although the regional climate system model generated the SLIP on the same time scales as observed, a larger polynya resulted. The simulated polynya's heat and moisture impact was observed to at least 800mb, reaching 50km downstream. During periods of sustained winds, ice circulation was similar to that observed. Incorporation of a "barotropic" ocean component suggested that ocean circulation may be an important ice circulation forcing mechanism at the SLIP, especially during periods of weak winds, as inclusion greatly improved the simulated ice circulation. The "barotropic" ocean also improved polynya shape and extent. If regional climate changes alter the existence of polynyas like the SLIP, changes in the Arctic Ocean halocline might occur. Additional in situ observations and better fully-coupled atmosphere-ice-ocean models are needed to further ascertain the impact of polynyas on the overall Arctic climate system
    corecore