27 research outputs found

    Augmented lifecycle space for traceability and consistency enhancement

    Get PDF

    Towards a method to quantitatively measure toolchain interoperability in the engineering lifecycle: A case study of digital hardware design

    Get PDF
    The engineering lifecycle of cyber-physical systems is becoming more challenging than ever. Multiple engineering disciplines must be orchestrated to produce both a virtual and physical version of the system. Each engineering discipline makes use of their own methods and tools generating different types of work products that must be consistently linked together and reused throughout the lifecycle. Requirements, logical/descriptive and physical/analytical models, 3D designs, test case descriptions, product lines, ontologies, evidence argumentations, and many other work products are continuously being produced and integrated to implement the technical engineering and technical management processes established in standards such as the ISO/IEC/IEEE 15288:2015 "Systems and software engineering-System life cycle processes". Toolchains are then created as a set of collaborative tools to provide an executable version of the required technical processes. In this engineering environment, there is a need for technical interoperability enabling tools to easily exchange data and invoke operations among them under different protocols, formats, and schemas. However, this automation of tasks and lifecycle processes does not come free of charge. Although enterprise integration patterns, shared and standardized data schemas and business process management tools are being used to implement toolchains, the reality shows that in many cases, the integration of tools within a toolchain is implemented through point-to-point connectors or applying some architectural style such as a communication bus to ease data exchange and to invoke operations. In this context, the ability to measure the current and expected degree of interoperability becomes relevant: 1) to understand the implications of defining a toolchain (need of different protocols, formats, schemas and tool interconnections) and 2) to measure the effort to implement the desired toolchain. To improve the management of the engineering lifecycle, a method is defined: 1) to measure the degree of interoperability within a technical engineering process implemented with a toolchain and 2) to estimate the effort to transition from an existing toolchain to another. A case study in the field of digital hardware design comprising 6 different technical engineering processes and 7 domain engineering tools is conducted to demonstrate and validate the proposed method.The work leading to these results has received funding from the H2020-ECSEL Joint Undertaking (JU) under grant agreement No 826452-“Arrowhead Tools for Engineering of Digitalisation Solutions” and from specific national programs and/or funding authorities. Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2023)

    Enhanced traceability and consistency with Augmented Lifecycle Space

    Get PDF

    Semantically valid integration of development processes and toolchains

    Get PDF
    As an indispensable component of today’s world economy and an increasing success factor in production and other processes, as well as products, software needs to handle a growing number of specific requirements and influencing factors that are driven by globalization. Two common success factors in the domain of Software Systems Engineering are standardized software development processes and process-supported toolchains. Development processes should be formally integrated with toolchains. The sequence and the results of toolchains must also be validated with the specifications of the development process on several levels. The outcome of a conceptual deductive analysis is that there is neither a formal general mapping nor a generally accepted validation mechanism for the challenges that such an integrated concept faces. To close this research gap, this paper focuses on the core issue of the integration of development processes and toolchains in order to create benefits for modeling and automatization in the domain of systems engineering. Therefore, it describes a self-developed integration approach related to the recently introduced prototypical technical implementation TOPWATER. A unified metamodel specifies how processes and toolchains are linked by a general mapping mechanism that considers test options for the structural, content, and semantic levels

    APPLICATIONS OF GRAPH THEORY FOR REUSE OF MODEL BASED SYSTEMS ENGINEERING DESIGN DATA

    Get PDF
    This dissertation contributes to systems engineering (SE) by introducing and demonstrating a novel graph-based design repository (GBDR) tool. GBDR enables engineers to leverage system design information from a heterogenous set of system models created using multiple model based systems engineering (MBSE) software tools as an integrated body of knowledge. Specifically, the research provides a set of approaches that allow the use of system models described in Systems Modeling Language and Lifecycle Modeling Language as an integrated body of design information. The coalesced body of system design information serves to support concept ideation and analysis within SE. The research accomplishes this by using a graph database to store system model information imported from digital artifacts created by MBSE tools and applying principles from graph theory and semantic web technologies to identify likely connections and equivalent concepts across system models, modeling languages, and metamodels. The research demonstrates that the presented tool can import, store, synthesize, search, display, distribute, and export information from multiple MBSE tools. As a practical demonstration, feasible subsystem design alternatives for a small unmanned aircraft system government reference architecture are identified from within a set of existing system models.OSD CAPECivilian, Office of the Secretary of DefenseApproved for public release. Distribution is unlimited

    Development of a framework for enhancing resilience in the UK food and drink manufacturing sector

    Get PDF
    This thesis presents research undertaken to understand and enhance resilience in the UK Food and Drink Manufacturing Sector. It focuses on the development of a conceptual framework which establishes how specific vulnerabilities link to individual mitigation strategies available to the sector and the impact of such strategies on wider sustainability. The research in this thesis is divided into four main parts. The first part consists of three complementary review chapters exploring resilience as a theoretical concept, resilience in the UK Food and Drink Manufacturing sector and existing methods used to study and/or enhance resilience. The second part of the thesis begins by describing how the pragmatic philosophy and abductive stance underpinning the research, in combination with review findings, helped to determine the research techniques used in this work, which included the systematic review process and the mixed methods case study. Next, the research facilitating a novel conceptual framework describing how real-time vulnerabilities can be identified and mitigated in a way that is complimentary to the wider sustainability of the organisation is discussed. [Continues.

    Collaborative traceability management: a multiple case study from the perspectives of organization, process, and culture

    Get PDF
    Traceability is crucial for many activities in software and systems engineering including monitoring the development progress, and proving compliance with standards. In practice, the use and maintenance of trace links are challenging as artifacts undergo constant change, and development takes place in distributed scenarios with multiple collaborating stakeholders. Although traceability management in general has been addressed in previous studies, there is a need for empirical insights into the collaborative aspects of traceability management and how it is situated in existing development contexts. The study reported in this paper aims to close this gap by investigating the relation of collaboration and traceability management, based on an understanding of characteristics of the development effort. In our multiple exploratory case study, we conducted semi-structured interviews with 24 individuals from 15 industrial projects. We explored which challenges arise, how traceability management can support collaboration, how collaboration relates to traceability management approaches, and what characteristics of the development effort influence traceability management and collaboration. We found that practitioners struggle with the following challenges: (1) collaboration across team and tool boundaries, (2) conveying the benefits of traceability, and (3) traceability maintenance. If these challenges are addressed, we found that traceability can facilitate communication and knowledge management in distributed contexts. Moreover, there exist multiple approaches to traceability management with diverse collaboration approaches, i.e., requirements-centered, developer-driven, and mixed approaches. While traceability can be leveraged in software development with both agile and plan-driven paradigms, a certain level of rigor is needed to realize its benefits and overcome challenges. To support practitioners, we provide principles of collaborative traceability management. The main contribution of this paper is empirical evidence of how culture, processes, and organization impact traceability management and collaboration, and principles to support practitioners with collaborative traceability management. We show that collaboration and traceability management have the potential to be mutually beneficial—when investing in one, also the other one is positively affected

    Production Engineering and Management

    Get PDF
    The annual International Conference on Production Engineering and Management takes place for the sixth time his year, and can therefore be considered a well - established event that is the result of the joint effort of the OWL University of Applied Sciences and the University of Trieste. The conference has been established as an annual meeting under the Double Degree Master Program ‘Production Engineering and Management’ by the two partner universities. The main goal of the conference is to provide an opportunity for students, researchers and professionals from Germany, Italy and abroad, to meet and exchange information, discuss experiences, specific practices and technical solutions used in planning, design and management of production and service systems. In addition, the conference is a platform aimed at presenting research projects, introducing young academics to the tradition of Symposiums and promoting the exchange of ideas between the industry and the academy. Especially the contributions of successful graduates of the Double Degree Master Program ‘Production Engineering and Management’ and those of other postgraduate researchers from several European countries have been enforced. This year’s special focus is on Direct Digital Manufacturing in the context of Industry 4.0, a topic of great interest for the global industry. The concept is spreading, but the actual solutions must be presented in order to highlight the practical benefits to industry and customers. Indeed, as Henning Banthien, Secretary General of the German ‘Plattform Industrie 4.0’ project office, has recently remarked, “Industry 4.0 requires a close alliance amongst the private sector, academia, politics and trade unions” in order to be “translated into practice and be implemented now”. PEM 2016 takes place between September 29 and 30, 2016 at the OWL University of Applied Sciences in Lemgo. The program is defined by the Organizing and Scientific Committees and clustered into scientific sessions covering topics of main interest and importance to the participants of the conference. The scientific sessions deal with technical and engineering issues, as well as management topics, and include contributions by researchers from academia and industry. The extended abstracts and full papers of the contributions underwent a double - blind review process. The 24 accepted presentations are assigned, according to their subject, to one of the following sessions: ‘Direct Digital Manufacturing in the Context of Industry 4.0’, ‘Industrial Engineering and Lean Management’, ‘Management Techniques and Methodologies’, ‘Wood Processing Technologies and Furniture Production’ and ‘Innovation Techniques and Methodologies
    corecore