
Collaborative traceability management: a multiple case study from
the perspectives of organization, process, and culture

Downloaded from: https://research.chalmers.se, 2021-08-31 17:16 UTC

Citation for the original published paper (version of record):
Wohlrab, R., Knauss, E., Steghöfer, J. et al (2020)
Collaborative traceability management: a multiple case study from the perspectives of
organization, process, and culture
Requirements Engineering, 25(1): 21-45
http://dx.doi.org/10.1007/s00766-018-0306-1

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Vol.:(0123456789)1 3

Requirements Engineering (2020) 25:21–45 
https://doi.org/10.1007/s00766-018-0306-1

ORIGINAL ARTICLE

Collaborative traceability management: a multiple case study 
from the perspectives of organization, process, and culture

Rebekka Wohlrab1,2,3   · Eric Knauss1 · Jan‑Philipp Steghöfer1 · Salome Maro1 · Anthony Anjorin4 · 
Patrizio Pelliccione1,5

Received: 4 May 2018 / Accepted: 8 November 2018 / Published online: 21 November 2018 
© The Author(s) 2018

Abstract
Traceability is crucial for many activities in software and systems engineering including monitoring the development pro-
gress, and proving compliance with standards. In practice, the use and maintenance of trace links are challenging as artifacts 
undergo constant change, and development takes place in distributed scenarios with multiple collaborating stakeholders. 
Although traceability management in general has been addressed in previous studies, there is a need for empirical insights 
into the collaborative aspects of traceability management and how it is situated in existing development contexts. The study 
reported in this paper aims to close this gap by investigating the relation of collaboration and traceability management, based 
on an understanding of characteristics of the development effort. In our multiple exploratory case study, we conducted semi-
structured interviews with 24 individuals from 15 industrial projects. We explored which challenges arise, how traceability 
management can support collaboration, how collaboration relates to traceability management approaches, and what charac-
teristics of the development effort influence traceability management and collaboration. We found that practitioners struggle 
with the following challenges: (1) collaboration across team and tool boundaries, (2) conveying the benefits of traceability, 
and (3) traceability maintenance. If these challenges are addressed, we found that traceability can facilitate communication 
and knowledge management in distributed contexts. Moreover, there exist multiple approaches to traceability management 
with diverse collaboration approaches, i.e., requirements-centered, developer-driven, and mixed approaches. While trace-
ability can be leveraged in software development with both agile and plan-driven paradigms, a certain level of rigor is needed 
to realize its benefits and overcome challenges. To support practitioners, we provide principles of collaborative traceability 
management. The main contribution of this paper is empirical evidence of how culture, processes, and organization impact 
traceability management and collaboration, and principles to support practitioners with collaborative traceability manage-
ment. We show that collaboration and traceability management have the potential to be mutually beneficial—when investing 
in one, also the other one is positively affected.

Keywords  Traceability management · Collaboration · Software development processes · Multiple case study

 *	 Rebekka Wohlrab 
	 wohlrab@chalmers.se

	 Eric Knauss 
	 eric.knauss@cse.gu.se

	 Jan‑Philipp Steghöfer 
	 jan‑philipp.steghofer@cse.gu.se

	 Salome Maro 
	 salome.maro@cse.gu.se

	 Anthony Anjorin 
	 anthony.anjorin@upb.de

	 Patrizio Pelliccione 
	 patrizio.pelliccione@cse.gu.se

1	 Chalmers University of Technology, Gothenburg, Sweden
2	 University of Gothenburg, Gothenburg, Sweden
3	 Systemite AB, Gothenburg, Sweden
4	 Paderborn University, Paderborn, Germany
5	 University of L’Aquila, L’Aquila, Italy

http://orcid.org/0000-0002-5449-7900
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-018-0306-1&domain=pdf


22	 Requirements Engineering (2020) 25:21–45

1 3

1  Introduction

Traceability helps practitioners manage increasingly com-
plex software projects in industry [19, 55], e.g., by support-
ing change impact analyses and monitoring connections 
between artifacts [20]. As a consequence, traceability posi-
tively impacts the development speed [29].

In this paper, we adopt Gotel et al.’s understanding of 
traceability [20]: Software traceability is the ability to cre-
ate and use links between artifacts. This allows, for instance, 
users of traceability to connect a requirement to its origin 
and to any other artifacts used in subsequent phases in the 
software lifecycle (e.g., its specification or affected lines of 
source code). These connections are called trace links and 
connect a source artifact to a target artifact. Different types 
of artifacts can be distinguished, e.g., a requirement, an ele-
ment in a model, a line of code, an issue in a bug tracking 
system, or the result of a test case. We define traceability 
management as the planning, organization, and coordination 
of all tasks concerned with traceability. This includes, for 
example, the creation, maintenance, and use of trace links.

Real-world industrial projects are characterized by stake-
holders with different backgrounds, working in distributed 
teams, at multiple locations [54]. One of the open challenges 
formulated by the traceability research community has been to 
achieve full traceability in large-scale development contexts, 
where multiple stakeholders are involved and collaborate 
across organizational borders [20]. At the same time, interest in 
collaborative software engineering and collaborative modeling 
is unabated (see, e.g., [15], which also mentions that traceabil-
ity is necessary in collaborative model-driven software engi-
neering), but has not been discussed in the context of traceabil-
ity yet. Our previous work [58] has focused on collaborative 
aspects of traceability management. We identified challenges 
that are related to the fact that multiple stakeholders need to 
work together to achieve traceability goals, often across tool 
and organizational boundaries. Apart from challenging factors, 
we also found that collaboration can be positively affected by 
traceability management and vice versa. This study extends 
the previous work toward a theory of collaborative traceability 
management. We investigate two additional research questions, 
create practical principles to support systematic collaborative 
traceability management, and provide a definition of collabora-
tive traceability management as follows: 

Collaborative traceability management is the collaborative 
planning, organization, and coordination of all tasks concerned 
with traceability in multi-person projects across organizational, 
discipline, or tool boundaries.

 Building on our previous work, we saw the importance to 
shed light on how collaborative aspects relate to how trace-
ability management is conducted in practical development 
environments. In this paper, we extend our previous findings 

on challenges of collaborative traceability management and 
effects of traceability management on collaboration [58], as 
phrased in the following research questions:

–	 RQ1: What are practitioners’ challenges with collabora-
tion in traceability management?

–	 RQ2: How can traceability management support collabo-
ration?

We found that RQ1 and RQ2, as the topic of collaborative 
traceability as a whole, need to be understood in the context 
of the used industrial traceability management approaches. 
Approaches to traceability management have been addressed 
by related work (e.g., [8, 47]), but never in relation to col-
laborative aspects:

–	 RQ3: How does collaboration relate to different 
approaches of traceability management?

Traceability is always integrated in and characterized by 
the context of the development effort, characterized by cul-
ture, organization, and processes. There exists related work 
focusing on processes and underlying paradigms (e.g., agile 
traceability management) [7, 13, 16], however, not focusing 
on how collaborative aspects of traceability management 
are influenced by characteristics of the development effort. 
For this reason, we specified our final research question as 
follows:

–	 RQ4: What characteristics of the development effort 
influence traceability management and collaboration?

This paper extends our previous contribution [58] signifi-
cantly: We investigate additional research questions (RQ3 
about current traceability approaches, and RQ4 about the 
influence of characteristics of the development effort on 
traceability management), discuss them in detail, and estab-
lish connections to research questions RQ1 and RQ2. We 
believe that providing additional information about trace-
ability management and collaboration approaches and 
characteristics of the development effort also improves the 
reproducibility of the study. Finally, we extend the discus-
sion of our previous findings focused on how our findings 
are compared to existing literature. Based on this additional 
material, also reflected in our discussion of related work, we 
draw conclusions about the implications of our findings for 
practitioners and researchers. Concretely, we create princi-
ples that support practitioners to conduct more systematic 
collaborative traceability management. We believe that this 
additional context increases the value of our findings toward 
a theory of collaborative traceability management.

We answered these research questions using an explora-
tory multiple case study. We conducted semi-structured 



23Requirements Engineering (2020) 25:21–45	

1 3

interviews with 24 practitioners from 15 industrial cases. 
Our study presents empirical evidence that is independent 
of any concrete tool solutions. We thus extend the current 
body of knowledge on traceability management with the fol-
lowing contributions:

–	 Challenges with collaboration in traceability manage-
ment based on RQ1.

–	 The positive effect of traceability on collaboration based 
on RQ2.

–	 An analysis of current traceability management 
approaches and their relation to collaboration, based on 
RQ3.

–	 Characteristics of the development effort that influence 
traceability management and collaboration, identified by 
investigating RQ4.

–	 Practical principles for collaborative traceability manage-
ment based on a discussion of our findings.

Based on this collaborative perspective on traceability, we 
suggest that future research focuses on the enabling potential 
of traceability. Our principles are a starting point for practi-
tioners and researchers to create more concrete practices. In 
particular, we recommend the development of tool features 
to share and discuss information about trace links, consider-
ing the issue of information overload so that users are not 
overwhelmed by the amount of information presented.

This paper is structured as follows: Sect.  2 presents 
related work. In Sect. 3, we describe our research method-
ology. Section 4 describes challenges (RQ1), and Sect. 5 the 
positive effects of traceability management on collaboration 
(RQ2). In Sect. 6, we elaborate on collaboration and cur-
rent traceability approaches (RQ3) and present the influence 
of development characteristics on traceability management 
and collaboration (RQ4) in Sect. 7. In Sect. 8, we discuss 
our findings with respect to related work and motivate our 
principles for collaborative traceability management. The 
principles are summarized together with implications for 
research and practice in Sect. 9. We conclude this paper and 
discuss future work in Sect. 10.

2 � Related work

In this section, we discuss three categories of related work: 
(1) empirical studies on general traceability approaches, (2) 
traceability in agile contexts, and (3) collaborative trace-
ability management.

2.1 � Empirical studies on traceability approaches

While a number of empirical studies have been published 
on traceability, few studies are aimed at describing the state 

of the practice of traceability and practical challenges in 
general. Most studies focus on validating specific technical 
approaches [1, 28, 53], or specific aspects of traceability 
such as assessment [43] and benefits of traceability [29].

Klimpke and Hildenbrand [25] conducted five interviews 
to identify how practitioners use traceability. The majority 
of the companies were “high-end users” of traceability, aim-
ing to support verification and to track project progress. In 
all five companies, traceability starts from the requirements 
level. In contrast, our study includes a significantly larger 
sample as well as a wider spectrum of roles. We found that 
while such requirements-centered approaches are common 
in practice, there also exist traceability approaches focusing 
on implementation artifacts such as issues and code changes.

Mäder et al. [30] identified four categories of traceability 
users: (1) the regulated group, where traceability is man-
dated by standards, (2) the sub-contractor group, which 
inherits traceability requirements passed from the companies 
they supply to, (3) the consultants, who design traceability 
strategies for their clients, and (4) the enthusiasts, who prac-
tice traceability not because it is mandatory but because they 
see its benefit. They conclude that there is a need for more 
guidance on traceability, better tools, and more empirical 
studies on how traceability is established and used in prac-
tice, especially across boundaries.

With respect to traceability goals, Bouillon et al.  [6] 
report traceability usage scenarios and conclude that trace-
ability is mainly used for tracking the origin and rationale of 
requirements, for tracking project progress, and for certifica-
tion. The authors also report on the use of trace links for col-
laboration: Trace links help to identify relevant stakeholders 
and notify them about changes.

Gotel et al. [18] collected data from more than 100 prac-
titioners focusing on the requirements traceability problem. 
Besides reporting on challenges, we also investigate detailed 
practices and their situatedness in development processes 
found within the companies. Ramesh [39] investigates how 
organizational, environmental, and technical factors influ-
ence requirements traceability practices. In his study, he 
distinguishes between high-end users and low-end users of 
traceability and gives a list of factors that affect traceabil-
ity and recommendations for how companies can transition 
from low-end to high-end traceability practices. While some 
traceability practices are reported, the rise of the agile para-
digm calls for a new study of these aspects.

Arkley and Riddle [2] investigate traceability challenges 
and conclude that it is essential to select appropriate roles 
for traceability management. Due to their knowledge of the 
system, developers are better suited to create high-quality 
links than, for example, separate quality assurance teams. 
However, while developers could create high-quality links, 
they often do not see the direct benefits of traceability. 
The authors suggest that organizations should ensure that 



24	 Requirements Engineering (2020) 25:21–45

1 3

goals and needs of developers are addressed in traceabil-
ity development contracts that define traceability manage-
ment of shared artifacts. The findings of our study suggest 
that the potential of using traceability for collaboration can 
in fact motivate developers to see a benefit of investing in 
traceability.

2.2 � Traceability in agile

As pointed out by Cleland-Huang [7], traceability in projects 
following agile methodologies is just as important as in non-
agile ones. The goals are essentially the same, but the avail-
able artifacts are different and some of the documentation 
that is enforced in non-agile projects to, e.g., prevent embel-
lishment, is omitted in favor of trust within the team and 
direct communication. Trace links commonly exist between 
requirements and test cases and can be accompanied by ref-
erences to code in commit messages and between require-
ments. Cleland-Huang also suggests a classification of agile 
projects [7] in (i) small-to-medium-sized agile projects, (ii) 
large-scale, distributed, or long-lived projects, and (iii) 
safety-critical projects. These classes differ in their trace-
ability needs and in the applicable techniques, e.g., relying 
only on direct communication is not feasible in large-scale 
distributed projects. In this paper, we not only investigate the 
impact of process on traceability, but also conduct a broader 
investigation on characteristics of the development process 
on collaboration and traceability management (RQ4).

Espinoza and Garbajosa expand on the idea of specific 
traceability concerns in agile projects [13] and argue that the 
lack of formal documentation and formal requirements calls 
for traceability practices that go beyond those of non-agile 
projects. Accordingly, the key is to closely connect require-
ments and tests via trace links. To do this, they propose a 
traceability information model, concrete roles involved in 
managing traceability, and rules that determine if and when 
links have to be established. According to our findings, 
even companies following more rigorous agile methodolo-
gies are not yet embracing such formally defined traceability 
approaches. However, the suggestions made by Espinoza 
and Garbajosa could be the basis for adopting traceability 
practices in such cases.

Gayer et al. [17] give a concrete example of integrating 
traceability in an agile context. In their example, trace links 
between different artifacts are established in a rigorous man-
ner (e.g., user stories, test cases, and architecture models). 
The authors argue that the time required to create trace links 
was offset by the benefits, including easier sprint planning 
as well as “a structured way to communicate requirements 
among stakeholder groups.” This corresponds to our findings 
that traceability can indeed be an enabler for collaboration.

Furtado and Zisman [16] focus on how traceability can 
help organizations transition to the agile paradigm. In 

particular, they argue that traceability can help to mitigate 
the typical lack of understanding of a project’s “high-level 
scope” or issues with control by management. Trace links 
between artifacts created following the plan-driven para-
digm and artifacts created following the agile paradigm 
can help to address these challenges. Our findings suggest 
additional traceability management-related differences and 
similarities between agile and “traditional” projects.

2.3 � Collaborative traceability management

The topic of traceability management can be targeted 
with different levels of human involvement. For instance, 
trace links can be automatically recovered, recommended 
by a classifier [42], or evolved over time using tool sup-
port [38]. However, it was found to be beneficial to also 
involve human decision making in trace link evolu-
tion [38]. An underlying issue is that practitioners are 
often hesitant because of the quality of automatically 
generated trace links—and “prefer no links at all to (pos-
sibly) inconsistent links” [31]. We found the importance 
of seeing traceability management as a collaborative effort 
of stakeholders who leverage it to support collaboration 
and create incentives for individuals to create, maintain, 
and use trace links together.

Demuth et al. [11] conducted a study on how to use trace-
ability for systems engineering to facilitate change notifica-
tion and consistency checking of artifacts. They describe 
how traceability can facilitate communication between 
departments enabling them to identify what artifacts and 
stakeholders will be affected by a change. According to the 
authors, the main challenge in providing traceability in such 
a scenario is the diversity of tools that complicates trace-
ability between artifacts stored in different tools.

With respect to tooling, Figueiredo et al. [14] describe a 
tool that facilitates collaboration in a distributed setting by 
identifying developers affected by a change via trace links. 
Helming et al. [21] present a tool that also uses trace links to 
notify users of changes; this technique is able to generate a 
lower number of relevant notifications compared to standard 
notification techniques by leveraging modifier, creator, and 
assign information. Strašunskas [56] discusses traceability 
in collaborative development environments with a strong 
focus on technical aspects such as how to version and store 
artifacts (including trace links). While Strašunskas focuses 
on how such artifacts can be edited in a collaborative envi-
ronment, our focus is on traceability practices and challenges 
in such environments. Cleland-Huang et al. [9] identify a 
need for further empirical studies that shed light on aspects 
of social collaboration tools and their impact on traceability 
management. This is related to our investigation of how col-
laboration is affected by traceability management.



25Requirements Engineering (2020) 25:21–45	

1 3

3 � Research methodology

Given that our research questions are of an exploratory 
nature and we did not know all relevant variables of the 
phenomenon before the study, we decided to conduct an 
exploratory multiple case study [12]. We opted for a multi-
ple case study to investigate the phenomenon from several 
angles. Data (source) triangulation, i.e., considering several 
sources, occasions, and individuals, helped us to mitigate 
common threats to validity, as discussed in Sect. 3.1.

Selection of participants As our study is widely explora-
tory, we relied on a multi-stage purposeful sampling strat-
egy [36]. As the research objective came up in a research 
project, we started with emergent sampling in this envi-
ronment. In parallel with conducting interviews, we then 
employed a maximum variation strategy to arrive at a broad 
sample. We considered different project sizes and durations, 
different domains, and different development paradigms. For 
example, we made sure that we had plan-driven and agile 

paradigms in the mix. We concluded with snowballing [4], 
asking interviewees to give us names of other potential sub-
jects, to find more similar cases within the variations. We 
asked the companies for interviews with individuals with 
different roles and at least one year of experience in the cur-
rent position. While this approach can lead to a variation in 
the number of interviewees per company, it gives us a broad 
and deep sampling of cases.

In total, 24 interviewees from 15 projects agreed to 
participate in our study. All projects belong to different 
companies, except for Case 5 and 13. Table 1 shows the 
selected cases, their countries (Sweden (SE) or Germany 
(DE)), their domains, characteristics of the project, dis-
tribution of sites, and the roles and experience of the 
interviewees.

Data collection We collected qualitative data using semi-
structured interviews  [35]. This form of data collection 
allowed us to guide the interviews’ flow, but allow a natural 

Table 1   Participating projects and interviewees in the case study

Case Country Domain Nr. of 
project 
members

Project duration Distribution of sites Interviewees

1 SE Embedded 10–30 3–4 years One local site Development Manager (3 years) 
Project Manager (13 years)

2 SE Electrical equipment ∼ 20 > 8 years of development Multiple int. sites Developer (10 years) Team 
Leader Development (> 10 
years) Project Manager (> 2 
years)

3 DE Automotive > 20 > 2 years Multiple int. sites Team Leader Subgroup (3 years)
4 DE Automotive ∼ 30 4 years Multiple nat. sites Quality Analyst (1 year)
5 SE Telecommunications 6–8 1.5 years One local site Project Manager (> 2 years) 

System Manager (12 years)
6 SE Automotive 15 2 years Multiple nat. sites Developer (3 years)
7 SE Automotive > 100 3 years Multiple nat. sites Software Architect (3 years)
8 SE Software development ∼ 4 < 6 months One local site Application Engineer (1.5 years) 

Chief Technical Officer (5 
years)

9 SE Industrial automation 25 < 1 year One local site Software Quality Manager (> 1 
year) Head of R&D (3 years)

10 DE Automotive 10–20 1–2 years Multiple int. sites Product Manager (14 years)
11 DE IT services 50 5 years of development Multiple int. sites Head of Development (9 years) 

Developer (8 years)
12 DE Banking self-service automa-

tion
10–50 6 months Multiple int. sites Head of Software Quality Assur-

ance (6 years) Head of Project 
Mgmt. Office (2.5 years)

13 SE Telecommunications 1–4 < 1 year Multiple int. sites Team Leader (2 years)
14 DE Automotive ≥ 100 2–3 years Multiple int. sites System Software Architect (8 

years)
15 DE Software development 20–40 6 months Multiple int. sites Quality Manager (> 1 year) 

Head of Test Management (5 
years)



26	 Requirements Engineering (2020) 25:21–45

1 3

development of the conversation. We prepared the inter-
views by creating an interview guide1 with both open-ended 
and specific questions. The interview guide was reviewed, 
tested, and refined using two pilot interviews. During the 
interviews, we used mirroring techniques [35], i.e., we para-
phrased and used the interviewees’ answers to pose subse-
quent questions.

We reserved a period of 11 weeks between October 2015 
and January 2016 for interviews, and the duration of inter-
views was between 45 and 120 min, with an average length 
of approximately 75 min. We started the interviews by ask-
ing for permission to record them. We obtained permission 
to record all interviews, and transcription of these record-
ings yielded 475 pages of transcribed text. A majority of the 
interviews were held in the interviewees’ native tongues.

Data analysis For the data analysis, we followed Cresswell’s 
approach [10] and adjusted it to our needs.2 The data analy-
sis involved studying and coding the collected data. Based 
on our main research questions, we identified central topics 
for this research and created a priori codes. We coded the 
interviews by reading the transcripts line by line and find-
ing appropriate codes for statements. We used an editing 
approach [45], starting with the “a priori” codes and creat-
ing new codes where new interesting topics came up. We 
continuously revised, merged, and split the codes.

In order to ensure consistency with the use and meanings 
of the codes, the data analysis was initially conducted by one 
of the researchers. As a next step, we conducted a coding 
workshop in a group to discuss the codes and their rela-
tionships. The final set of codes consists of approximately 
30–40% a priori codes. However, many initial codes evolved, 
and sub-codes were created. For example, the a priori code 
“Collaboration” was revised into ten sub-codes, in order to 
cover different collaborative aspects that were of interest to 
our interviewees.

These codes were grouped into candidate themes in our 
coding workshop and further explored by going back to the 
interview transcripts where needed. In several iterations, 
we refined the themes, created visuals, and documented our 
findings. Besides the interviewer and three senior research-
ers, the participants of this workshop included a representa-
tive of the interviewees who contributed with his industrial 
experience and helped to discuss implications for practi-
tioners. We used cross-case synthesis [46, p. 69] to identify 
differences between interview results from different cases.

Reporting and quality assurance of research findings Dur-
ing data analysis and reporting, we maintained a clear chain 
of evidence [45] to document our procedure and results, 
ensuring that they remain comprehensible for the reader. To 
reassess our research findings, we used a member checking 
technique to get feedback from our interviewees. We con-
tacted them with our reported research findings and asked 
them for their ideas and reflections. Member checking helps 
participants reflect on the findings and find ways to adapt 
their practices [50]. Our participants confirmed the research 
findings.

3.1 � Research validity

We discuss six categories of threats to validity in qualitative 
research presented by Maxwell [33, 34]:

Descriptive validity Although one cannot completely avoid 
this threat, member checking [50] is one way to mitigate 
descriptive validity. Moreover, it was helpful to create tran-
scripts to allow for a word-by-word analysis of the inter-
views. Aspects such as gestures, pauses, or irony were, 
however, not captured in the transcripts which might have 
resulted in misinterpretation of the statements. In cases of 
doubt, we therefore referred to the recordings to clarify con-
founding parts in the transcripts.

Interpretative validity At the beginning of the interviews, we 
ensured that there was a common understanding of the ter-
minology of traceability. Most interviews were conducted in 
the native language of the interviewees or with interviewees 
with an advanced level of English. While this helped prevent 
misunderstandings, we faced another difficulty: Selected 
quotes were translated from German to English. We tried 
to maintain the meaning of the translated statements in the 
translations and discussed critical parts with other research-
ers to mitigate the threat of translation inaccuracies.

Theoretical validity One threat of validity is the potential 
of interpreting data from a biased perspective because of 
preconceptions we built up during this study. We potentially 
interpreted data differently that were not in line with our 
preconceptions. Feedback from fellow researchers helped 
to mitigate this threat. We discussed our methods and find-
ings throughout the study and especially during the analysis.

Researcher bias When analyzing qualitative data, there is a 
threat of being biased by the researchers’ own background, 
values, and theories. However, in our study, we did not 
have any incentives to arrive at certain conclusions, which 
would have been different if we had evaluated a method or 
tool. Collecting feedback from fellow researchers helped to 2  For more details on our analysis method, see https​://www.dropb​

ox.com/s/rxzka​qfltt​rtr0y​/analy​sis_guide​.pdf?dl=0.

1  https​://www.dropb​ox.com/s/id51h​5hp2g​6bpez​/inter​view_guide​
.pdf?dl=0.

https://www.dropbox.com/s/rxzkaqflttrtr0y/analysis_guide.pdf?dl=0
https://www.dropbox.com/s/rxzkaqflttrtr0y/analysis_guide.pdf?dl=0
https://www.dropbox.com/s/id51h5hp2g6bpez/interview_guide.pdf?dl=0
https://www.dropbox.com/s/id51h5hp2g6bpez/interview_guide.pdf?dl=0


27Requirements Engineering (2020) 25:21–45	

1 3

mitigate this threat, as well as using member checking to 
collect feedback from interviewees.

Reactivity: A researcher always influences the setting of an 
interview [34]. The way questions are phrased and how one 
reacts to answers influence subsequent answers in the inter-
views. Formulating the questions as unbiased as possible 
and validating them in pilot interviews was one strategy to 
mitigate this. We could also identify misleading questions 
and find appropriate ways to react to (surprising) answers 
during the pilot interviews.

Generalizability: Generalizability is concerned with the 
transferability of our findings to other situations or cases 
than the ones we focused on in this case study [33]. The 
objective of qualitative research is to describe the particular 
cases rather than arriving at generalizable conclusions [10].

We were able to study the phenomenon traceability from 
different angles using triangulation [46]. There might, how-
ever, be a sampling bias as we asked for participants who 
were knowledgeable in the area of traceability and probably 
had a positive attitude toward the topic.

4 � Challenges: managing traceability 
collaboratively

In this section, we present challenges that interviewees 
reported and answer RQ1: What are practitioners’ chal-
lenges with collaboration in traceability management? Fig-
ure 1 shows an overview of our findings regarding RQ1 and 
RQ2. In this section, we present the challenges regarding 
(1) collaboration across boundaries (Sect. 4.1), (2) common 
goals and responsibilities (Sect. 4.2), and (3) collaborative 
trace link maintenance (Sect. 4.3).

4.1 � Collaboration across boundaries

The necessity of coordinating traceability management 
activities across disciplinary and tool boundaries greatly 
complicates traceability management.

4.1.1 � Collaboration with other departments

Most of our case companies are organized in separate depart-
ments, often grouped according to discipline. A discipline is 
an area of expertise on a specific topic related to engineer-
ing, including system, software, electrical and mechanical 
engineering, product management, and testing. Strategies for 
managing traceability are often limited to single disciplines. 
Case 14 was the only case with an end-to-end concept for 
traceability, allowing stakeholders to trace pre-requirements 
to all phases of development and testing. In general, our case 
companies struggle with establishing common practices in 
the complete organization. Our interviewees stated that they 
are commonly established in a more bottom-up fashion:

If we are talking about full traceability, from a require-
ment to the details in the code and the test case result, 
then this affects several phases of the development pro-
cess and several organizational units. [...] It requires 
a lot of power and energy, and good management, 
to set something like this up in a top-down fashion. 
And on the other hand, there are many smaller teams 
where approaches come up in a bottom-up way. [...] 
Of course, it can happen that something comes up here 
and something else there, and then these two are com-
peting solutions...
                                    (a product manager from Case 10)

Various interviewees stated that this is problematic in their 
companies. In Case 3, for example, it is possible to establish 
trace links, but their traceability practices are inconsistent:

You can create these links already now, but [our cur-
rent approach] is not consistent throughout the whole 
platform. Because I might draw links in one depart-
ment but in another department someone might not 
know what belongs to what...
                                    (a team leader from Case 3)

Complicating factors are more likely to show in global 
development settings and include different backgrounds, 
technical terms, and tools.

That’s why we have problems now, because the com-
munication isn’t so easy. When you have time differ-
ences and language and all these barriers to commu-
nicate.
                                    (a team leader from Case 2)

Fig. 1   Challenges and opportunities with collaborative traceability 
management



28	 Requirements Engineering (2020) 25:21–45

1 3

Especially, our interviewees from the automotive industry 
struggled with this challenge. In this domain, mechani-
cal, electrical, and software engineers develop one product 
together and have to find a common terminology for com-
munication. A developer from Case 6 stresses that because 
of these reasons, it is “harder to communicate efficiently and 
make all the developers work together.”

4.1.2 � Collaboration with external organizations

Besides tracing to artifacts from other departments, it is 
also challenging to coordinate traceability across company 
borders. In general, our case companies communicate with 
external organizations via e-mail and manually enter rel-
evant data into respective tools. Our cases have very lit-
tle support for traceability to external organizations. Two 
examples are Case 2 and Case 8 where trace links exist that 
point to bugs or issues reported by customers. In Case 14, 
customers report requirements which are then imported into 
their requirement management tool and can be pointed to by 
trace links. However, in case the customers’ requirements 
are updated, a new export and import are required. This can 
potentially result in inconsistencies as the trace links are not 
updated automatically.

Although tool boundaries are certainly a contributing fac-
tor, our findings indicate that collaboration with external 
organizations is still challenging even when all companies 
used the same tools. As the Head of Development from Case 
11 points out, one of the difficulties in this context is that 
suppliers collaborate with several customers and are not 
willing to adapt their traceability practices to particular cus-
tomers. Other issues are of legal and organizational nature.

4.1.3 � Collaboration across tool boundaries

Traceability across organizational borders is especially dif-
ficult because of the diversity of tools used in practice. In 
total, 14 of our 24 interviewees mentioned this issue. Insuf-
ficient tool integration complicates creating trace links 
between artifacts stored in different tools.

A (workaround) solution for this issue is the manual map-
ping of IDs, e.g., in Case 12 or Case 5. One solution used in 
Case 11 is to use code comments to reference requirements 
specifications with their version numbers.

4.2 � Common goals and responsibilities

Responsibilities of individuals need to be coordinated, and 
the benefit of traceability has to be seen. We found this 
to be challenging in practice, for reasons explained in the 
following.

4.2.1 � Benefits of traceability

Involved stakeholders need to be aware of the benefits of 
traceability to use it. When creating a trace link, the creator 
knows in what ways the source and target artifacts are con-
nected. As a development manager from Case 1 states, “it is 
just an overhead” if the creator does not reflect on the future 
benefit of trace links but only focuses on the effort when 
creating them. Because of this, an application engineer from 
Case 8 considers it one major challenge “to make people 
understand the benefit.”

The perceived overhead of traceability management is 
even higher when organizational or tool boundaries are 
involved. Several interviewees expressed the need for find-
ing a strong reason to make developers accept the poten-
tially high effort. The cost–benefit balance is important in 
all cases.

Throughout our study, we found only limited tool sup-
port for traceability management. Consequently, the use of 
traceability is difficult even if trace links are captured using 
a tool:

But that is the part where we need a better tool than we 
have now. Because you...All the information is there 
but it’s kind of hard to get a big picture, an overview.
                            (a development manager from Case 1)

Better tool support for using trace links would make the 
benefits of traceability more obvious. In Sect. 6.1, we pre-
sented the tasks for which trace links are used in practice. 
As mentioned before, many of these tasks are only partially 
supported by tools.

Another complicating factor mentioned by many inter-
viewees is that the creators of trace links are a different 
group than the stakeholders using the links. For instance, 
to allow a project manager from Case 2 to track the pro-
ject’s progress, trace links between implementation tasks 
and source code commits need to be created by developers. 
Other cases confirm this point:

In our case, the creators of the links, so the develop-
ers, actually complain a lot that they have to think of 
traceability. The people who really use it are support 
persons or project managers. So people from another 
team.
                                    (a change leader from Case 5)

The attitude of stakeholders is of great importance:

Some people say ‘I don’t care, [...] I’m just interested 
in doing my work, why do you bother me?’
(an application engineer from Case 8)

It can be concluded that stakeholders have to see the ben-
efit of traceability to accept the overhead of collabora-
tively working on them. Our findings suggest that this is 



29Requirements Engineering (2020) 25:21–45	

1 3

particularly difficult when effort and benefit are so unevenly 
distributed over different roles.

4.2.2 � Managing responsibilities

The organization of responsibilities for traceability man-
agement is done differently in the industrial cases. In the 
majority of the cases, a complete team is responsible for 
it. Traceability management is often ensured by checklists. 
Interviewees from four cases stated that traceability manage-
ment needs to be handled as part of the daily work of each 
stakeholders.

Tool support strongly influences the effort of traceability 
management. Case 5 uses a traceability matrix in a spread-
sheet where trace links are managed. Keeping the spread-
sheets up to date is a full-time job for one person. In Case 15, 
a quality manager performs frequent reviews of trace links. 
If needed, this person contacts other responsible people to 
update the links.

Traceability management was compared to the task of 
documentation by several interviewees. There is a higher 
priority assigned to tasks that have direct business value, and 
traceability management is often neglected if its value is not 
obvious to the stakeholders, as stated by a product manager 
from Case 10. Managing responsibilities is highly connected 
to (perceived) benefits of traceability (see Sect. 4.2.1): Peo-
ple are more likely to assume their responsibility if they see 
the benefits.

It should be noted that current practices are often only 
used within individual organizational groups or disciplines. 
In many cases, there exist no concepts for traceability across 
boundaries and responsibilities on a higher organizational 
level:

The testing team does it, because they [...] care about 
which requirements they are covering. But it’s not 
clear to me if somebody else really takes the responsi-
bility for traceability in the company.
                                    (a quality analyst from Case 4)

As a software architect from Case 7 stated, especially links 
between disciplinary borders and responsibilities to maintain 
them are difficult to handle:

So it’s also an issue that there are not any persons 
responsible for the big picture how links are work-
ing. There are people responsible for the breakdown 
of requirements and there are people responsible for 
the software. In these boundaries not...
                                    (a software architect from Case 7)

Several interviewees stated that better tool support would 
facilitate this and allow more roles to see the benefit and use 

of trace links, for instance, by providing a visual overview 
of connected artifacts.

4.3 � Collaborative trace link maintenance

Traceability maintenance is highly relevant to ensure high 
trace link quality. In this section, we present challenges 
related to traceability maintenance and collaboration.

4.3.1 � Trace link quality

The cost–benefit balance of traceability management is of 
especially high relevance in collaborative environments, as 
described in Sect. 4.2.1. Leveraging traceability requires 
both developers and managers to understand the use and 
benefit. We found that trace link quality is essential for the 
trace links to be used, and if trace links are used they are 
likely to be maintained in a collaborative way.

Because you need to have trust in the data. You need it 
to be on the level that you think it’s worthwhile look-
ing into traceability to get some benefit. If you don’t 
trust it, then it’s not used. And if it’s not used, then you 
don’t improve it.
                (Chief Technical Officer from Case 8)

There exist several notions of quality and relevant aspects. 
For instance, a system software architect from Case 14 
describes it as a “difficult question” when being asked to 
define trace link quality. Both the definition and measure-
ment of trace link quality are difficult in practice. Our inter-
viewees considered especially incorrect or missing links 
between artifacts as problematic.

For instance, the problem with incorrect trace links was 
described as follows:

Otherwise if you try to follow up on something, then 
you’re going to get utterly confused if you see that this 
doesn’t belong together at all. I [...] prefer if there is no 
link instead of there being a wrong link. Because then 
you have to evaluate that as well, is the link correct or 
not? But if the link is not there, then I can search in 
some other way to find out what I want to know.
                                    (a team leader from Case 2)

When discussing the topic of automatic trace link creation, 
the interviewees’ reactions were very hesitant. Whereas we 
could not observe a major difference between projects of 
different durations and sizes, we found that there are differ-
ences between domains and the importance of having cor-
rect trace links. Our interviewees, especially those develop-
ing safety-critical systems, e.g., in the automotive domain, 
described it as essential to have correct and complete trace 
links. Interviewees from the software development domain 
were interested in using automatic algorithms to create trace 



30	 Requirements Engineering (2020) 25:21–45

1 3

links—however, rather “as an input for a final manual step,” 
as mentioned by the Chief Technical Officer from Case 8.

An interesting observation was that the notion of cor-
rectness changes if one considers versioned trace links. A 
software architect from Case 7 states that correct trace links 
become “outdated” in case the connected artifacts change 
rather than “automatically incorrect.” However, to maintain 
trace link quality, it is still important to consider change 
propagation and trace link maintenance, as discussed in the 
next subsection.

4.3.2 � Change propagation and notification

In case one of the connected artifacts changes, one needs 
to assess which implications the change has on connected 
artifacts and the trace link. If a versioning solution is used, 
the trace link needs to be updated to connect the new ver-
sions of the artifacts (or deleted if the artifacts should not be 
in relation anymore).

Many interviewees stated that trace links most commonly 
become incorrect if an artifact is updated and the trace links 
or connected artifacts are not changed accordingly. Insuf-
ficient notifications are one way how incorrect links are 
introduced:

If you change the signal, you won’t get any information 
about what requirements linked to it. That’s probably 
where we introduce incorrect links.
                                    (a software architect from Case 7)

It can happen that a whole chain of artifacts and trace links 
are affected by a change—for instance, when a requirement 
is changed. This usually affects different project phases, as 
changes need to be analyzed, designed, implemented, and 
tested. In addition, different departments are also affected 
because a change can affect systems engineering concerns, 
as well as mechatronics and software engineering. There-
fore, change propagation and traceability maintenance are a 
collaborative task that must be supported by organization-
wide traceability.

We found that trace link maintenance is addressed in dif-
ferent ways. Case 14 defined an official workflow to handle 
changes when an artifact is modified. The workflow includes 
informing all affected stakeholders about the change and its 
implication, in order to ensure that artifacts and trace links 
are updated. Several interviewees from other cases reported 
problems due to missing notifications:

We have exactly this problem: someone changes some-
thing at the top and nobody notices it. Or not every-
body [who should know] notices it.
                       (Head of Test Management from Case 15)

When asked about possible solutions to this problem, our 
interviewees stressed the importance of collaboration 
between teams:

You have to talk about it. There are frequent meetings 
with [involved stakeholders] to discuss these changes 
and their impact. And each of them has to follow up 
on his or her tasks.
   (Head of Software Quality Assurance from Case 12)

The issue of traceability maintenance is especially difficult 
when working in “distributed teams that do not meet in the 
break room every day,” as the Head of the Project Manage-
ment Office from Case 12 states.

5 � Traceability: an enabler for collaboration

Our research suggests that traceability provides opportuni-
ties for collaboration. In this section, we investigate RQ2: 
How can traceability management support collaboration? 
We asked our interviewees to what extent traceability man-
agement and collaboration influenced each other and what 
collaboration practices with internal and external partners 
looked like. As shown in Fig. 1, four main opportunities 
emerged: easier communication in distributed environments 
and interdisciplinary engineering to collaborate across 
boundaries (Sect. 5.1), explicit documentation of decisions 
to establish common goals and responsibility (Sect. 5.2), and 
creation of trace links to receive information to support trace 
link maintenance (Sect. 5.3).

5.1 � Opportunities: collaboration across boundaries

We identified two opportunities with collaboratively 
addressing traceability across boundaries: (1) easier com-
munication in distributed environments (Sect. 5.1.1), and 
(2) interdisciplinary engineering (Sect. 5.1.2).

5.1.1 � Easier communication in distributed environments

Communication in distributed environments with different 
stakeholders can profit from being able to collaborate in the 
context of trace links.

A product manager from Case 10 arrived at the follow-
ing conclusions when considering collaboration features in 
a tool:

But you should not forget that people work closely 
together in software projects. Today, it’s globally, 
[...] distributed and in different time zones. And of 
course you have the possibility to send e-mails, but the 
plethora of emails that you receive nowadays...So it 
makes sense if you have close collaboration in distrib-



31Requirements Engineering (2020) 25:21–45	

1 3

uted teams at distributed locations. Then having such 
ways to communicate that are relatively easy might 
be appealing.
                                    (a product manager from Case 10)

According to our interviewees, communication in the con-
text of a set of specific trace links can be facilitated by a 
collaborative traceability tool that allows maintaining all 
pertinent information in a shared space, where it can be 
easily accessed by all collaborators in a meaningful context.

5.1.2 � Interdisciplinary engineering

Software engineers hardly ever work in isolation. To inte-
grate all aspects from different disciplines consistently in 
one end product, a successful coordination with systems 
and hardware engineers is crucial. Many of our interview-
ees were mainly concerned with software—however, also 
systems engineering concerns are relevant in some cases. 
Trace links can support propagating changes from one disci-
pline to all other affected disciplines, as reported by a system 
software architect from Case 14:

Traceability can help at the point where you have 
changes in one domain. [...] For example, [if] I have a 
software port...If it is inside the software I can change 
it as I want. But if it is the hardware-software interface, 
someone else has to notice. And to get exactly this 
information—which ports I can change without con-
sultation and which I can’t—that’s what traceability is 
important for.
                   (a system software architect from Case 14)

The interviewee implies that traceability can also help to 
determine the effects of changes and whether other disci-
plines must be notified, as described in Sect. 4.3.2.

5.2 � Explicit documentation of decisions

One concern raised in the interviews was the usage of a 
common platform with external companies and its potential 
impact on collaboration. In this context, two interviewees 
described situations where inadequate traceability had a 
negative effect on collaboration with external partners.

[Using the same system as our partners] would make 
sense to get the end to end traceability here. As I said, 
yesterday we had an issue with that. Everyone had 
always said, ‘everything works fine, the delivery will 
be on time’. And then three days before it wasn’t as 
good as we thought, ‘ah, so you meant it that way? I 
didn’t know that at all.’ [...] But with traceability you 
can see that from the start, have they understood it this 

way, do they know that we have [these connections to 
other artifacts].
     (Head of Project Management Office from Case 12)

Trace links can, at least to a certain extent, also be used 
to ensure that a team is aware of certain dependencies and 
can refer to a common source of documentation for such 
dependencies. A project manager from Case 1 suggested to 
record requirements and their trace links together with all 
involved stakeholders during the requirements engineering 
phase. The interviewee stated that such explicit connections 
help to make decisions in a team.

An idea for future tooling was to include a voting feature. 
A voting feature would allow users to voice their opinions 
regarding trace links, indicating incorrect/suspicious links 
or that they agree with artifacts being connected with a trace 
link. Interviewees from Case 15 state how they would use a 
voting feature in their reviews so that they can more easily 
comment on trace links and approve or disapprove the latest 
changes.

There you can see who said ‘okay’ or ‘not okay’ and 
what they commented on, what they did not agree 
with.
                      (Head of Test Management from Case 15)

This interviewee suggests that a voting feature can support 
decision making in a team and help stakeholders to jointly 
improve the quality of trace links. According to another 
interviewee, this could help during elicitation and prioritiza-
tion, e.g., to record potential dependencies. Such suggested 
links are a valuable input for trace link management, as, for 
example, the Chief Technical Officer from Case 8 suggests.

5.3 � Creating trace links to receive information

Another idea from our interviewees was to react to artifact 
changes by sending the person(s) responsible for connected 
artifacts an automatic notification and request to review all 
affected trace links.

Such a change notification feature was indeed regarded 
as being beneficial:

When the requirements engineer changes something 
and I notice it through the chain [of trace links] then 
this facilitates collaboration. Because if one forgets to 
tell the others about a change then nobody notices it. 
And [change notification] would have created a big 
advantage.
    (Head of Software Quality Assurance from Case 12)

Multiple interviewees mentioned the potential of collabo-
rating via trace links. Creating links can be viewed in this 



32	 Requirements Engineering (2020) 25:21–45

1 3

manner as a means of ensuring that changes are communi-
cated correctly: A trace link between a source and target arti-
fact ensures that the person responsible for the target artifact 
gets notified when the source artifact changes.

6 � Traceability management approaches

This section discusses and answers RQ3: How does col-
laboration relate to different approaches of traceability 
management? 

Collaboration relates to different aspects of traceabil-
ity, with what goals it is used, and with what underlying 
approaches it is managed. On the one hand, we found that 
the goals behind establishing and managing traceability 
affect collaboration (Sect. 6.1). On the other hand, we iden-
tified three basic approaches to collaborative traceability 
management and concluded that they relate to collabora-
tive aspects in various ways. In this section, we describe the 
three approaches in detail: requirements-centered (Sect. 6.2), 
developer-driven traceability management (Sect. 6.3), and 
mixed approaches (Sect. 6.4). Table 2 gives an overview of 
the three approaches with their characteristics and contexts. 
For each approach, we name the cases using it, what the 
focus of tracing was, and what the drivers to manage trace-
ability are. Besides, we describe the development paradigms 
that are used in the approaches and the project sizes and 
distributions, which greatly influence the context of trace-
ability management. Finally, Table 2 shows the approaches 
to collaboration, collaboration with external stakeholders, 
and the used tools.

6.1 � Traceability goals’ relation to collaboration

When discussing traceability management approaches, we 
created a list of top five goals behind traceability manage-
ment. In the following, we list them with the relation to col-
laborative aspects and a short description of how trace links 
are used in the respective context. An overview of the cases 
and how they use each of these goals is shown in Table 3.

1.	 Tracking the project’s progress: This purpose is a com-
mon theme in the traceability literature (e.g., [8, 41]) and 
includes two scenarios. In the first, trace links between 
commits and issues—usually established via pointers 
in the commit message—can be used to identify issues 
currently under development and which status the imple-
mentation has reached. In the second scenario, trace 
links between requirements, tests, and test executions are 
used to expose tests that have failed for certain require-
ments and where additional work is needed. This goal is 
typically followed by stakeholders interested in project 
management, requirement engineers, or testers, and can 
help to identify how artifacts relate.

2.	 Troubleshooting: Trace links between test cases and 
specific artifacts (code, classes, state machines) support 
developers in identifying the causes for failed tests. It is 
particularly helpful when multiple developers need to 
collaborate to understand each other’s artifacts and test 
cases.

3.	 Coverage analysis: A traceability matrix can show 
which requirements are covered by test cases and which 
requirements still lack sufficient testing. Similar to the 
other goals, this is typically pursued by a group of stake-

Table 2   Traceability management approaches, their characteristics, and case contexts

Traceability management approach Requirements-centered Developer-driven Mixed

Used in Cases 3–6, 10, 13–15 Cases 1, 2, 8, 11, 12 Cases 7 and 9
Countries of cases 5 German 2 German 0 German

3 Swedish 3 Swedish 2 Swedish
Focus of tracing Requirements to sub-requirements, 

requirements to test cases
Implementation tasks/issues to 

source code commits
Both

Drivers to manage traceability Compliance with regulations and 
standards

Observed benefit by developers Benefit in several steps of the 
development

Development paradigm Officially V-model, with upcoming 
agile trends

Agile (except for one case) V-model and agile

Project sizes and distribution Typically larger, distributed teams Smaller, local teams Varying. Developer-driven 
approaches often only used in 
a smaller team

Approaches to collaboration Formal, supported by documents/
specifications

Informal, face-to-face communica-
tion

Mixed

Collaboration with external stake-
holders

Strong, often customer–supplier 
relationships

Less relevant Less relevant

Used tools Mostly requirements management 
tools

Configuration management system/
issue tracker

Both



33Requirements Engineering (2020) 25:21–45	

1 3

holders aiming for a high level of coverage, and possibly 
related to tracking the project’s progress.

4.	 Change impact analysis: Trace links establish relation-
ships between the architecture and requirements. If a 
requirement is changed, trace links can reveal which 
architectural elements are affected by this change. How-
ever, with the current tool support, it is often neces-
sary to manually traverse the data for this purpose, as 
stated by a system software architect from Case 14. As 
these artifacts are typically created and used by differ-
ent people, change impact analysis requires a collabora-
tive effort of stakeholders who communicate about their 
changes.

5.	 Generating artifacts, e.g., release notes/status reports: 
During release planning, milestones are assigned to 
issues, thus introducing trace links between the mile-
stones and the issues. A milestone report can then show 
which issues are currently receiving commits, as well as 
use trace links connected to tests to show which issues 
have been fully implemented and have sufficient test 
coverage. This is typically used to communicate about 
the status of the software or system to be developed.

It can be seen that all goals are used in a collaborative set-
ting including several individuals that create, maintain, and 
use trace links.

6.2 � Requirements‑centered traceability 
management

We categorized eight of 15 cases as relying on a require-
ments-centered traceability management approach, charac-
terized by a strong focus on requirements management when 
it comes to the use of traceability.

With the exception of Case 6 and Case 13, all of the 
requirements-centered cases rely on a dedicated require-
ments management tool for organizing and structuring 
the requirements. The tool most commonly used was IBM 
Rational DOORS3 (especially in automotive cases), used in 
four of the eight requirements-centered cases. Among other 
features, the tool allows managing requirements and test 
cases on different levels of granularity. It not only supports 
traceability between these artifacts, but also between other 
artifacts stored in external tools through interfaces such as 
OSLC.

Table 3   Goals and uses in each 
case

Domain and Case no. Goal 1: Track 
project progress

Goal 2: Trou-
bleshooting

Goal 3: Cov-
erage analysis

Goal 4: Change 
impact analysis

Goal 5: 
Generating 
artifacts

Embedded
 Case 1 X X X X X

Electrical equipment
 Case 2 X X

Industrial automation
 Case 9 X X X

Automotive
 Case 3 X
 Case 4 X
 Case 6 X X
 Case 7 X X X X
 Case 10 X X X X X
 Case 14 X X X X X

Telecommunications
 Case 5 X X X
 Case 13 X

Software development
 Case 8 X X X X X
 Case 15 X X X X

IT services
 Case 11 X X X

Banking self-service automation
 Case 12 X X X X

3  http://www-03.ibm.com/softw​are/produ​cts/en/ratid​oor.

http://www-03.ibm.com/software/products/en/ratidoor


34	 Requirements Engineering (2020) 25:21–45

1 3

An information management tool is also used in Case 6, 
storing requirements, analysis and design models, test cases, 
and trace links between requirements and other artifacts.

Integration and system test cases are usually stored in a 
connected test tool and linked to the requirements. In Case 
6 and Case 14, requirements are also linked to analysis 
and design models. Different stakeholders are involved, as 
described by a system software architect from Case 14:

The system architect creates links to the system 
requirements, the software architect creates links to 
software requirements, and the component developers 
to the software architecture.
                      (a system software architect from Case 14)

In Case 13, connections between requirements and design 
artifacts of a measurement system are recorded. This is for-
mally done in spreadsheet files and documents, following a 
strict process.

The usage of traceability management in requirements-
centered approaches is characterized by fixed, plan-driven 
processes, often officially following the V-model. Many of 
these cases are part of large organizations or represent situa-
tions in which several companies work together. Often, cus-
tomer–supplier relationships and collaboration with external 
organizations are relevant in these cases. This goes along 
with more organized processes and responsibilities.

In Case 15, for example, formal reviews are conducted 
before a milestone is completed, also making sure that trace 
links are set. In this particular case, stakeholders are invited 
for the review using a feature in DOORS that sends out 
e-mails automatically.

It should be noted that the majority of the requirements-
centered cases belong to the automotive domain where 
safety criticality and OEM–supplier relationships require 
formal specifications and organized ways of working.

Interviewees following the requirements-centered 
approach stated that communication is typically handled 
via e-mail and document exchange. Meetings are often held 
using telephone or video conference systems, as well as reg-
ular face-to-face meetings when possible. However, gener-
ally, a rather formal approach to collaboration is followed.

In most of these cases, traceability was established in 
a top-down fashion from management side, motivated by 
quality or safety standards that the company wants to fulfill. 
We observed that the more relevant safety or quality certi-
fications are for a company, the more formally defined are 
the processes for requirements-centered traceability man-
agement. It also relates to the formal way of collaborating 
in these cases. Trace links are typically created by project 
managers, test managers, software architects, and/or the 
responsible developers for features.

6.3 � Developer‑driven traceability management

Besides requirements-centered traceability management, we 
identified more developer-driven, ad hoc approaches, used 
in five of 15 cases.

In most of these cases, the approach involves the use of 
an application lifecycle management or software configura-
tion management system. Team Foundation Server4 is used 
in two of five cases. In many cases, bug or project tracking 
tools such as JIRA5 together with a version control system 
like Git6 are used, e.g., to manage implementation tasks 
or reported defects of a project, collectively referred to as 
“issues” in the following.

The motivation for traceability is the potential to relate 
changes in the code to the connected requirement or issue. 
This is particularly used during troubleshooting. It is also 
used to track the status of the project.

Cases following developer-driven approaches typically 
drive their development based on issues and connect source 
code to them, e.g., by stating the issue ID in commit mes-
sages. This is one important way of creating trace links and 
keeping track of the development state, as emphasized by 
the Chief Technical Officer from Case 8:

Issues represent some kind of unresolved problem. 
And to have them as issues, it gives a clear statement 
of what remains to be done. So that really drives the 
development. Doing it in an unstructured way wouldn’t 
be possible.
                              (Chief Technical Officer from Case 8)

In Case 11, trace links are created inside the code, as source 
code comments. This creation is a workaround solution as 
the developers missed the functionality to link from the 
source code to the requirements. In the future, it is planned 
to use a software configuration management system to han-
dle the creation of trace links as in the other cases following 
the developer-driven approach. References to the respective 
requirements specification version are made.

The creators of trace links in developer-driven traceability 
management are typically developers with a focus on the 
actual software implementation. The approach is often only 
used in the development departments in an organization, 
sometimes only by a small team.

Communication is often handled in face-to-face conver-
sations, (weekly) meetings, and via e-mail exchange. Com-
pared to the requirements-centered approach, traceability is 
not discussed as much in conversations and meeting, and 
is not considered an essential organizational goal. Instead, 

4  https​://www.visua​lstud​io.com/en-us/produ​cts/tfs-overv​iew-vs.aspx.
5  https​://www.atlas​sian.com/softw​are/jira.
6  https​://git-scm.com/.

https://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx
https://www.atlassian.com/software/jira
https://git-scm.com/


35Requirements Engineering (2020) 25:21–45	

1 3

informal ways of collaborating are frequently used, which 
makes it more difficult for stakeholders to see the need for 
formal documentation.

Developer-driven traceability management is especially 
common in cases with an agile paradigm. Three of the 
cases following the developer-driven approach use the agile 
paradigm, and the fourth agile case in our data follows a 
mix of approaches, as shown in Table 2. In these cases, the 
software configuration management system is also used to 
plan the work. Collaboration with other organizations is less 
relevant in these cases. For this reason, the natural collabora-
tion approach is rather informal and focused on the needs 
of developers.

6.4 � Mixed approaches

In two cases, there are attempts to handle traceability man-
agement in a structured, top-down way, and at the same time, 
bottom-up approaches are pursued by the developers. Note 
that while this suggests a best-of-both-worlds approach, we 
could not observe a systematic endeavor to combine tracing 
information from both parts.

In Case 9, there exists a document-based, requirements-
centered approach to link features and test cases using ID 
mapping, i.e., the IDs of the features appear in the test case 
names. One interviewee states that the trace links exist but 
that it requires manual work to identify which artifacts are 
connected:

I can do it now through the links in the documents. So 
I can take my test report and see ‘this is this release of 
the test framework’, and I can go to my documentation 
to see what features we are testing, and I can link it. 
But it’s still manual.
                (a software quality manager from Case 9)

Apart from that, Case 9 also uses more developer-driven 
approaches, linking bugs or defects to the respective code 
commits in which they are fixed.

In Case 7, test cases and design artifacts are linked to 
requirements in an information management tool. Addition-
ally, as in many other cases, an issue tracking tool is used by 
the development department and trace links from issues to 
source code commits in a version control system are created. 
Apart from that, there are other tools used in different parts 
of the organization. A software architect from Case 7 points 
out that this is problematic in practice:

The biggest discrepancy between the ideal tool and 
what we have today is probably that we have many 
tools today, and not one. If it were one tool [...] then 
you would probably get more [analysis features] auto-
matically.
                                    (a software architect from Case 7)

Different tools are in use, and the focus of tracing varies 
depending on the stakeholder. Regulations and certifica-
tions do not play as much of a role as in the requirements-
centered approaches. This approach is more focused on 
the benefit of traceability in different steps of the develop-
ment. The development is either agile or V-model based 
with agile paradigms established in a bottom-up fashion. In 
mixed approaches, it should be noted that typically a smaller 
development team introduces developer-driven traceabil-
ity management. At the same time, requirements-centered 
approaches are established in a more top-down fashion.

Depending on the discussed issue, various means of 
communication are used. More formal communication is 
used for the requirements-centered part, and informal col-
laboration within developer teams. Our cases focus on direct 
conversations wherever possible, but also exchange e-mails. 
Traceability-related topics are typically not discussed a lot, 
given that they are not as central for the cases’ organiza-
tional goals as in the requirements-centered approaches. The 
collaboration with external stakeholders is less relevant in 
these cases.

7 � Influence of development effort 
characteristics

This section provides answers to RQ4: What characteristics 
of the development effort influence traceability management 
and collaboration? 

We found that several characteristics play a role in the 
context of traceability management and collaboration. 
Most prominently, culture, organization, and processes 
influence how traceability is managed and how collabora-
tion is approached. These aspects are connected and were 
an underlying theme in all interviews. Also the way indi-
viduals collaborate depends on these factors. Underlying 
development paradigms and processes mirror the organi-
zational structure, and the strictness or rigor of following 

Table 4   Cases with their level of agility and rigor of following devel-
opment paradigms

Agile Mix of paradigms Plan-driven

Rigorous Case 9 (Mix) Case 14 (Req)
Case 12 (Dev) Case 10 (Req)

Case 4 (Req)
Case 3 (Req)
Case 15 (Req)

Balanced Case 2 (Dev) Case 11 (Dev) Case 6 (Req)
Case 13 (Req) Case 7 (Mix)

Lenient Case 8 (Dev) Case 1 (Dev)
Case 5 (Req)



36	 Requirements Engineering (2020) 25:21–45

1 3

them allows us to deduce cultural aspects. For this reason, 
we discuss underlying development paradigms and the 
rigor of following them in different cases.

Table 4 shows the cases of this study with the level of 
agility and the rigor of following their development para-
digms. If a case company uses an agile paradigm and the 
interviewees describe their way of working accordingly, 
the case is located in the “Agile” column. Cases follow-
ing a plan-driven approach (most commonly the V-model) 
are located in the column labeled “Plan-driven.” In the 
column “Mix of paradigms,” cases are located whose 
development is characterized by a mixture of agile and 
plan-driven elements.

In the rows, we categorize the cases with respect to 
their level of rigor, indicating how strictly a development 
paradigm is defined, communicated, and executed in an 
organization. If a company has a strict definition of the 
development paradigm and the practices were confirmed 
independently by all interviewees, the case is labeled “Rig-
orous.” The amount and types of trace links used are irrel-
evant, but the intended paradigm and practices need to be 
followed for a case to be considered rigorous. If interview-
ees state that the development paradigm is not followed 
strictly, or we found contradicting statements about how 
the paradigms are communicated and followed, the case 
is categorized as having a medium level of rigor. Cases 
ranked as “Lenient” reported on inconsistent practices and 
the lack of an overall strategy or traceability concept. Of 
course, the sample of the interviewees and their openness 
when answering questions influence the way we ranked 
companies. Data (source) triangulation by interviewing 
several individuals helped to mitigate this bias.

We found that whereas (almost) all cases have an offi-
cially defined development paradigm, the extent to which 
it is followed and communicated differs a lot. This also 
impacts traceability management, but is not limited to it. In 
parentheses, we indicate the used traceability management 
approaches (see Sect. 6)—requirements-centered (Req), 
developer-driven (Dev), or mixed approaches (Mix).

Answering RQ4, our findings suggest that cultural 
and organizational aspects are coupled with development 
paradigms. Both the level of agility and the level of rigor 
greatly impact which traceability practices and what col-
laboration approaches are applied. We elaborate on this 
in the following, describing rigorous cases (Sect. 7.1) and 
cases with less rigor (Sect. 7.2).

7.1 � Rigorous cases

There are several rigorous cases—both related to plan-
driven approaches and to agile approaches. We describe 
both groups in the following.

Traditionally, plan-driven cases work in projects and 
use traceability to ensure that requirements are imple-
mented and tested. Another motivator is safety and quality 
standards that require strict processes. Due to these pro-
cesses, also collaboration is approached in a rather formal 
way, using specifications and formal reviews. Traceability 
is required to demonstrate how requirements are broken 
down and fulfilled later on:

And as soon as we have requirements in place and 
start developing, we should make the developers 
somehow relate to requirements, to functionalities. 
It definitely favors the project if those connections 
are made.
                                    (a quality analyst from Case 4)

The majority of the plan-driven cases operate in the auto-
motive domain. Several interviewees mentioned that a 
transition toward agile is being considered. Several contex-
tual factors complicate this transition, e.g., the traditional 
supplier–OEM relationships in the automotive domain and 
the multitude of involved disciplines.

Some of the plan-driven cases use a significant amount 
of reviews and assessments to ensure correct trace links or 
by more clearly defining and controlling responsibilities. 
Less rigorous cases allowed processes and responsibilities 
to emerge bottom-up. The only reported case in which 
end-to-end traceability was achieved was a plan-driven 
rigorous approach.

Besides rigorous plan-driven cases, we also found cases 
following rigorous agile paradigms. Rigorous agile cases are 
characterized by a strong focus on quality, a global definition 
of agile values, principles, and practices beyond individual 
development teams, and the purposeful use of traceability. 
The importance of face-to-face communication as an agile 
principle influences how stakeholders collaborate. The intro-
duction of the agile paradigm is typically not done in an ad 
hoc way, but in a well-planned, long-term transition process.

Most cases following a rigorous agile paradigm create 
and use trace links between themes, epics, and user stories, 
as well as to test cases. Traceability is actively considered 
in rigorous agile cases:

Yes, the traceability definitely got better [during the 
transition towards agile]. Especially because before, 
we had big documents that were written as text, and 
now we have atomic requirements.
 (Head of Software Quality Assurance from Case 12)

We found that the goals of traceability in rigorous agile 
cases are slightly different than in plan-driven cases. 
Safety and quality standards play less of a role. Interview-
ees from all rigorous agile cases stated that “the whole 
team” should be the users of traceability.



37Requirements Engineering (2020) 25:21–45	

1 3

One commonality in rigorous agile cases is that inter-
viewees describe the trace link quality as “good, but not 
good enough” (a software quality manager from Case 9). 
The interviewees showed interest in improving their trace-
ability approaches. They all state that tool support is miss-
ing to leverage traceability in a better way (e.g., a software 
quality manager from Case 9 and the Head of the Project 
Management Office from Case 12).

7.2 � Balanced or lenient cases

We observed that a number of cases followed a less rigor-
ous approach to traceability management and collabora-
tion. Many of the balanced or lenient cases are currently 
undergoing a transition from plan-driven to agile para-
digms. It was mentioned by several interviewees that the 
organization requires V-model processes, whereas soft-
ware development teams or departments internally work 
in more agile ways. These cases reported difficulties with 
trace link quality and maintenance. Trace links are mainly 
used for troubleshooting, but “links are not always there 
when they should be there,” as mentioned by a team leader 
from Case 2. The interviewees reported that traceability is 
typically established in a bottom-up way inside the devel-
opment department, but the scope is too limited to be ben-
eficial for the company. From a collaborative perspective, 
it could be observed that collaboration typically works 
well in a smaller team, but organizational boundaries are 
not crossed to exchange knowledge in a satisfying way.

A developer from Case 6 describes challenges with 
inconsistency and change propagation being very present:

So right now, the documents are saying something 
and the [product] is doing something else. It hap-
pens a lot of times. Because there are, somewhere in 
the process, someone changes and doesn’t go back. 
There is no feedback loop. It’s more like a V-model. 
There is no connection.
                                    (a developer from Case 6)

There were several companies that are currently in an 
active transition toward more rigorous agile paradigms, 
which often explains the above-mentioned inconsistencies.

When asking interviewees what they would change in 
their traceability management practices if they could start 
from scratch, many stated that they would prefer to have a 
more rigorous approach:

But if I could start from scratch, I would do some 
things more thoroughly. First of all, to coordinate the 
rules of traceability and require people to follow them. 
If you grow bottom-up, you can do that. If you have 
a huge amount of code and then one percent that you 

create trace links for, then it is questionable how much 
benefit you get.
                       (the Head of Development from Case 11)

In some companies, a long-term transition is performed in 
a coordinated way, involving stakeholders from different 
departments and aiming for a holistic traceability solution. 
Interviewees from Case 12 stated that it can be problem-
atic to run initiatives on a minor level with limited influ-
ence on the rest of the organization, which also complicates 
traceability.

8 � Discussion

This section discusses our research findings and implications 
for researchers and practitioners.

To summarize our findings with related work, Table 5 
shows an overview of themes and topics. We also name the 
cases in which the themes were discussed most prominently.

Based on the discussion of our findings, we arrived at 
practical principles for collaborative traceability manage-
ment. We motivate the principles in Sects. 8.1–8.4, where 
we discuss each of the research questions.

8.1 � Challenges

We answer RQ1 based on our findings: What are practition-
ers’ challenges with collaboration in traceability manage-
ment? We identified three groups challenges that we sum-
marize and discuss in the following:

8.1.1 � Collaboration across boundaries

Our findings indicate that collaboration across team and 
discipline boundaries is challenging in practice. The issue 
of collaborating in distributed organizations has been con-
firmed by related studies. Sinha et al. [54] mentioned chal-
lenges related to globally distributed requirements manage-
ment, many of which we found to also hold for traceability 
management: There is an impact not only because of geo-
graphic separation, but also because of different disciplines 
and backgrounds, used tools, and organizational separation 
of departments. This separation is partly due to separate 
groups of traceability stakeholders with different viewpoints 
having unaligned goals—for instance, between upper man-
agement and engineers [23]. Other issues found by related 
work are organizational problems, e.g., politics or lack of 
training [23].

Kirova et al. [24] analyzed the cost of traceability and 
the challenges of tool boundaries and heterogeneous tools. 
Our findings confirm the need for better support for analysis 



38	 Requirements Engineering (2020) 25:21–45

1 3

of trace links and flexibility when it comes to diverse para-
digms and tools.

Asuncion et al. [3] addressed this challenge by center-
ing the data exchange of their software traceability solution 
around a shared database accessible by all tools. However, 
when different companies have to collaborate this can be 
infeasible due to legal issues, as we described in Sect. 4.1.2.

8.1.2 � Common goals and responsibilities

We observed a lack of common goals and responsibilities, 
which is strongly related to the lack of benefits of trace-
ability. To justify the effort of traceability management, it 
is relevant but often challenging to convey the benefit of 
traceability to involved stakeholders.

We found that the creators of trace links are often not the 
users of information. It is difficult to motivate stakeholders 
to invest in trace link quality if the information needs and 
goals of traceability are unclear. This is what our first prin-
ciple addresses: (P1) Put stakeholders’ information needs 
and goals of traceability at the center.

The alignment of viewpoints and goals of traceability 
stakeholders was also found to be challenging by Kannen-
berg and Saiedian [23]. In fact, we found that the core of the 
issue is that the people leveraging trace links are typically 
not the stakeholders creating the links.

Our findings confirm the problems with traceability men-
tioned already in 1994 by Gotel and Finkelstein [18]: They 

found that invisible responsibilities complicate the exchange 
of information among parties. We identified the issue that 
responsibilities for traceability are often not clearly defined 
when organizational boundaries need to be crossed.

Arkley and Riddle [2] also stressed the lack of perceived 
benefit of traceability to stakeholders, especially to the 
trace link creators. Another issue was that information in 
the traceability tool had to be entered multiple times. These 
experiences support our findings that tool support impacts 
how traceability is perceived and used.

Panis [37] discussed several challenges related to trace-
ability degradation, the benefits of traceability, and stake-
holders’ motivation. He concluded that traceability needs 
to be “automatically visible for engineers as part of their 
daily work” to motivate them to improve trace link quality. 
Similarly, our findings suggest that beyond seeing traceabil-
ity in their daily work, stakeholders are much more likely 
to improve trace link quality, when they see the benefits of 
traceability.

We interpret collaborative traceability as a special case 
of experience and knowledge management [49]. From this 
perspective, it is clear that an experience bearer (e.g., a 
stakeholder with knowledge about a dependency between 
requirements) is more likely to share knowledge (e.g., by 
fixing a wrong trace link), if the benefit of doing so exceeds 
the effort. In this context, Averbakh [5] distinguished light-
weight approaches, which aim at reducing effort, from 
heavyweight approaches, which aim at maximizing benefit. 

Table 5   Overview of themes in relation to case companies and related work

Theme Topic Main relevant cases Related literature

RQ1—Challenges: Managing traceability collaboratively
 Collaboration across boundaries Collaboration with other departments 2, 3, 6, 9, 10, 12 [23, 54]

Collaboration with external organizations 1, 2, 8, 7, 11, 12, 14
Collaboration across tool boundaries In 14 (of 15) cases [3, 17, 24]

 Common goals and responsibilities Benefits of traceability 1, 2, 5, 8 [2, 5, 23, 37, 49]
Managing responsibilities 1, 4, 5, 7, 8, 9, 10, 14, 15 [13, 18]

 Collaborative maintenance of trace links Trace link quality 2, 3, 7, 8, 12, 14 [43, 57]
Change propagation and notification 6, 7, 12, 14, 15 [52]

RQ2—Traceability: An enabler for collaboration
 Easier communication in distributed environments 10, 15 [17, 54]
 Explicit documentation of decisions 1, 7, 12, 15 [40]
 Creating trace links to receive information 7, 12 [21, 51]
 Interdisciplinary engineering 14 [22, 26]

RQ3—Traceability management approaches
 Requirement-centered 3, 4, 5, 6, 10, 13, 14, 15 [6, 25, 30]
 Developer-driven 1, 2, 8, 11, 12 [30]
 Mixed 9, 7 [6]

RQ4—Influences of development effort characteristics
 Rigorous 3 − 4, 9 − 10, 12, 14 − 15 [6, 7, 16, 17, 30]
 Balanced or lenient 1, 2, 5 − 8, 11, 13 [25, 44]



39Requirements Engineering (2020) 25:21–45	

1 3

Averbakh recommended minimizing the time required to 
share knowledge (i.e., maintain traceability) and shift effort 
away from the experience bearer to others. The latter is also 
crucial for traceability: Roles that possess valuable knowl-
edge to be captured in trace links (e.g., developers) are often 
not the ones that have the main benefit. For this reason, we 
arrive at the following principle: (P2) Balance the effort and 
benefit of traceability management per role.

8.1.3 � Collaborative trace link maintenance

Trace links and trace link quality are often directly affected 
by changes of connected artifacts. Therefore, trace links and 
artifacts need to be maintained, which can be challenging if 
collaboration between stakeholders is insufficient. In this 
context, we found especially that a lack of change notifica-
tion and propagation can impede traceability maintenance. 
Besides trace link quality, it also negatively affects collabo-
ration across organizational, discipline, and tool borders. For 
this reason, we specify the following principle: (P3) Enable 
change propagation and notification across boundaries.

Sengupta et al. [52] found similar challenges with the 
propagation and management of requirement changes in 
general. Requirements changes typically have an effect on 
design and coding, which is where traceability could be lev-
eraged as a facilitator. We expect suitable change notification 
features to support not only trace link maintenance, but the 
general issue of change propagation.

The topic of trace link quality has been addressed by 
Rempel and Mäder’s [43] model to assess requirements 
traceability. Our findings indicate that it is central to analyze 
quality of trace links. Ongoing research investigates how the 
quality of manually created and potentially untrustworthy 
trace links can be improved (cf., e.g., [57]).

8.2 � Effects of traceability management 
on collaboration

In the following, we discuss our results for RQ2: How can 
traceability management support collaboration?

We found that collaborative issues can be mitigated with 
adequate traceability management. This requires that collab-
orators have common goals, and see that the perceived effort 
of traceability is exceeded by the benefit of overcoming such 
boundaries. The issue of tool boundaries could be facili-
tated by tool suppliers that move toward common standards 
such as OSLC.7 Whereas tool boundaries and the lack of 
applicable tool support play a role in practice, they are not 
the only complicating factors to be blamed. More severe is 
the issue of invisible benefits of traceability which makes 
it difficult to leverage traceability in practice. Therefore, 

we see it as imperative to create direct, tangible advantages 
for engineers that actively maintain trace links by allowing 
them, e.g., to more easily identify the impacts of change or 
to engage other members of their distributed team, and thus 
ensure that a positive cost–benefit balance is perceived by 
all stakeholders. Our findings indicate that traceability can 
be used to enable collaboration and facilitate communication 
and knowledge management, especially in distributed teams.

Our findings indicate that traceability management can 
improve collaboration in the following four ways:

8.2.1 � Easier communication in distributed environments

Based on an evaluation of a distributed requirements man-
agement tool, Sinha et al. [54] identified contextual collabo-
ration as a useful feature. Contextual collaboration allows 
stakeholders to initiate conversations that include links to 
requirements and other artifacts. Our findings confirm that 
it is indeed beneficial to have better support to collaborate 
in the context of artifacts or trace links, especially in distrib-
uted teams and for collaborative traceability management. It 
is important to note that users must be comfortable with the 
provided tool solutions. Leveraging existing communication 
mechanisms known to the user is thus important [54].

Based on our findings, we conclude that in distributed 
environments, developers would ideally introduce and main-
tain useful trace links as a by-product [48] of the necessary 
project documentation (e.g., by allowing references to spe-
cific potential trace links in chat rooms). This would reduce 
effort, while improved communication would increase the 
benefit of traceability management. Thus, the effort/benefit 
ratio would be improved, and developers would be more 
likely to contribute to traceability management.

8.2.2 � The explicit documentation of decisions

Ramesh [40] described that traceability plays a crucial role 
for knowledge management processes. Among other advan-
tages, trace links can support the documentation of critical 
design decisions or assumptions.

Our study confirms the need for more explicit documenta-
tion of decisions and the potential of traceability to support 
it. Unclear decisions can block developers. By increasing the 
explicitness of decision that relate to relevant artifacts, the ben-
efit of traceability is increased for developers, who are then more 
likely to invest in trace link quality. Traceability is thus an impor-
tant enabler for documentation and knowledge management.

8.2.3 � Creating trace links to receive information

As the suggested change notification feature ensures that 
responsible stakeholders are informed about relevant changes, 7  http://open-servi​ces.net.

http://open-services.net


40	 Requirements Engineering (2020) 25:21–45

1 3

it could actually improve and simplify collaboration. Helm-
ing et al. [21] suggested a model-based change awareness 
approach, identifying which users to notify based on trace 
links. This was evaluated in a case study and found to be 
indeed useful in practice. We can confirm that practitioners 
are interested in such features. With more agility and mov-
ing toward continuous integration and deployment, techni-
cal dependencies between teams will increasingly appear at 
a later stage [51]. Thus, we expect that developers will more 
likely benefit from receiving information about changes, shift-
ing the effort/benefit relationship to their favor and making 
it more likely that they will contribute to trace link quality.

8.2.4 � Interdisciplinary engineering

Dependencies between different parts of a system can be 
captured explicitly using trace links, helping users to deter-
mine which disciplines must be consulted when certain 
changes are made. Our study suggests that traceability can 
positively impact collaboration as well as change manage-
ment in interdisciplinary contexts. This enabler of trace-
ability was only mentioned by one interviewee, a system 
software architect from Case 14. This theme was emerging 
from the interview and not part of our interview guide. A 
potential explanation for the low number of interviewees 
reporting on this theme could be that the other interview-
ees’ focus laid more on one discipline, rather than systems 
engineering. Future studies could directly address this theme 
and further examine the potential of traceability for interdis-
ciplinary engineering.

However, we found that a number of related studies con-
firm our finding. Königs et al. [26] concluded, based on an 
analysis of current systems engineering practices, that trace-
ability can provide substantial support for interaction and 
communication in interdisciplinary scenarios. This claim is 
supported by investigating two tools supporting traceabil-
ity management in systems engineering contexts. Similarly, 
Jaber et al. [22] presented the results of a survey focusing 
on what kinds of trace links different stakeholders are inter-
ested in, and what artifacts need to be connected. Through 
experiments they demonstrated that these links are useful for 
supporting maintenance tasks and for fostering collaboration 
between business and technical stakeholders.

8.3 � Traceability management approaches

In the following, we discuss our findings concerning RQ3: 
How does collaboration relate to different approaches of 
traceability management?

We found that there exist (1) requirements-centered trace-
ability management, (2) developer-driven traceability man-
agement, as well as (3) mixed approaches, combining the 

former two. As the names suggest, requirements-centered 
traceability management is focused on requirements as the 
main artifacts, whereas developer-driven traceability is 
mainly conducted and leveraged by developers. Organiza-
tions typically introduce requirements-centered traceability 
to assure the quality or safety of their products in a top-down 
manner. Developer-driven traceability management origi-
nates from development teams.

In requirements-centered cases, collaboration is often 
achieved in a formal setting that helps regulate the interac-
tions between a typically larger team and a customer who is 
often very involved in the projects. Much of this collabora-
tion is facilitated through a requirements management tool, 
and both traceability and collaboration are focused on the 
requirements. In contrast, developer-driven cases are usually 
found in an environment where a small team communicates 
informally and face to face and where collaboration with 
external stakeholders is less relevant. An issue tracker is 
often used as the main locus of traceability, e.g., between 
commits and tickets.

These findings indicate that the concrete way that col-
laborative traceability management is implemented in an 
organization depends heavily on the established collabora-
tion approaches and the team size. To realize the potential 
benefits of traceability management on collaboration as pre-
sented in Sect. 5, a traceability strategy in a more formal set-
ting needs to be equally formalized with strong tool support 
and potential enforcement by the tool. On the other hand, in 
less formal settings it is easier to establish norms and rules 
regarding collaborative traceability management in an ad 
hoc fashion within the smaller team. Enforcement can be 
based on social pressure or a definition of done.

Our findings cannot confirm Cleland-Huang [7]’s find-
ing that trace links between requirements and test cases in 
agile projects are used. In the agile cases of our case study, 
traceability of requirements to test cases was not mentioned. 
To some extent, we can confirm Mäder et al.’s classifica-
tion [30]: There exist “regulated” traceability users, sub-
contractors, consultants, and enthusiasts. For instance, the 
regulated type is in line with the requirements-centered 
approach, motivated by the need to comply with standards 
and enforcing processes. Our findings do not suggest that the 
concrete types of inter-organizational dependencies (work-
ing as a consultant or sub-contractor) strongly impacted 
the way traceability is used. However, collaboration across 
organizational boundaries did play a role and comes with 
challenges, as we presented in Sect. 4.1.2.

8.4 � Contextual factors’ influence

In the following, we summarize and discuss RQ4: What 
characteristics of the development effort influence trace-
ability management and collaboration?



41Requirements Engineering (2020) 25:21–45	

1 3

Similar to earlier studies, we found that traceability man-
agement can also be leveraged in agile projects. Based on 
our data, we could not confirm differences between trace-
ability management in agile contexts that depend on scale, 
complexity, and safety-criticality that were presented in [7]. 
This can be connected to the fact that the large-scale, com-
plex, and safety-critical cases in our study came from the 
automotive domain where the transition to agile paradigms 
is still in progress. We found that traceability management 
can be used in both agile and V-model-based contexts. How-
ever, our findings indicate that it might be desirable to rather 
rigorously define and follow traceability management strate-
gies. It is difficult to find a good cost–benefit balance if the 
practices are followed in an inconsistent way and the quality 
of trace links drops. We capture this point in the following 
principle: (P4) Strive for a rigorous culture with respect to 
traceability maintenance.

We identified several cultural, organizational, and pro-
cess factors that impact how traceability management is 
conducted. Differences between approaches can be most 
prominently observed in the development paradigms and 
the rigor of following them. Our findings suggest that agile 
and plan-driven cases focus on different artifacts and pur-
poses of traceability: Cases following agile paradigms tend 
to focus more on development artifacts, whereas plan-driven 
cases use requirements-centered traceability. It is crucial to 
analyze the traceability goals and choose and appropriate 
approach that fits to the purposes. We relate these points to 
the importance of stakeholders’ information needs and goals 
(P1), and capture them in the following sub-principles: (P1a) 
Choose a lightweight, developer-centric approach for goals 
related to tracking change to code. (P1b) Choose a formal, 
requirements-centric approach for goals related to regula-
tion (e.g., safety or legal requirements).

Moreover, the trace link quality and maintenance appear 
to relate to the culture and rigor: Lenient cases and less well-
defined paradigms reported difficulties with trace link qual-
ity and maintenance. In case trace links are not established 
in a systematic manner, stakeholders struggled with identify-
ing the benefit and use of traceability, and thus with finding 
motivation to create trace links.

Our findings are in line with Rempel et al.’s finding that 
practitioners need to specify traceability goals, and find ways 
to implement and assess them [44]. In practice, this is often 
not the case, which results in inconsistencies between the 
goals of the development paradigm, traceability goals, and 
the actual trace links [44]. As a consequence, trace link qual-
ity is often too low to be suitable for practitioners.

We found successful traceability both in plan-driven 
and agile cases. However, only two of the cases followed 
agile paradigms and had a rather rigorous culture. During 
the analysis, we found that culture and rigor play a criti-
cal role, in addition to the development paradigm. Had we Ta

bl
e 

6  
O

ur
 fi

nd
in

gs
 a

nd
 th

ei
r i

m
pl

ic
at

io
ns

R
Q

Fi
nd

in
g

Im
pl

ic
at

io
n

R
Q

1 
(S

ec
t. 

4)
F1

: P
ra

ct
iti

on
er

s f
ac

e 
se

ve
ra

l c
ha

lle
ng

es
 re

la
te

d 
to

 c
ol

la
bo

ra
tio

n 
in

 tr
ac

ea
bi

lit
y 

m
an

-
ag

em
en

t, 
in

cl
ud

in
g 

ac
hi

ev
in

g 
tra

ce
ab

ili
ty

 a
cr

os
s o

rg
an

iz
at

io
na

l a
nd

 to
ol

 b
ou

nd
ar

ie
s. 

If
 n

ot
 a

dd
re

ss
ed

, t
he

se
 c

ha
lle

ng
es

 n
eg

at
iv

el
y 

im
pa

ct
 th

e 
qu

al
ity

 o
f t

ra
ce

 li
nk

s

I1
: F

or
 tr

ac
ea

bi
lit

y 
m

an
ag

em
en

t m
et

ho
ds

 a
nd

 to
ol

s t
o 

be
 su

cc
es

sf
ul

 in
 p

ra
ct

ic
e,

 it
 is

 
ne

ce
ss

ar
y 

to
 a

dd
re

ss
 c

ol
la

bo
ra

tiv
e 

is
su

es
 a

nd
 su

pp
or

t p
ra

ct
iti

on
er

s w
ith

 tr
ac

e 
lin

k 
m

ai
nt

en
an

ce
R

Q
2 

(S
ec

t. 
5)

F2
: T

ra
ce

ab
ili

ty
 h

as
 th

e 
po

te
nt

ia
l o

f i
m

pr
ov

in
g 

co
lla

bo
ra

tio
n 

an
d 

su
pp

or
tin

g 
pr

ac
ti-

tio
ne

rs
 w

ho
 c

om
m

un
ic

at
e 

ab
ou

t d
ep

en
de

nc
ie

s o
f a

rti
fa

ct
s. 

Th
is

 c
an

 g
iv

e 
ris

e 
to

 n
ew

 
in

ce
nt

iv
es

 to
 in

ve
st 

in
 tr

ac
ea

bi
lit

y

I2
: B

ot
h 

pr
ac

tit
io

ne
rs

 th
at

 w
an

t t
o 

im
pr

ov
e 

co
lla

bo
ra

tio
n 

an
d 

st
ak

eh
ol

de
rs

 in
ve

sti
ng

 in
 

tra
ce

ab
ili

ty
 c

an
 m

ak
e 

us
e 

of
 tr

ac
ea

bi
lit

y 
as

 a
 p

ro
m

is
in

g 
en

ab
le

r i
f t

he
y 

un
de

rs
ta

nd
 th

e 
in

te
rp

la
y 

of
 tr

ac
ea

bi
lit

y 
an

d 
co

lla
bo

ra
tio

n
R

Q
3 

(S
ec

t. 
6)

F3
: T

ra
ce

ab
ili

ty
 m

an
ag

em
en

t i
n 

pr
ac

tic
e 

is
 g

en
er

al
ly

 e
ith

er
 fo

cu
se

d 
on

 re
qu

ire
m

en
ts

 a
s 

th
e 

m
ai

n 
ar

tif
ac

ts
 a

nd
 re

la
te

d 
to

 fo
rm

al
 c

ol
la

bo
ra

tio
n,

 o
r i

s d
riv

en
 b

y 
de

ve
lo

pe
rs

 w
ho

 
w

an
t t

o 
tra

ce
 c

od
e 

ch
an

ge
s t

o 
th

ei
r o

rig
in

 a
nd

 c
ol

la
bo

ra
te

 m
or

e 
in

fo
rm

al
ly

I3
: T

he
se

 d
iff

er
en

t t
ra

ce
ab

ili
ty

 m
an

ag
em

en
t a

nd
 c

ol
la

bo
ra

tio
n 

ap
pr

oa
ch

es
 m

us
t b

e 
co

n-
si

de
re

d 
w

he
n 

in
ve

sti
ng

 in
 p

ro
ce

ss
es

, m
et

ho
ds

, a
nd

 to
ol

s

R
Q

4 
(S

ec
t. 

7)
F4

: R
el

ev
an

t c
ha

ra
ct

er
ist

ic
s, 

su
ch

 a
s c

ul
tu

ra
l a

nd
 o

rg
an

iz
at

io
na

l a
sp

ec
ts

, a
re

 c
ou

pl
ed

 
w

ith
 u

nd
er

ly
in

g 
de

ve
lo

pm
en

t p
ar

ad
ig

m
s. 

Pa
ra

di
gm

s a
nd

 th
e 

rig
or

 o
f f

ol
lo

w
in

g 
th

em
 

ha
ve

 a
 st

ro
ng

 im
pa

ct
 o

n 
ho

w
 tr

ac
ea

bi
lit

y 
is

 m
an

ag
ed

 a
nd

 h
ow

 st
ak

eh
ol

de
rs

 c
ol

la
bo

-
ra

te
. A

 c
er

ta
in

 le
ve

l o
f r

ig
or

 is
 n

ee
de

d 
to

 m
an

ag
e 

an
d 

m
ak

e 
us

e 
of

 tr
ac

e 
lin

ks

I4
: F

or
 p

ra
ct

iti
on

er
s w

ho
 w

an
t t

o 
im

pr
ov

e 
th

ei
r p

ro
ce

ss
es

 a
nd

 u
se

 o
f t

ra
ce

ab
ili

ty
, i

t i
s 

re
co

m
m

en
da

bl
e 

to
 a

im
 fo

r c
on

si
ste

nt
 tr

ac
ea

bi
lit

y 
m

an
ag

em
en

t p
ra

ct
ic

es
 in

 a
n 

or
ga

ni
-

za
tio

n 
an

d 
co

m
m

un
ic

at
e 

th
e 

be
ne

fit
 o

f a
 ri

go
ro

us
 a

pp
ro

ac
h.

 H
ig

h-
qu

al
ity

 e
nd

-to
-e

nd
 

tra
ce

ab
ili

ty
 c

an
 o

nl
y 

be
 a

ch
ie

ve
d 

if 
th

e 
in

te
re

sts
 o

f a
ll 

co
lla

bo
ra

tin
g 

st
ak

eh
ol

de
rs

 a
re

 
su

pp
or

te
d



42	 Requirements Engineering (2020) 25:21–45

1 3

found these emerging aspects earlier, we could have aimed 
to include more agile/rigorous samples. Future research will 
have to scrutinize whether this finding can be generalized 
beyond our sample.

9 � Implications of our findings

To give an easier overview of our main findings, they are 
presented in Table 6 together with their implications for 
researchers and practitioners. The findings presented in this 
paper allow practitioners to reflect on their use of traceabil-
ity, especially with the perspective of the cost–benefit bal-
ance. This can be a starting point to establish more appli-
cable and efficient collaborative traceability management 
practices. Our findings can guide tool development, pro-
cesses, and the design of methods for traceability manage-
ment that facilitate collaboration and establish high trace 
link quality. Moreover, readers interested in process-related 
aspects can use our findings to (re)consider traceability 
strategies.

We formulated the following principles: 

Principles of collaborative traceability management

P1 Put stakeholders’ information needs and goals of traceability at 
the center

P1a Choose a lightweight, developer-centric approach for goals 
related to tracking change to code

P1b Choose a formal, requirements-centric approach for goals 
related to regulation (e.g., safety or legal requirements)

P2 Balance the effort and benefit of traceability management per 
role

P3 Enable change propagation and notification across boundaries
P4 Strive for a rigorous culture with respect to traceability main-

tenance

These principles are on a rather general level, and are 
required to be instantiated using concrete practices. Related 
work has listed a number of challenges and solution can-
didates [32]. For example, the balance of the effort and 
benefit of traceability can be achieved by making concerns 
of various stakeholders more transparent by collecting and 
analyzing measurable data. Our interview data gave us the 
impression that using a common tool for better change 
propagation and notification can support P3. An integrated 
tool was also suggested to solve traceability challenges and 
improve communication related to requirements [27, 32]. A 
rigorous culture could be enabled by a “traceability guard-
ian” that lobbies for good trace link quality in a company, or 
managers ensuring that processes are followed [32].

10 � Conclusion

In this paper, we presented an exploratory multiple case 
study on traceability management which we conducted with 
24 practitioners from 15 industrial projects in Germany and 
Sweden.

We classified the challenges with managing traceability in 
a collaborative way (RQ1) as follows: (1) distributed organi-
zational structures and tool boundaries, (2) the lack of com-
mon goals and responsibilities, and (3) collaborative trace 
link maintenance. Especially, the balance of cost and benefit 
is a challenge for practitioners, as they have to see the useful-
ness of investing in traceability management. Whereas this 
is complex in practice, we also identified positive effects of 
traceability management on collaboration (RQ2). If a good 
balance is found, both trace link quality and collaboration 
in an organization can be positively impacted. The chal-
lenges of traceability management and distributed software 
engineering do not have to exacerbate each other. Instead, 
traceability can support collaboration and knowledge man-
agement in distributed environments and allow the explicit 
documentation of decisions. It can also provide new ben-
efits to practitioners as it can support change notification 
and coordination across disciplines in systems engineering.

Moreover, we analyzed how collaboration relates to 
traceability management approaches (RQ3): Requirements-
centered traceability management is often related to formal 
collaboration procedures, as it originates in large organiza-
tions where certifications and regulations play an important 
role and a strict, documented development process is fol-
lowed. Developer-driven traceability management is often 
conducted in less formal settings in an ad hoc fashion. It 
focuses especially on the implementation phase and is typi-
cally motivated by the benefit of tracking code changes back 
to their origin. Finally, mixed approaches combine the first 
two approaches and relate to various collaboration mecha-
nisms. Often the requirements-centered approach is estab-
lished in a top-down fashion, whereas bottom-up developer-
driven approaches are introduced by the development teams.

We investigated what characteristics of the develop-
ment effort have an influence on traceability management 
and collaboration (RQ4). These characteristics are most 
prominently observable in the underlying development 
paradigms and the rigor of following them. One finding 
was that traceability can be made use of independently of 
the level of agility. Agile approaches often leverage face-
to-face communication, whereas plan-driven approaches 
use more formal ways of collaboration. It is, however, nec-
essary to define traceability management strategies and 
follow them with a certain minimal level of rigor. If this 
is not the case, practitioners struggle with low trace link 



43Requirements Engineering (2020) 25:21–45	

1 3

quality and, consequently, with gaining benefits of their 
trace links.

The findings presented in this paper provide insights into 
the state of the practice of traceability management. Our 
principles of collaborative traceability management capture 
these findings and present them in an applicable way for 
practitioners.

Future work Our findings contribute toward a theory of col-
laborative traceability management. The presented explora-
tory case study which we conducted in collaboration with 24 
practitioners is a starting point for future empirical research 
validating our findings. One idea is to conduct a quantita-
tive study in which a survey is used to validate the identified 
findings and principles. We suggest to create more concrete 
practices based on the principles of collaborative traceability 
management.

One finding was that automatic approaches for traceabil-
ity management are not widely used in practice while there 
exists a lot of research in this area. We found that practition-
ers are interested in using input from automatic algorithms 
as a suggestion, as long as the quality is satisfactory. Deci-
sion support in the form of feasible suggestions for trace 
links could be one way to make trace link maintenance 
approaches more useful. It should be kept in mind that the 
rationale behind each suggestion should be communicated 
to the user and that she or he should not be overwhelmed by 
the amount of suggested trace links.

Besides automatic approaches for traceability manage-
ment, we found that it is an even more pressing concern to 
support collaboration on trace links. This can improve trace 
link maintenance, provided that users are not overwhelmed 
by messages regarding change or collaboration.

In particular, our principles need to be instantiated in 
concrete practices in the future. It would be interesting to 
explore new ways of supporting the benefits of traceabil-
ity and collaboration. Based on our findings, we encourage 
constructive research that takes into account the cost–ben-
efit ratio of traceability stakeholders. We see high potential 
for lightweight approaches that allow engineers to maintain 
trace link quality as a by-product of their work with low 
effort as well as for gamification approaches that increase 
intrinsic benefits.

We found that tool features supporting direct communi-
cation about trace links can be beneficial. One example is 
the voting feature mentioned. Future work can explore the 
possibility of letting practitioners comment and discuss trace 
links directly in a traceability management tool.

The benefit of traceability has to be conveyed to practi-
tioners so that they perceive the benefit as outweighing the 
potential effort, and are thus motivated to create, maintain, 
and use traceability. In the future, it would be interesting 
to analyze usage data of trace links to identify which trace 

links bring added value to a company. One potential benefit 
can be to use tool-supported traceability as an enabler for 
collaboration.

Compliance with ethical standards 

Funding  This work was supported by the Wallenberg AI, Autonomous 
Systems and Software Program (WASP) funded by the Knut and Alice 
Wallenberg Foundation; and Vinnova [Grant Number 2014-01271 
(Amalthea4public), 2014-05599 (NGEA Step 1), and 2015-04881 
(NGEA Step 2)].

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

	 1.	 Ali N, Sharafl Z, Gueheneuc Y, Antoniol G (2012) An empirical 
study on requirements traceability using eye-tracking. In: Proceed-
ings of the 28th IEEE international conference on software main-
tenance (ICSM’12), IEEE, pp 191–200. https​://doi.org/10.1109/
ICSM.2012.64052​71

	 2.	 Arkley P, Riddle S (2005) Overcoming the traceability benefit 
problem. In: Proceedings of the 13th IEEE international require-
ments engineering conference (RE’05), pp 385–389. https​://doi.
org/10.1109/RE.2005.49

	 3.	 Asuncion HU, François F, Taylor RN (2007) An end-to-end 
industrial software traceability tool. In: Proceedings of the 6th 
joint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on the foundations of 
software engineering (ESEC/FSE’07), pp 115–124. https​://doi.
org/10.1145/12876​24.12876​42

	 4.	 Atkinson R, Flint J (2001) Accessing hidden and hard-to-reach 
populations: Snowball research strategies. Soc Res Update 
33(1):1–4

	 5.	 Averbakh A (2014) Light-weight experience collection in dis-
tributed software engineering. Ph.D. thesis, Leibniz Universität 
Hannover

	 6.	 Bouillon E, Mäder P, Philippow I (2013) A survey on usage 
scenarios for requirements traceability in practice. In: Doerr 
J, Opdahl AL (eds) Requirements engineering: foundation 
for software quality. Springer, Berlin, pp 158–173. https​://doi.
org/10.1007/978-3-642-37422​-7_12

	 7.	 Cleland-Huang J (2012) Traceability in agile pro-
jects. In: [8], Springer London, pp 265–275. https​://doi.
org/10.1007/978-1-4471-2239-5

	 8.	 Cleland-Huang J, Gotel O, Zisman A (eds) (2012) Software and 
systems traceability. Springer-Verlag London Limited. https​://doi.
org/10.1007/978-1-4471-2239-5

	 9.	 Cleland-Huang J, Gotel OCZ, Huffman Hayes J, Mäder P, Zisman 
A (2014) Software traceability: trends and future directions. In: 
Proceedings of the future of software engineering (FOSE’14), pp 
55–69. https​://doi.org/10.1145/25938​82.25938​91

	10.	 Creswell JW (2008) Research design: qualitative, quantitative, 
and mixed methods approaches, 3rd edn. Sage Publications Ltd., 
Thousand Oaks

	11.	 Demuth A, Kretschmer R, Egyed A, Maes D (2016) Introducing 
traceability and consistency checking for change impact analysis 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICSM.2012.6405271
https://doi.org/10.1109/ICSM.2012.6405271
https://doi.org/10.1109/RE.2005.49
https://doi.org/10.1109/RE.2005.49
https://doi.org/10.1145/1287624.1287642
https://doi.org/10.1145/1287624.1287642
https://doi.org/10.1007/978-3-642-37422-7_12
https://doi.org/10.1007/978-3-642-37422-7_12
https://doi.org/10.1007/978-1-4471-2239-5
https://doi.org/10.1007/978-1-4471-2239-5
https://doi.org/10.1007/978-1-4471-2239-5
https://doi.org/10.1007/978-1-4471-2239-5
https://doi.org/10.1145/2593882.2593891


44	 Requirements Engineering (2020) 25:21–45

1 3

across engineering tools in an automation solution company: an 
experience report. In: IEEE international conference on software 
maintenance and evolution (ICSME’16), pp 529–538. https​://doi.
org/10.1109/ICSME​.2016.50

	12.	 Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting 
empirical methods for software engineering research. Guide to 
advanced empirical software engineering, pp 285–311. https​://
doi.org/10.1007/978-1-84800​-044-5

	13.	 Espinoza A, Garbajosa J (2011) A study to support agile meth-
ods more effectively through traceability. Innov Syst Softw Eng 
7(1):53–69. https​://doi.org/10.1007/s1133​4-011-0144-5

	14.	 Figueiredo MC, De Souza CR (2012) Wolf: supporting impact 
analysis activities in distributed software development. In: Pro-
ceedings of the 5th international workshop on cooperative and 
human aspects of software engineering (CHASE), pp 40–46. https​
://doi.org/10.1109/CHASE​.2012.62230​19

	15.	 Franzago M, Ruscio DD, Malavolta I, Muccini H (2018) Collabo-
rative model-driven software engineering: a classification frame-
work and a research map. IEEE Trans Softw Eng forthcoming. 
https​://doi.org/10.1109/TSE.2017.27550​39. https​://tinyu​rl.com/
ya5sr​lvd

	16.	 Furtado F, Zisman A (2016) Trace++: a traceability approach to 
support transitioning to agile software engineering. In: Proceed-
ings of the 24th international requirements engineering conference 
(RE’16), pp 66–75. https​://doi.org/10.1109/RE.2016.47

	17.	 Gayer S, Herrmann A, Keuler T, Riebisch M, Antonino PO 
(2016) Lightweight traceability for the agile architect. Computer 
49(5):64–71. https​://doi.org/10.1109/MC.2016.150

	18.	 Gotel O, Finkelstein AC (1994) An analysis of the requirements 
traceability problem. In: Proceedings of the 1st IEEE international 
conference on requirements engineering (ICRE’94), pp 94–101. 
https​://doi.org/10.1109/ICRE.1994.29239​8

	19.	 Gotel O, Cleland-Huang J, Huffman Hayes J, Zisman A, Egyed 
A, Grunbacher P, Antoniol G (2012) The quest for ubiquity: a 
roadmap for software and systems traceability research. In: 
Proceedings of the 20th IEEE international requirements engi-
neering conference (RE’12), pp 71–80. https​://doi.org/10.1109/
RE.2012.63458​41

	20.	 Gotel O, Cleland-Huang J, Huffman Hayes J, ZismanA, Egyed A, 
Grünbacher P, Dekhtyar A, Antoniol G, Maletic J, Mäder P (2012) 
Traceability fundamentals. In: [8], Springer London, pp 3–22

	21.	 Helming J, Koegel M, et al (2009) Traceability-based change 
awareness. In: Proceedings of the 12th intl. conf. on model driven 
engineering languages and systems (MODELS’09), pp 372–376. 
https​://doi.org/10.1007/978-3-642-04425​-0_28

	22.	 Jaber K, Sharif B, Liu C (2013) A study on the effect of trace-
ability links in software maintenance. IEEE Access 1:726–741. 
https​://doi.org/10.1109/ACCES​S.2013.22868​22

	23.	 Kannenberg A, Saiedian H (2009) Why software requirements 
traceability remains a challenge. J Defense Softw Eng 22(7):14–19

	24.	 Kirova V, Kirby N, Kothari D, Childress G (2008) Effective 
requirements traceability: models, tools, and practices. Bell Labs 
Tech J 12(4):143–157. https​://doi.org/10.1002/bltj

	25.	 Klimpke L, Hildenbrand T (2009) Towards end-to-end traceabil-
ity: insights and implications from five case studies. In: Proceed-
ings of the 4th international conference on software engineering 
advances (ICSEA’09), IEEE, pp 465–470. https​://doi.org/10.1109/
ICSEA​.2009.74

	26.	 Königs SF, Beier G, Figge A, Stark R (2012) Traceability in 
systems engineering—review of industrial practices, state-of-
the-art technologies and new research solutions. Adv Eng Inform 
26(4):924–940. https​://doi.org/10.1016/j.aei.2012.08.002

	27.	 Lang M, Duggan J (2001) A tool to support collaborative software 
requirements management. Requir Eng 6(3):161–172. https​://doi.
org/10.1007/s0076​60170​002

	28.	 de Lucia A, Oliveto R, Tortora G (2008) IR-based traceability 
recovery processes: an empirical comparison of one-shot and 
incremental processes. In: Proceedings of the 23rd IEEE/ACM 
international conference on automated software engineering, 
IEEE Computer Society, pp 39–48. https​://doi.org/10.1109/
ICPC.2011.34

	29.	 Mäder P, Egyed A (2015) Do developers benefit from require-
ments traceability when evolving and maintaining a software sys-
tem? Empir Softw Eng 20(2):413–441. https​://doi.org/10.1007/
s1066​4-014-9314-z

	30.	 Mäder P, Gotel O, Philippow I (2009) Motivation matters in the 
traceability trenches. In: Proceedings of the 17th IEEE interna-
tional requirements engineering conference (RE’09), pp 143–148. 
https​://doi.org/10.1109/RE.2009.23

	31.	 Maro S, Anjorin A, Wohlrab R, Steghöfer JP (2016) Traceability 
maintenance: factors and guidelines. In: Proceedings of the 31st 
IEEE/ACM international conference on automated software engi-
neering (ASE’16)

	32.	 Maro S, Steghöfer JP, Staron M (2018) Software traceability in 
the automotive domain: challenges and solutions. J Syst Softw 
141:85–110. https​://doi.org/10.1016/j.jss.2018.03.060

	33.	 Maxwell J (1992) Understanding and validity in qualitative 
research. Harv Educ Rev 62(3):279–301. https​://doi.org/10.17763​
/haer.62.3.83233​20856​25182​6

	34.	 Maxwell J (2012) Qualitative research design: an interactive 
approach. Applied Social Research Methods. SAGE Publications, 
Thousand Oaks

	35.	 Myers MD, Newman M (2007) The qualitative interview in IS 
research: examining the craft. Inf Organ 17(1):2–26. https​://doi.
org/10.1016/j.infoa​ndorg​.2006.11.001

	36.	 Palinkas LA, Horwitz SM, Green CA, Wisdom JP, Duan N, Hoag-
wood K (2015) Purposeful sampling for qualitative data collec-
tion and analysis in mixed method implementation research. Adm 
Policy Ment Health 42(5):533–544. https​://doi.org/10.1007/s1048​
8-013-0528-y

	37.	 Panis MC (2010) Successful deployment of requirements trace-
ability in a commercial engineering organization...really. In: Pro-
ceedings of the 18th IEEE international requirements engineer-
ing conference (RE’10), pp 303–307. https​://doi.org/10.1109/
RE.2010.43

	38.	 Rahimi M, Cleland-Huang J (2018) Evolving software trace 
links between requirements and source code. Empir Softw Eng 
23(4):2198–2231. https​://doi.org/10.1007/s1066​4-017-9561-x

	39.	 Ramesh B (1998) Factors influencing requirements trace-
ability practice. Commun ACM 41(12):37–44. https​://doi.
org/10.1145/29013​3.29014​7

	40.	 Ramesh B (2002) Process knowledge management with trace-
ability. IEEE Softw 19(3):50–52. https​://doi.org/10.1109/
MS.2002.10034​54

	41.	 Ramesh B, Stubbs C, Powers T, Edwards M (1997) Requirements 
traceability: theory and practice. Ann Softw Eng 3(1):397–415. 
https​://doi.org/10.1023/A:10189​69401​055

	42.	 Rath M, Rendall J, Guo JLC, Cleland-Huang J, Mäder P (2018) 
Traceability in the wild: automatically augmenting incomplete 
trace links. In: Proceedings of the 40th international conference 
on software engineering, ACM, New York, NY, USA, ICSE ’18, 
pp 834–845. https​://doi.org/10.1145/31801​55.31802​07

	43.	 Rempel P, Mäder P (2015) A quality model for the systematic 
assessment of requirements traceability. In: Proceedings of the 
23rd IEEE international requirements engineering conference 
(RE’15), pp 176–185. https​://doi.org/10.1109/RE.2015.73204​20

	44.	 Rempel P, Mäder P, Kuschke T (2013) An empirical study on 
project-specific traceability strategies. In: Proceedings of the 21st 
IEEE international requirements engineering conference (RE’13), 
pp 195–204. https​://doi.org/10.1109/RE.2013.66367​19

https://doi.org/10.1109/ICSME.2016.50
https://doi.org/10.1109/ICSME.2016.50
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/s11334-011-0144-5
https://doi.org/10.1109/CHASE.2012.6223019
https://doi.org/10.1109/CHASE.2012.6223019
https://doi.org/10.1109/TSE.2017.2755039
https://tinyurl.com/ya5srlvd
https://tinyurl.com/ya5srlvd
https://doi.org/10.1109/RE.2016.47
https://doi.org/10.1109/MC.2016.150
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/RE.2012.6345841
https://doi.org/10.1109/RE.2012.6345841
https://doi.org/10.1007/978-3-642-04425-0_28
https://doi.org/10.1109/ACCESS.2013.2286822
https://doi.org/10.1002/bltj
https://doi.org/10.1109/ICSEA.2009.74
https://doi.org/10.1109/ICSEA.2009.74
https://doi.org/10.1016/j.aei.2012.08.002
https://doi.org/10.1007/s007660170002
https://doi.org/10.1007/s007660170002
https://doi.org/10.1109/ICPC.2011.34
https://doi.org/10.1109/ICPC.2011.34
https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1109/RE.2009.23
https://doi.org/10.1016/j.jss.2018.03.060
https://doi.org/10.17763/haer.62.3.8323320856251826
https://doi.org/10.17763/haer.62.3.8323320856251826
https://doi.org/10.1016/j.infoandorg.2006.11.001
https://doi.org/10.1016/j.infoandorg.2006.11.001
https://doi.org/10.1007/s10488-013-0528-y
https://doi.org/10.1007/s10488-013-0528-y
https://doi.org/10.1109/RE.2010.43
https://doi.org/10.1109/RE.2010.43
https://doi.org/10.1007/s10664-017-9561-x
https://doi.org/10.1145/290133.290147
https://doi.org/10.1145/290133.290147
https://doi.org/10.1109/MS.2002.1003454
https://doi.org/10.1109/MS.2002.1003454
https://doi.org/10.1023/A:1018969401055
https://doi.org/10.1145/3180155.3180207
https://doi.org/10.1109/RE.2015.7320420
https://doi.org/10.1109/RE.2013.6636719


45Requirements Engineering (2020) 25:21–45	

1 3

	45.	 Runeson P, Höst M (2009) Guidelines for conducting and report-
ing case study research in software engineering. Empir Softw Eng 
pp 131–164. https​://doi.org/10.1007/s1066​4-008-9102-8

	46.	 Runeson P, Höst M, Rainer A, Regnell B (2012) Case study 
research in Softw Eng. Wiley, Hoboken

	47.	 Santiago I, Jiménez Á, Vara JM, De Castro V, Bollati VA, Marcos 
E (2012) Model-driven engineering as a new landscape for tracea-
bility management: a systematic literature review. Inf Softw Tech-
nol 54:1340–1356. https​://doi.org/10.1016/j.infso​f.2012.07.008

	48.	 Schneider K (2006) Rationale as a by-product. In: Dutoit AH, 
McCall R, Mistrík I, Paech B (eds) Rationale management 
in software engineering. Springer, pp 91–109. https​://doi.
org/10.1007/978-3-540-30998​-7_4

	49.	 Schneider K (2009) Experience and knowledge manage-
ment in software engineering. Springer, Berlin. https​://doi.
org/10.1007/978-3-540-95880​-2

	50.	 Seaman CB (1999) Qualitative methods in empirical studies of 
software engineering. IEEE Trans Softw Eng 25(4):557–572. 
https​://doi.org/10.1109/32.79995​5

	51.	 Sekitoleko N, Evbota F, Knauss E, Sandberg A, Chaudron M, 
Olsson HH (2014) Technical dependency challenges in large-scale 
agile software development. In: Cantone G, Marchesi M (eds) 
Proceedings of international conf. on agile softw. dev. (XP’14), 
Springer, Rome, Italy, LNBIP, vol 179, pp 46–61. https​://doi.
org/10.1007/978-3-319-06862​-6_4

	52.	 Sengupta B, Chandra S, et al (2006) A research agenda for dis-
tributed software development. In: Proceedings of the 28th 
international conference on software engineering (ICSE’06), pp 
731–740. https​://doi.org/10.1145/11342​85.11344​02

	53.	 Sengupta S, Kanjilal A, Bhattacharya S (2008) Requirement trace-
ability in software development process: an empirical approach. 
In: Proceedings of the 19th IEEE/IFIP international symposium 
on rapid system prototyping (RSP’08), IEEE, pp 105–111. https​
://doi.org/10.1109/RSP.2008.14

	54.	 Sinha V, Sengupta B, Chandra S (2006) Enabling collaboration in 
distributed requirements management. IEEE Softw 23(5):52–61. 
https​://doi.org/10.1109/MS.2006.123

	55.	 Spanoudakis G, Zisman A (2005) Software traceability: a road-
map. In: Handbook of software engineering and knowledge engi-
neering, vol 3. World Scientific Publishing, pp 395–428

	56.	 Strašunskas D (2002) Traceability in collaborative systems 
development from lifecycle perspective. In: Proceedings of the 
1st international workshop on traceability in emerging forms of 
software engineering (TEFSE ’02), pp 54–60

	57.	 Sundaram SK, Hayes Huffman J, Dekhtyar A, Holbrook EA 
(2010) Assessing traceability of software engineering artifacts. 
In: Proceedings of the 18th IEEE international requirements engi-
neering conference (RE’10), pp 313–335. https​://doi.org/10.1007/
s0076​6-009-0096-6

	58.	 Wohlrab R, Steghöfer JP, Knauss E, Maro S, Anjorin A (2016) 
Collaborative traceability management: challenges and opportu-
nities. In: Proceedings of the 24th IEEE international require-
ments engineering conference (RE’16), pp 216–225. https​://doi.
org/10.1109/RE.2016.17

https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1016/j.infsof.2012.07.008
https://doi.org/10.1007/978-3-540-30998-7_4
https://doi.org/10.1007/978-3-540-30998-7_4
https://doi.org/10.1007/978-3-540-95880-2
https://doi.org/10.1007/978-3-540-95880-2
https://doi.org/10.1109/32.799955
https://doi.org/10.1007/978-3-319-06862-6_4
https://doi.org/10.1007/978-3-319-06862-6_4
https://doi.org/10.1145/1134285.1134402
https://doi.org/10.1109/RSP.2008.14
https://doi.org/10.1109/RSP.2008.14
https://doi.org/10.1109/MS.2006.123
https://doi.org/10.1007/s00766-009-0096-6
https://doi.org/10.1007/s00766-009-0096-6
https://doi.org/10.1109/RE.2016.17
https://doi.org/10.1109/RE.2016.17

	Collaborative traceability management: a multiple case study from the perspectives of organization, process, and culture
	Abstract
	1 Introduction
	2 Related work
	2.1 Empirical studies on traceability approaches
	2.2 Traceability in agile
	2.3 Collaborative traceability management

	3 Research methodology
	3.1 Research validity

	4 Challenges: managing traceability collaboratively
	4.1 Collaboration across boundaries
	4.1.1 Collaboration with other departments
	4.1.2 Collaboration with external organizations
	4.1.3 Collaboration across tool boundaries

	4.2 Common goals and responsibilities
	4.2.1 Benefits of traceability
	4.2.2 Managing responsibilities

	4.3 Collaborative trace link maintenance
	4.3.1 Trace link quality
	4.3.2 Change propagation and notification


	5 Traceability: an enabler for collaboration
	5.1 Opportunities: collaboration across boundaries
	5.1.1 Easier communication in distributed environments
	5.1.2 Interdisciplinary engineering

	5.2 Explicit documentation of decisions
	5.3 Creating trace links to receive information

	6 Traceability management approaches
	6.1 Traceability goals’ relation to collaboration
	6.2 Requirements-centered traceability management
	6.3 Developer-driven traceability management
	6.4 Mixed approaches

	7 Influence of development effort characteristics
	7.1 Rigorous cases
	7.2 Balanced or lenient cases

	8 Discussion
	8.1 Challenges
	8.1.1 Collaboration across boundaries
	8.1.2 Common goals and responsibilities
	8.1.3 Collaborative trace link maintenance

	8.2 Effects of traceability management on collaboration
	8.2.1 Easier communication in distributed environments
	8.2.2 The explicit documentation of decisions
	8.2.3 Creating trace links to receive information
	8.2.4 Interdisciplinary engineering

	8.3 Traceability management approaches
	8.4 Contextual factors’ influence

	9 Implications of our findings
	10 Conclusion
	References




