57,467 research outputs found

    A foreign body response-on-a-chip platform

    Get PDF
    Understanding the foreign body response (FBR) and desiging strategies to modulate such a response represent a grand challenge for implant devices and biomaterials. Here, the development of a microfluidic platform is reported, i.e., the FBR?on?a?chip (FBROC) for modeling the cascade of events during immune cell response to implants. The platform models the native implant microenvironment where the implants are interfaced directly with surrounding tissues, as well as vasculature with circulating immune cells. The study demonstrates that the release of cytokines such as monocyte chemoattractant protein 1 (MCP?1) from the extracellular matrix (ECM)?like hydrogels in the bottom tissue chamber induces trans?endothelial migration of circulating monocytes in the vascular channel toward the hydrogels, thus mimicking implant?induced inflammation. Data using patient?derived peripheral blood mononuclear cells further reveal inter?patient differences in FBR, highlighting the potential of this platform for monitoring FBR in a personalized manner. The prototype FBROC platform provides an enabling strategy to interrogate FBR on various implants, including biomaterials and engineered tissue constructs, in a physiologically relevant and individual?specific manner

    Experimental multiphase estimation on a chip

    Get PDF
    Multiparameter estimation is a general problem that aims at measuring unknown physical quantities, obtaining high precision in the process. In this context, the adoption of quantum resources promises a substantial boost in the achievable performances with respect to the classical case. However, several open problems remain to be addressed in the multiparameter scenario. A crucial requirement is the identification of suitable platforms to develop and experimentally test novel efficient methodologies that can be employed in this general framework. We report the experimental implementation of a reconfigurable integrated multimode interferometer designed for the simultaneous estimation of two optical phases. We verify the high-fidelity operation of the implemented device, and demonstrate quantum-enhanced performances in two-phase estimation with respect to the best classical case, post-selected to the number of detected coincidences. This device can be employed to test general adaptive multiphase protocols due to its high reconfigurability level, and represents a powerful platform to investigate the multiparameter estimation scenario.Comment: 10+7 pages, 7+4 figure

    Cold molecular ions on a chip

    Get PDF
    We report the sympathetic cooling and Coulomb crystallization of molecular ions above the surface of an ion-trap chip. N2+_2^+ and CaH+^+ ions were confined in a surface-electrode radiofrequency ion trap and cooled by the interaction with laser-cooled Ca+^{+} ions to secular translational temperatures in the millikelvin range. The configuration of trapping potentials generated by the surface electrodes enabled the formation of planar bicomponent Coulomb crystals and the spatial separation of the molecular from the atomic ions on the chip. The structural and thermal properties of the Coulomb crystals were characterized using molecular dynamics simulations. The present study extends chip-based trapping techniques to Coulomb-crystallized molecular ions with potential applications in mass spectrometry, cold chemistry, quantum information science and spectroscopy.Comment: 5 pages, 4 figure

    A Stark decelerator on a chip

    Get PDF
    A microstructured array of 1254 electrodes on a substrate has been configured to generate an array of local minima of electric field strength with a periodicity of 120 μ\mum about 25 μ\mum above the substrate. By applying sinusoidally varying potentials to the electrodes, these minima can be made to move smoothly along the array. Polar molecules in low-field seeking quantum states can be trapped in these traveling potential wells. Recently, we experimentally demonstrated this by transporting metastable CO molecules at constant velocities above the substrate [Phys. Rev. Lett. 100 (2008) 153003]. Here, we outline and experimentally demonstrate how this microstructured array can be used to decelerate polar molecules directly from a molecular beam. For this, the sinusoidally varying potentials need to be switched on when the molecules arrive above the chip, their frequency needs to be chirped down in time, and they need to be switched off before the molecules leave the chip again. Deceleration of metastable CO molecules from an initial velocity of 360 m/s to a final velocity as low as 240 m/s is demonstrated in the 15-35 mK deep potential wells above the 5 cm long array of electrodes. This corresponds to a deceleration of almost 10510^5 gg, and about 85 cm1^{-1} of kinetic energy is removed from the metastable CO molecules in this process.Comment: 17 pages, 6 figure

    Continuous variable entanglement on a chip

    Full text link
    Encoding quantum information in continuous variables (CV)---as the quadrature of electromagnetic fields---is a powerful approach to quantum information science and technology. CV entanglement---light beams in Einstein-Podolsky-Rosen (EPR) states---is a key resource for quantum information protocols; and enables hybridisation between CV and single photon discrete variable (DV) qubit systems. However, CV systems are currently limited by their implementation in free-space optical networks: increased complexity, low loss, high-precision alignment and stability, as well as hybridisation, demand an alternative approach. Here we show an integrated photonic implementation of the key capabilities for CV quantum technologies---generation and characterisation of EPR beams in a photonic chip. Combined with integrated squeezing and non-Gaussian operation, these results open the way to universal quantum information processing with light

    Proteomics-on-a-chip for Biomarker discovery

    Get PDF
    In proteomics research still two-dimensional gel electrophoresis (2D-GE) is currently used for biomarker discovery. We applied free flow electrophoresis (FFE) separation technology combined with biomolecular interaction sensing using Surface Plasmon Resonance (SPR) imaging in an integrated proteomics-on-a-chip device as a proof of concept for biomarker discovery

    Fiber-coupled erbium microlasers on a chip

    Get PDF
    An erbium-doped, toroid-shaped microlaser fabricated on a silicon chip is described and characterized. Erbium-doped sol-gel films are applied to the surface of a silica toroidal microresonator to create the microcavity lasers. Highly confined whispering gallery modes make possible single-mode and ultralow threshold microlasers

    Polarization entangled state measurement on a chip

    Full text link
    The emerging strategy to overcome the limitations of bulk quantum optics consists of taking advantage of the robustness and compactness achievable by the integrated waveguide technology. Here we report the realization of a directional coupler, fabricated by femtosecond laser waveguide writing, acting as an integrated beam splitter able to support polarization encoded qubits. This maskless and single step technique allows to realize circular transverse waveguide profiles able to support the propagation of Gaussian modes with any polarization state. Using this device, we demonstrate the quantum interference with polarization entangled states and singlet state projection.Comment: Revtex, 5+2 pages (with supplementary information), 4+1 figure
    corecore