Encoding quantum information in continuous variables (CV)---as the quadrature
of electromagnetic fields---is a powerful approach to quantum information
science and technology. CV entanglement---light beams in
Einstein-Podolsky-Rosen (EPR) states---is a key resource for quantum
information protocols; and enables hybridisation between CV and single photon
discrete variable (DV) qubit systems. However, CV systems are currently limited
by their implementation in free-space optical networks: increased complexity,
low loss, high-precision alignment and stability, as well as hybridisation,
demand an alternative approach. Here we show an integrated photonic
implementation of the key capabilities for CV quantum technologies---generation
and characterisation of EPR beams in a photonic chip. Combined with integrated
squeezing and non-Gaussian operation, these results open the way to universal
quantum information processing with light