559 research outputs found

    Transformation As Search

    Get PDF
    In model-driven engineering, model transformations are con- sidered a key element to generate and maintain consistency between re- lated models. Rule-based approaches have become a mature technology and are widely used in different application domains. However, in var- ious scenarios, these solutions still suffer from a number of limitations that stem from their injective and deterministic nature. This article pro- poses an original approach, based on non-deterministic constraint-based search engines, to define and execute bidirectional model transforma- tions and synchronizations from single specifications. Since these solely rely on basic existing modeling concepts, it does not require the intro- duction of a dedicated language. We first describe and formally define this model operation, called transformation as search, then describe a proof-of-concept implementation and discuss experiments on a reference use case in software engineering

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    Extension to UML-B Notation and Toolset

    No full text
    The UML-B notation has been created as an attempt to combine the success and ease of use of UML, with the verification and rigorous development capabilities of formal methods. However, the notation currently only supports a basic diagram set. To address this we have, in this project, designed and implemented a set of extensions to the UML-B notation that provide a much fuller software engineering experience, critically making UML-B more appealing to industry partners. These extensions comprise five new diagram types, which are aimed at supplying a broader range of design capabilities, such as conceptual Use-Case design and future integration with the ProB animator tool

    MDA-Based Reverse Engineering

    Get PDF

    A Feature Model for an IDE4OCL

    Get PDF
    An Integrated OCL Development Environment (IDE4OCL) can significantly improve the pragmatics and practice of OCL. Therefore we started a comprehensive requirement analysis with the long term vision of a multisite IDE4OCL project. In this paper we present a feature model for the IDE4OCL vision based on this analysis. In an earlier work we identified domain concepts, tool–level interactions with IDE4OCL, and use cases for OCL developers including a set predefined features. In the second step, we asked the OCL community members for their feedback on our proposal. Around 100 researchers, tool developers and practitioners who gained experience with OCL have voted in an online–survey. The results gave us a valuable insight in the needs of OCL usage both in usual and advanced OCL applications. One of the important results is a collection of features that have been proposed additionally to our predefined features. We analysed all the comments of the participants of the survey and consolidated them into an extended set of IDE4OCL features and eventually into a feature model

    Evaluation of the QVT Merge Language Proposal

    Get PDF
    -STF90 A05045This report has identified 29 weighted evaluation criteria representing desired properties of a model to model transformation language. These criteria have been used to evaluate the current QVT Merge specification. We have so far only been able to evaluate 21 of these criteria, mainly due to missing tool support. Some of the criteria are considered absolute in the sense that missing to fulfil such a criterion is considered a failure. The 21 evaluated criteria give a score of 59 out of a maximum possible score of 68 (language-based + example-based testing). We have also compared the QVT-Merge submission with the QVT-Compuware/Sun submission and at the time being the QVT-Merge seems to be the preferred one due to more support on the absolute criteria and better easy-to-use score. Eight transformation examples for solving six different transformation tasks have given a lot of insight on the ease of use criteria for both simple and complex transformations. When defining transformations using QVT Merge we believe that a lot of effort may be required in order to define the source and target  metamodels. The evaluation in this report could be improved by using the reference examples with alternative approaches published in the literature. An available QVT-Merge tool is necessary in order to provide evaluations of all the suggested criteria. In order to further investigate the usability of the graphical notation, we need to define more of the transformation examples graphically. Only one of the examples has been specified graphically in this version. The current evaluation has been done by a single evaluator who has only reviewed the transformation code that was written by somebody else. The evaluation will be further improved by incorporating input from other evaluators as well as evaluation from those who wrote the transformation code. Oppdragsgiver: EU Commissio

    Sharing OCL Constraints by Using Web Rules

    Get PDF
    This paper presents an MDE-based approach to interchanging rules between the Object Constraint Language (OCL) and REWERSE I1 Rule Markup Language (R2ML). The R2ML tends to be a standard rule markup language by following up the W3C initiative for Rule Interchange Format (RIF). The main benefit of this approach is that the transformations between languages are completely based on the languages' abstract syntax (i.e., metamodels) and in this way we keep the focus on the language concepts rather than on technical issues caused by different concrete syntax. In the current implementation, we have supported translation of the OCL invariants into the R2ML integrity rules. While most of the OCL expression could be represented in the R2ML and other rule languages, we have also identified that collection operators could only be partially supported in other rule languages (e.g., SWRL)
    corecore