

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 1 of 85

MODELWARE
IST Project 511731

MODELling solution for softWARE systems

Evaluation of the QVT Merge Language Proposal

Document Reference: Modelware/I1.2.1

Document
Version:

1.0

Document Preparation
Date:

31st of March 2005

Dissemination level: P
U

 P
P

 R
E

 C
O

Author(s): Roy Grønmo, Jan Aagedal, Arnor Solberg (SINTEF), Mariano Belaunde (France Telecom),
Peter Rosenthal (INRIA), Madeleine Faugere (Thales), Tom Ritter, Marc Born (Fraunhofer)

Project funded by the European Community
under the “Information Society Technologies”
Sixth Framework Programme

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 2 of 85

Table of contents

1. Introduction .. 5

2. Deriving evaluation criteria .. 6
2.1. QVT actors realising the model transformation assets ... 6

2.2. QVT actors implementing the model transformation assets .. 7

2.3. QVT actors applying model transformation assets .. 8

3. Evaluation Criteria .. 9
3.1. Tool-Dependant Properties.. 9

3.1.1. Incomplete transformations completed by human intervention... 9
3.1.2. Transactional transformation.. 10
3.1.3. Conservative transformation .. 10
3.1.4. Performance/Scalability.. 11
3.1.5. Control of execution process.. 11
3.1.6. Ability to debug the transformation ... 11
3.1.7. Ability to check rule consistency... 12
3.1.8. Secondary properties of tool-dependant properties.. 12
3.2. Inherent Language Properties... 12

3.2.1. Traceability... 12
3.2.2. Bidirectionality .. 13
3.2.3. QoS Mapping ... 13
3.2.4. Resolution of QoS properties ... 13
3.2.5. Composition of transformations.. 14
3.2.6. Constraints between rules.. 14
3.2.7. Multiple source models... 14
3.2.8. Multiple target models .. 15
3.2.9. Updating source model(s) .. 15
3.2.10. Reusability ... 15
3.2.11. Incomplete transformations completed with pattern parameters .. 16
3.2.12. Repetitiveness.. 16
3.2.13. Restricting conditions/pre-conditions.. 16
3.2.14. Black-box interoperability ... 17
3.2.15. Unidirectionality.. 17
3.2.16. Modularity .. 17
3.2.17. Object orientation ... 18
3.2.18. Availability of complete textual notation.. 18
3.2.19. Presentation using graphical notation .. 18
3.2.20. Learning Curve... 19
3.2.21. Secondary properties of inherent language properties. .. 19
3.3. Example-Dependant Properties .. 19

3.3.1. Ease of use in simple transformations.. 19

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 3 of 85

3.3.2. Ease of use in complex and large transformations ... 20
3.3.3. Secondary properties of example-dependant properties .. 20

4. Evaluation Method ... 22

5. QVT Merge Language-Based Evaluation .. 23

6. QVT Merge Example-Based Evaluation.. 25
6.1. Example 1: EJB/UML EJB/Java.. 25

6.1.1. Metamodels ... 25
6.1.2. Rules Specification... 26
6.1.3. Typical Test Example... 27
6.1.4. Definition using MergeQVT .. 27
6.1.5. Discussion.. 30
6.2. Example 2: XSLT2XQuery ... 31

6.2.1. Metamodels ... 31
6.2.2. Rules Specification... 33
6.2.3. Typical Test Example... 36
6.2.4. Definition using MergeQVT .. 36
6.2.5. Discussion.. 38
6.3. Example 3: UML SPEM profile UML SPEM metamodel ... 38

6.3.1. Metamodels ... 39
6.3.2. Rules Specification... 39
6.3.3. Typical Test Example... 39
6.3.4. Definition using MergeQVT .. 39
6.3.5. Discussion.. 41
6.4. Example 4 UML RDBMS ... 41

6.4.1. Metamodels ... 41
6.4.2. Rules Specification... 43
6.4.3. Typical Test Example... 43
6.4.4. Definition using MergeQVT .. 43
6.4.5. Discussion.. 46
6.5. The Example 5: Book Publication.. 46

6.5.1. Metamodels ... 46
6.5.2. Rules Specification... 47
6.5.3. Typical Test Example... 47
6.5.4. Definition using MergeQVT .. 47
6.5.5. Discussion.. 48
6.6. The Example 6: EDOC J2EE ... 48

6.6.1. Metamodels ... 48
6.6.2. Rules Specification... 54
6.6.3. Typical Test Example... 55
6.6.4. Definition using MergeQVT .. 56
6.6.5. Discussion.. 61

Page 4 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

7. Summary of the QVT Merge Example-Based Evaluation 63

8. Evaluation of QVT Compuware/Sun ... 65
8.1. QVT Compuware/Sun Language-Based Evaluation... 65

8.2. QVT Compuware/Sun Example-Based Evaluation... 66

8.3. Definition using QVT Compuware/Sun.. 66

8.4. Discussion .. 74

8.5. Summary of QVT Compuware/Sun Evaluation .. 74

9. Related Work.. 76

10. Conclusions ... 77

11. References ... 78

12. Appendix ... 79
12.1. EDOC to J2EE using the Frauhofer formalism... 79

12.1.1. Transformation of Package Structure... 79
12.1.2. Transformation of primitive and composite data... 79
12.1.3. Transformation of Data Managers.. 80
12.1.4. Transformation of Entities .. 81
12.1.5. Transformation of Process Components .. 81
12.1.6. Transformation of EDOC Ports... 82

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 5 of 85

1. Introduction
An overall objective of MODELWARE is to improve productivity in software development. This objective will
be pursued by realising the vision of model-driven software development. To this end, model transformation
is viewed as a crucial technology. Model transformation makes it possible to derive models from other
models in a controlled and automatable manner. It also simplifies the way one relate models, for instance to
ensure consistency. OMG is currently finalising a standard that defines how one should specify model to
model transformations of MOF models. In this report we evaluate this forthcoming standard.

The purpose of this evaluation is to investigate to what extent the current QVT Merge approach [1] – which is
likely to become an OMG adopted standard in 2005 - is able to fulfil the requirements criteria and
expectations on model to model transformations expressed by the MODELWARE partners. In addition, this
evaluation may provide valuable feedback for any needed improvement to the QVT submission team. This
report also includes a quick evaluation of the competing QVT Compuware/Sun approach [2].

This report selects a number of evaluation criteria, defines the evaluation method and then performs the
evaluation on concrete examples. We have chosen examples that other approaches claim to handle well and
reformulate them according to the QVT Merge proposal, in order to see whether QVT Merge is able to
handle what other approaches claim they can. The summary section provides an overall view of the results
of the evaluation, and provides some recommendations.

MODELWARE is a project co-funded by the European Commission under the "Information Society
Technologies" Sixth Framework Programme (2002-2006). Information included in this document reflects only
the author’s views. The European Community is not liable for any use that may be made of the information
contained herein.

Page 6 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

2. Deriving evaluation criteria
In this section a set of requirements for model-transformations are identified. These are analyzed in order to
derive our evaluation criteria, which is described in the next section. The Modelware WP description (what
we aim to achieve in this WP) has been our guide to the requirements elicitation. In order to come of with
relevant requirements we have conducted a survey of relevant literature (in particular [3-5]).

The identified requirements serves as the rationale for the selected evaluation criteria and its given weight
value. Each evaluation criteria may be traced to one or more of the identified requirements

Traditional use case techniques are used for requirements elicitation. Thus the requirements identified are
user-driven and is thereby specified at the operational level (the level where model-transformations are
performed). Following the use case approach a set of actors are identified and their needs are derived.
These are depicted in Figure 1 and Figure 2.

Three main actors have been identified:

• QVT actors specifying the model transformation assets,

• QVT actors implementing the model transformation assets,

• QVT actors using the model transformation asset to create and update models

2.1. QVT actors realising the model transformation assets

Actor Role
 Its role is to design QVT rules of a determined set of user

requirements. QVT Designer tasks are:

• Elaborate the source and target metamodels,

• Define source to target mapping

 Reuse already defined rules if necessary

 Specialize existing rules

 Create nested rules

 Apply transformation patterns

 Integrate non-functional constraints properties

• Define package organisation for model transformation rules in
order to improve reuse and business knowledge capitalization

• Precise rule properties like constraints or order

• Test / check rule design completeness

• Document the rule design to ease maintenance

QVT Designer

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 7 of 85

Rule definition and design

Meta model Elaboration

Rule organization

Define source/target mappings

Reuse Rule mappins

Integrate non-functional constraints QoS propeties

Specify rule meta data and constraints

Rule architecture (for reuse)

Rule desin documentation

QVT patterns

QVT Designer

<<extend>>

<<include>>

<<include>>

<<extend>>

<<extend>>

<<include>>

Figure 1 Rule definition and design

For this activity, the transformation language shall be easy to learn and intuitive use. Rules design can be
described in a textual or graphical form, and like traditional software design must provide reuse,
specialization, and capitalization capabilities and shall cover all model aspect (static, dynamic, non functional
aspect…). Transformation rules can require several input models, and can produce several target models.

2.2. QVT actors implementing the model transformation assets

Actor Role
 Its role is to code QVT rules. He has to

• Implement QVT rules according rule design

 Use existing libraries and patterns

 Use software programming techniques

• Define rule implementation architecture and modules

• Test the implementation according the requirements

• Create the model transformation modules (artefacts) if necessary

QVT Developers

Page 8 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Rule Development

QVT developer

Rule implementations

Implementation Test

Organize rule implementation

QVT plugin creation

Reuse rule implementations

Rule composition

Use implementation patterns

Verify rule compleness

<<include>>

<<include>>

<<extend>>

<<include>>

Figure 2 Rule development

2.3. QVT actors applying model transformation assets

Actor Role

Its role is to apply QVT transformation assets on models. He has to

• Creates models

• Apply transformation

 make choices

• Modify models and propagates modification over different
abstraction layers.

QVT User

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 9 of 85

3. Evaluation Criteria
Each criterion is defined using these properties:

• “Name” uniquely identifies the criterion.

• “Description” describes what the criterion is.

• “Absolute” defines whether the criteria must be present or whether it is optional. A criterion is satisfying
the absolute requirement if there is some level of support, such as the lowest level. An approach that
does not meet one of its absolute criteria is considered useless. Notice that an absolute criterion which
has a scale with only two outcomes (No support / support) has irrelevant weight as all the useful
approaches will get the same score.

• “Scale” defines the measurement scale (Examples: Support / No support or {0,1,2,3} where 0 means no
support, 1 means…). Increasing values are always better unless stated otherwise. Thus the optimal
scale measurement is the highest achievable value.

• “Weight” defines how important we consider the criteria to be (1 = lowest importance, 6 = highest
importance).

• “Weight and Absolute judgment” describes why we have assigned the weight and choice of absolute vs.
optional.

The aim is to ensure that each criterion has a proper rationale, that there are no overlapping criteria and that
they are easy to measure. Furthermore the criteria should be such that it will differentiate different
tools/languages. The desired criterion is poorly specified if all tools and languages automatically will support
the property.

The criteria are sorted in three categories:

• Tool-dependant. These criteria can only be evaluated if the transformation language is
implemented in a specific tool.

• Inherent language properties. These criteria can be evaluated entirely based on the definition of
the language. The outcome of the evaluation will not vary with the kind of source or transformation
examples used.

• Example-dependant. The evaluation of these criteria depends on the kind of source or
transformation examples used.

The categorization between tool-dependant and inherent language properties may be difficult since in most
cases a tool may add more support than is built into the language. We suggest that the property in such
cases should belong primarily to the inherent language properties as this will make the approach less tool-
dependant. For some of the properties it is also specified that they belong to another category as a
secondary criterion. All the criteria are expressed as desired properties. The measurement on the scale
determines to what extent the desired property is fulfilled. Tool-dependant properties are not measured as
there are no current tool implementations of the latest QVT-Merge specification. The inherent language
properties are measured by manual inspection of the specification, while the example-dependant properties
are measured by manual inspection of proposed QVT transformation code for specific examples.

3.1. Tool-Dependant Properties

3.1.1. Incomplete transformations completed by human intervention

Rationale: In some cases it will be desirable to parameterize the transformation with user input. This is an
additional need to the parameterization of the reusability property due to convenience or due to knowledge
that is not present in design time.

Page 10 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Scale details: 0 = No support. 1 = Human input is possible, but it is not stored, re-applied in repeated
transformations or modifiable in consecutive transformations. 2 = Full support for human input. It is stored,
re-applied or modified depending on the user’s choice in consecutive transformations.

Weight and Absolute judgment: The weight is low since it will not be needed in most use cases. It is absolute
since it needs to be supported in those cases where it is needed.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Incomplete
transformations
completed by
human
intervention

Be able to execute incomplete/in-
deterministic transformations that may
require external input to process the
transformation.

The re-applying of the transformation
will take the human input.

Human input shall be stored.

Human input shall be modifiable.

Yes {0,1,2} 2

3.1.2. Transactional transformation

Rationale: This is needed in transformation compositions where the failure of one transformation implies that
all the other state prior to all the transformations should be recovered. This is equivalent to transactions and
recovery in databases.

Scale details: 0=No support, 1 = ACID transactions, 2 = distributed transactions, 3= nested distributed
transactions.

Weight and Absolute judgment: The weight is low since there are many typical use cases where
transactional transformation is not needed. It is absolute since it in some use cases is critical.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Transactional
transformation

Nested transaction (useful by rule
composition) shall be possible.

Yes {0,1,2,3} 2

3.1.3. Conservative transformation

Rationale: This will enable model lifecycle support so that the model may be generated, manual changes
may be made and then at a later stage a re-generation will not override the manual changes unless the user
gives permission to do so.

Scale details: 0 = No support. 1 = Some kind of manual marking is done to ensure that certain parts of the
target model shall not be overwritten in a re-generation. 2 = All manual changes to the target model will be
discovered and not overwritten. 3 = All manual changes are discovered and the user is consulted about
which parts to keep and which to overwrite. 4 = Level 3 support + the automatic support of updating the
source model if the user chooses this feature.

Weight and Absolute judgment: The weight is low since there are many typical use cases where it is not
needed to do manual changes. It is absolute since it is critical in cases where one needs to re-generate after
manual changes.

Name Description Absolute Scale Weight

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 11 of 85

(Yes/No) (1..6)

Conservative
transformation

Be able to re-apply a transformation
without loosing manually target model
upgrade.

Yes {0,1,2,3,4} 2

3.1.4. Performance/Scalability

Rationale: This property is given a low weight since most transformations will probably be executed prior to
run-time meaning that time is not very critical. But it is still desirable that the large transformations are
executed within an acceptable time period.

Scale details: The scale is not determined for this property. One needs to define some reference examples
with transformation definitions , source models and corresponding acceptable execution time.

Weight and Absolute judgment: The weight is medium because a transformation execution is not a time-
critical where one desires optimal performance. Acceptable performance is good enough. The weight is not
low since it must be able to handle complex transformations in reasonable time. It is not absolute since the
boundary of acceptable waiting time is unclear.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Performance/Scalability Be able to specify huge transformations
and perform them for large models in
reasonable time.

No 3

3.1.5. Control of execution process

Rationale: It may be more convenient for the transformation user to be able to specify all the user information
at once, so that it is not needed to watch the transformation in its complete execution period.

Scale details: Support / No support

Weight and Absolute judgment: The weight is very low since this is only a convenience property and which is
not even applicable in many typical use cases.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Control of
execution
process

During a transformation, avoid spread
user information request

No Support
/ No
support

1

3.1.6. Ability to debug the transformation

Rationale: This is desired so that the transformation architect more easily can track down errors or ensure
that the transformation does what it is supposed to do.

Scale details: Support / No support

Weight and Absolute judgment: The weight is high since debugging facilities can greatly improve the working
conditions for the transformation architect.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Page 12 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Ability to
debug the
transformation

The language is associated with an
environment to debug rule transformation

Yes Support
/ No
support

5

3.1.7. Ability to check rule consistency

Rationale: This is desired so that a transformation can be validated prior to being executed. Thus it will be
easier to capture errors at an early stage.

Scale details: Support / No support

Weight and Absolute judgment: The weight is high since this ability is expected to greatly decrease the time
needed to define and maintain transformations. It is not absolute since many other desired properties can
fulfill some of the needs.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Ability to
check rule
consistency

The language is associated with an
environment to check rule consistency

No Support
/ No
support

5

3.1.8. Secondary properties of tool-dependant properties

These properties are defined as belonging to a different category, but do also have some secondary
relevance in this category: <none>.

3.2. Inherent Language Properties

3.2.1. Traceability

Rationale: This property will make it easier for the transformation architect to understand how changes in the
source will affect the target. It is very useful when managing operation on models like impact analysis, for
instance if an element is deleted then other depending elements may need to be deleted and this could be
reported by the traceability mechanism. It is also useful when undesired target results are produced as the
tracing back to the source element will be of important help in order to correct the source model or definition
of the transformation.

Scale details: 0 = No support, 1 = Manual support. The user must explicitly express the elements to be
traced. 2 = Automatic support. The tool automatically provides traceability of all the elements.

Weight and Absolute judgment: The weight is high and absolute since this property is essential in order to
understand and maintain the transformations.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Traceability Be able to relate modelling elements between
source and target. (A)

Be able to retrieve without ambiguity the elements
created in the target model. (B)

Yes {0,1,2} 5

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 13 of 85

3.2.2. Bidirectionality

Rationale: It will be easier for the transformation architect to define one bidirectional transformation than to
define two separate transformations for this purpose. The maintenance of a single transformation definition
will also be easier to maintain and it reduces the risk of errors.

Scale details: Support / No support.

Weight and Absolute judgment: The weight is low since it is possible to achieve the same transformation with
two separate transformations and many transformations will not be bidirectional.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Bidirectionality Whether the transformation rules are
executable in both directions (from source
and target).

No Support
/ No
support

2

3.2.3. QoS Mapping

Rationale: QoS specifications should be preserved in transformations. This means that source model
elements with QoS specifications linked to them should produce source model elements with corresponding
QoS specifications associated. Such a transformation could either see to it that the QoS specifications are
carried forward through the transformation or that they are refined into other QoS specifications.

Scale details: Support / No support.

Weight and Absolute judgment: The weight is medium since many transformations will not care about QoS
mapping. It is absolute since it is critical for those transformations where it is needed.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

QoS
Mapping

Be able to preserve QoS specifications in
transformations.

Yes Support
/ No
support

3

3.2.4. Resolution of QoS properties

Rationale: QoS requirements at one level of abstraction may correspond to a functional requirement/solution
at a lower level of abstraction. It should be possible to specify and trace such a transformation.

Scale details: Support / No support.

Weight and Absolute judgment: The weight is low since many transformations will not care about QoS
mapping and it is partly overlapping with traceability. It is absolute since it is critical for those transformations
where it is needed.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Resolution of
QoS
properties

Be able to transform QoS properties into
behaviour and trace these transformation

Yes Support
/ No
support

2

Page 14 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

3.2.5. Composition of transformations

Rationale: This is desired in order to reuse several basic transformations to accomplish a more complex
task.

Scale details: 0 = No support. 1 = Sequence only. 2 = Supporting the five basic control flow patterns
(http://tmitwww.tm.tue.nl/research/patterns/patterns.htm)

Weight and Absolute judgment: The weight is medium since there are many typical cases where composition
is not needed. It is absolute since leaving it to the user to handle the transformation composition execution
will be too error-prone and tedious.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Composition
of
transformation

Be able to compose transformations (in
sequence or parallel).

Create transformation rules by sequencing
of already defined transformation rules
(example Query rule composition)

Yes {0,1,2} 3

3.2.6. Constraints between rules

Rationale: This is desired in order to capture dependencies between rules. These dependencies rules can
be realized by rule pre/post condition definition or rule ordering.

Scale details: Support / No support

Weight and Absolute judgment: The weight is very low since this capability is partly overlapping with the
restricting conditions/pre-conditions property.

Name Description Absolute
(Y/N)

Scale Weight
(1..6)

Constraints
between rules

Be able to specify constraints between
rules.

No Support
/ No
support

1

3.2.7. Multiple source models

Rationale: This is important since the input from more than one source model may be necessary in order to
produce the target.

Scale details: Support / No support

Weight and Absolute judgment: The weight is low since many typical use cases do not need this property.
For those where it is needed it can probably be achieved by consecutive transformations taking one source
model at a time.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Multiple
source
models

Be able to have more than one source
model

No Support
/ No
support

2

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 15 of 85

3.2.8. Multiple target models

Rationale: This is useful since there may be cases where it is desired to produce more than one target
model.

Scale details: Support / No support

Weight and Absolute judgment: The weight is very low since many typical use cases do not need this
property. If not desired it may still be achieved by defining several transformations, each operating on the
source model(s) and producing one target each.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Multiple target
models

Be able to have more than one source
model with a single transformation
definition

No Support
/ No
support

1

3.2.9. Updating source model(s)

Rationale: In some cases it is desired to update/complete an existing model instead of producing a new
model (source and target models are the same).

Scale details: Support / No support

Weight and Absolute judgment: The weight is low since this is not needed in many typical use cases. It is
absolute since it is critical in the cases where it is needed.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Updating
source
model(s)

Be able to define transformation rules to
update the source model(s)

Yes Support
/ No
support

2

3.2.10. Reusability

Rationale: It is desirable to define transformations that capture common transformation rules that can be
reused by other more specialized or parameterized transformations. This will improve the ability to share
common knowledge, the ability to faster make new transformations and the ability to maintain the
transformations.

Scale details: 0 = No support. 1 point for each of these that are satisfied: a) can import transformation library
b) can specialize transformations. Maximum score is 2. To avoid overlapping with another desired property
(3.2.11) specialization does not include parameterization. The specialization part property is overlapping with
the inheritance part property of Object orientation, but it still seems relevant as there may also be other ways
of specializing a transformation. If transformation inheritance is supported then one point will be given both in
the Reusability and the Object orientation criteria.

Weight and Absolute judgment: The weight is high since this property is believed to improve faster
development and maintenance and it is applicable to most transformations except for the simplest ones. It is
not absolute since it is overlapping with other properties and thus many of the needs may be covered by
them.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Page 16 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Reusability Be able to reuse transformations by:

• Specialization of transformations,

• Importing of transformation library.

No {0,1,2} 5

3.2.11. Incomplete transformations completed with pattern parameters

Rationale: This is a powerful construction to reuse large parts of a transformation that otherwise needs to be
copied into several transformations.

Scale details: Support / No support

Weight and Absolute judgment: The weight is low since this is just one of many properties that can enable
reuse of code.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Incomplete
transformations
completed with
pattern
parameters

This is the ability to use transformation
patterns that can be
parameterised/instantiated into complete
transformations.

Yes Support
/ No
support

2

3.2.12. Repetitiveness

Rationale: This ensures that the transformations are defined precisely and unambiguously. There will be one
and only one target result for a given source.

Scale details: Support / No support. It is not supported if and only if the transformation language allows non-
deterministic or ambiguous constructions.

Weight and Absolute judgment: The weight is the highest since this is a fundamental property of the
language in order to be used as an unambiguous transformation language.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Repetitiveness Whether it is possible to ensure that same
transformation on same source gives
same result.

Yes Support
/ No
support

6

3.2.13. Restricting conditions/pre-conditions

Rationale: This is useful to ensure that the source model(s) provided to the transformation follows the
restrictions set by the transformation. It prevents the transformation from being used incorrectly and provides
the opportunity to give critical feedback to the transformation user. It is partly overlapping with the constraints
between rules criterion.

Scale details: Support / No support.

Weight and Absolute judgment: The weight is high since this can detect errors in the usage of a
transformation and it is needed in every transformation. It is optional since the validity check of the source
model(s) also can be checked in external tools such as a modeling tool.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 17 of 85

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Restricting
conditions/pre-
conditions

Whether it is possible to restrict the
applicability of a rule depending on
conditions. For instance that the source
model follows some-UML-profile

No Support
/ No
support

4

3.2.14. Black-box interoperability

Rationale: This enables the reuse of any existing codes or scripts that otherwise would need to be rewritten
in the QVT language.

Scale details: Support / No support. Support requires that it is possible to specify references to external code
within a QVT transformation.

Weight and Absolute judgment: The weight is high since this will make it faster to develop new
transformations by reusing parts from legacy code, and reduces errors since we do not need to redefine
existing transformation code that is tested to be OK.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Black-box
interoperability

Whether it is possible, within a QVT
transformation, to make usage of a
transformation component that has been
specified or implemented using another
technology.

Yes Support
/ No
support

4

3.2.15. Unidirectionality

Rationale: When we never need to apply the reverse transformation it will be easier to concentrate only on
the transformation one-way.

Scale details: Support / No support.

Weight and Absolute judgment: The weight is high since it is expected that more than 50% of the
transformation use cases are unidirectional. It is absolute since it will make unidirectional transformation
specifications unnecessarily complex if not satisfied.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Unidirectionality Whether it is possible to concentrate on
the transformation in one direction
without any need to solve any issue
regarding the potential opposite
direction.

Yes Support
/ No
support

4

3.2.16. Modularity

Rationale: This will ease the comprehension and development of transformations.

Scale details: Support / No support. Support for this includes the possibility to split a transformation into
several files, structure the code in separate UML package, provide separate transformation rules or to group
methods inside classes, thus achieving fine grain modularity.

Page 18 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Weight and Absolute judgment: The weight is the highest since this will enable one to define structured and
maintainable code. It is not absolute since it is overlapping with some of the other properties.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Modularity Whether it is possible to structure the
transformation rules in distinct pieces to
ease comprehensibility of the
specification.

No Support
/ No
support

6

3.2.17. Object orientation

Rationale: The principles of object orientation (OO) will improve the reuse, maintenance and comprehension
of transformations.

Scale details: 0 = No support. 1 point for each of these four OO principles that are satisfied: a) inheritance b)
encapsulation c) identity/ instantiation d) late binding/ polymorphism.

Weight and Absolute judgment: The weight is medium since there is a chance that other programming
paradigms are equally or better suited for defining transformation specifications.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Object
orientation

Whether common object oriented design
techniques are applicable to the design
of a transformation

No {0,1,2,3, 4} 3

3.2.18. Availability of complete textual notation

Rationale: Textual notation enables users to define transformations without a graphical tool. Textual
notations are also often preferred for defining large, complex transformations since graphical approaches are
hard to scale.

Scale details: Support / No support

Weight and Absolute judgment: The weight is high and it is absolute because we assume that a textual
notation is essential to properly handle large and complex transformations.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Availability of
complete
textual syntax

Ability to specify a transformation
completely using a textual syntax

Yes Support
/ No
support

4

3.2.19. Presentation using graphical notation

Rationale: Graphical notations provide a higher-level view on the transformation and can more easily be
communicated than a pure lexical alternative.

Scale details: 0 = No support. 1 = Only parts of a transformation can be graphical. 2 = A single
transformation can be fully defined graphically. 3 = Compositions of transformations (see separate property)
as well as single transformations can be fully defined graphically.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 19 of 85

Weight and Absolute judgment: The weight is low since we doubt that a graphical notation scales well
enough to handle complex transformations. It is absolute since it provides a higher level “transformation
model” view of the transformation than the lower level textual notation.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Presentation
using
graphical
notation

Can transformations or parts of them
visualized in a graphical format? For
example by connecting elements of the
participating meta-models?

Yes {0,1,2,3} 2

3.2.20. Learning Curve

Rationale: This property is desired since it increases the chance of becoming widely adopted.

Scale details: Measured as an answer to the question: Is the transformation language easy to learn?

0 = Strongly disagree. 1 = Disagree. 2 = Neither. 3 = Agree. 4 = Strongly agree

Weight and Absolute judgment: The weight is low, since it should not stop the introduction of a new way of
programming style that has major advantages but that is unfamiliar to most people.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Learning
Curve

How difficult is it to learn the language,
How many skilled people are available?

No {0,1,2,3,4} 2

3.2.21. Secondary properties of inherent language properties.

These properties are defined as belonging to a different category, but do also have some secondary
relevance in this category:

• Transactional transformation. It may also be relevant to specify which transformations or parts of a
transformation that should be executed as a nested transaction.

• Performance/Scalability. Is it possible to reason about the language having constructions that will
enable it to be fast/slow?

3.3. Example-Dependant Properties

The criteria in this section require some case studies on reference transformation examples in order to be
answered properly since language inspection or tool testing alone will not be able to provide a complete
measurement.

3.3.1. Ease of use in simple transformations

Rationale: This property is highly desirable in order to increase productivity and adoptability of a
transformation language.

Scale details: Measured as an answer to the question: Is the transformation language easy to use?

0 = Strongly disagree. 1 = Disagree. 2 = Neither. 3 = Agree. 4 = Strongly agree

Page 20 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Important sub-questions that are useful to answer the main question: Is the transformation language clear
and understandable? It does not require a lot of mental effort to set up the transformation? It is easy to use
the language to define transformations? It is not cumbersome to use? Is it frustrating to use? Is it
controllable? Is it flexible? Is it easy to remember?

Weight and Absolute judgment: The weight is the highest since this is considered most crucial to the usability
and adoption of the language in the transformation community. It is not absolute since there is not a clear
border on what is an acceptable scale measurement.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Ease of use in
simple
transformations

How much effort is needed to solve a
simple transformation problem? User
friendly for the transformation engineer
(e.g. Compact, easy to understand what
the transformation is doing etc.).

How easy it is to: to define rules, to
manage rule consistency, to follow rule
execution (for debug).

No {0,1,2,3,4} 6

3.3.2. Ease of use in complex and large transformations

Rationale: This property is highly desirable in order to increase productivity and adoptability of a
transformation language.

Scale details: Measured as an answer to the question: Is the transformation language easy to use?

0 = Strongly disagree. 1 = Disagree. 2 = Neither. 3 = Agree. 4 = Strongly agree

Important sub-questions that are useful to answer the main question: Is the transformation language clear
and understandable? It does not require a lot of mental effort to set up the transformation? It is easy to use
the language to define transformations? It is not cumbersome to use? Is it frustrating to use? Is it
controllable? Is it flexible? Is it easy to remember?

Weight and Absolute judgment: The weight is the highest since this is considered most crucial to the usability
and adoption of the language in the transformation community. It is not absolute since there is not a clear
border on what is an acceptable scale measurement.

Name Description Absolute
(Yes/No)

Scale Weight
(1..6)

Ease of use in
complex and
large
transformations

How much effort is needed to solve a
complex and large transformation
problem? User friendly for the
transformation engineer (e.g. Compact,
easy to understand what the
transformation is doing etc.).

How easy it is to: to define rules, to
manage rule consistency, to follow rule
execution (for debug).

No {0,1,2,3,4} 6

3.3.3. Secondary properties of example-dependant properties

These properties are defined as belonging to a different category, but do also have some secondary
relevance in this category:

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 21 of 85

• Performance/Scalability. This criterion can only be tested against some reference examples with a
given source model(s) and a given transformation.

Page 22 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

4. Evaluation Method
The tool-dependant properties are not considered since there are no QVT tools yet. The language-
dependant properties have been determined independently of the examples. This leaves us only with two
important criteria that we need examples to evaluate: ease of use in simple/complex transformations. These
two criteria are also given the maximum weight of 6 as they are particularly important for the wide-spread
adoption and usage of QVT.

The evaluation method is basically driven by concrete examples. Some are very simple transformations
while others are more complex transformations. Some of the examples are examples that were originally
described using other transformation approaches. All the examples are then defined using QVTMerge to see
if it is suitable for defining the transformations. One person defines the QVT transformation and the QVT
expert, Mariano Belaunde, has reviewed the transformation to ensure that QVT is used in the best manner. A
new person, not involved in defining the transformation will then inspect the transformation example and its
QVT code and evaluate the ease of use criterion for this example. The evaluator is not a QVT expert, has not
been involved in the QVT process or defined any QVT transformations, but has read the latest QVT Merge
specification. The evaluator is an experienced programmer, but has only short experience with OCL
expressions. Since none of the examples have been validated in a syntax parser or any other QVT-compliant
tool, there may be errors in the code examples. It is decided if the example is considered simple or complex.

The examples cover both horizontal and vertical transformations, and cover both structural and behavioural
models as shown in the table below:

Table 1 Categories of transformation examples

 Vertical Horizontal

Structural EJB/UML EJB/Java AND

UML RDBMS

Spem UML Profile Spem
metamodel AND

Book Publication

Behavioural EDOC J2EE

XSLT XQuery

The average score for the examples is used for the example-dependant criteria. All the scores of the criteria
are used to compute an overall score by an algorithm described by the following pseudo-code:

1. Assign the scale-value 0 to “No support” values.

2. Assign the scale-value 1 to “Support” values.

3. If any of the absolute properties achieves a zero score then the total score is assigned to 0. If all the
absolute properties are supported, then continue:

4. For each property assign

 property-value = (scale-value / (max-scale-value for this property)) * property-weight

5. Total-score = The sum of all property-values

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 23 of 85

5. QVT Merge Language-Based Evaluation

In the table below the M (M=measured-scale-level) column shows the level of support and the S (S=score)
column shows the weighted score for the criterion. The values in parentheses show the maximum value.
Note that the level of support is downscaled to a value between 0 and 1 (0= no support, 1 = full support) by
dividing by maximum scale level, which ensures that the criteria are treated on equal scales before the
weights are applied. A final score is computed by adding all the values in the S column.

The criteria that can be evaluated by manual inspection of the language itself and that does not depend on a
tool or on observation in examples are presented in the following table.

Table 2 Evaluation of QVTMerge language-dependant properties

Criterion How it is supported by QVTMerge M S
Traceability Fully automatic traceability is achieved by the four resolve operations

that can trace from any source object to any target object and vice
versa.

2 (2) 5 (5)

Unidirectionality The language in textual as well as graphical notation directly supports it. 1 (1) 4 (4)

Complete
textual notation

Any transformation can be fully defined with the mappings part in textual
notation.

1 (1) 4 (4)

Black-box
interoperability

A query operation, a mapping rule and transformation module may be
declared without a body definition. This means that the implementation
will be provided externally - for instance using Java.

1 (1) 4 (4)

Composition of
transformations

QVTMerge does not get maximum score of 2 due to the lack of
possibility to specify parallel control flows.

1 (2) 1.5
(3)

QoS mapping Source and target can be expressed as MOF models and we believe
that QVT can be used to transform between any two pairs of MOF
models.

1 (1) 3 (3)

Graphical
notation

The maximum score of 3 is not achieved due to lack of graphically
specifying compositions such as “parallel split” and “synchronization”
which is not possible at all. It is assumed that single transformations can
be defined fully graphically although the specification states that in some
complex transformations OCL annotations are needed.

2 (3) 1.3
(2)

Updating
source model(s)

The transformation signature allows input parameters which can be
specified as inout.

1 (1) 2 (2)

Resolution of
QoS properties

Source and target can be expressed as MOF models and we believe
that QVT can be used to transform between any two pairs of MOF
models.

1 (1) 2 (2)

Page 24 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Incomplete
transformations
completed with
pattern
parameters

QVTMerge/Mappings: A mapping may extend "abstract" incomplete
mappings.
QVTMerge/Relations: An abstract or checkable relation can be extended
into executable transformations.

1 (1) 2 (2)

Modularity The transformation may be grouped into several separate transformation
rules.

1 (1) 6 (6)

Reusability One point is given for the import module construction that enables one to
import other libraries, and one point is given for the ability to specialize
transformations by the extension mechanisms extends, merges and
inherits.

2 (2) 5 (5)

Restricting
conditions/pre-
conditions

This is supported by associating the source model with a modelType
with complianceKind = “strict”.

1 (1) 4 (4)

Object
orientation

Inheritance is supported by the three extension mechanisms extends,
merges and inherits. Polymorphism is supported for query and
mapping operations (through the virtual call mechanism). No specific
mechanism is defined for object identity or encapsulation.

2 (4) 1.5
(3)

Bidirectionality The textual relations part or the graphical notation enables
bidirectionality.

1 (1) 2 (2)

Multiple source
models

The transformation signature allows any number of input parameters.

1 (1) 2 (2)

Learning Curve One disadvantage is that there are many ways of doing the same thing,
using relations, mappings, graphical or textual. It is however possible for
a transformation writer to stick to a unique paradigm to minimize the
learning effort. Another disadvantage is that there are many implicit
constructions for shorthand notations that are hard to understand when
you are a newcomer to this language. Advantages are that the textual
language shares many similarities of both syntax and constructions with
well-known object oriented languages such as Java and c#, c++.
Furthermore the graphical notation is quite intuitive to understand.

2 (4) 1 (2)

Multiple target
models

The transformation signature allows any number of output parameters.

1 (1) 1 (1)

Constraints
between rules

Supported by the ability to specify rule ordering, pre- and post-conditions 1 (1) 1 (1)

Repetitiveness Not been tested since this requires a lot of work on building a large proof
based on the entire language specification.

- -

 TOTAL 24
(30)

52
(57)

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 25 of 85

6. QVT Merge Example-Based Evaluation
In order to evaluate the ease of use for simple and complex transformations we provide several examples.
The transformation code of each example is manually inspected by one or more persons not involved in the
defining the code. Positive and negative feedback is given as text, the example is judged as either simple or
complex and finally a score is provided.

The examples should as much as possible follow the following structure.

1) Informal Description of the example.

What the transformation problem is. Define informally the transformation rules. Describe the
metamodels involved in the transformation.

State what criteria are exposed by this example.

2) Original definition of the transformation rules [OPTIONAL]

If available, provide the definition of the transformation using any existing formalism or pseudo-
code.

3) Definition of the transformation rules using Merge QVT submission

More than one solution can be proposed.

4) Discussion.

Discuss how merge QVT solves this specific transformation problem. What specific problems
where encountered? Discuss relevant criteria applied to this example.

6.1. Example 1: EJB/UML EJB/Java

A UML Class model defines a set of classes and interfaces in UML packages to represent corresponding
Java classes and interfaces within Java packages. UML classes stereotyped <<EJBEntity>> represent EJB
entities. The purpose of this transformation is to generate the corresponding Java instances.

6.1.1. Metamodels
The UML metamodel is the UML 1.4. We provide below the Java metamodel used in this example.

Page 26 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Parameter
name : String

PrimitiveType Interface Class

TypedElementType

*1

+typedElement

*

+type

1

Attribute Method Parameter

PrimitiveType
name : String

Attribute
isStatic : Boolean
name : String
defaultValue : String
visibility : Boolean

Method
isStatic : Boolean
name : String
visibility : String

*

0..1

+parameter*

+owner

0..1

Package
name : String

*

0..1

+primitiveType

*

0..1

*0..1

+nestedPackage

*0..1

Interface
isPublic : Boolean
name : String

* *

+superInterface

* +derivedInterface
*

*

0..1

+method
*

+interfaceOwner

0..1

*

0..1

+interface

*

0..1

Class
comment : String
isAbstract : Boolean
isPublic : Boolean
name : String

*0..1

+attribute

*

+owner

0..1

*0..1
+method

*+classOwner0..1

*

0..1

+constructor

*

+constructorOwner

0..1

0..1*
+superClass

0..1

+derivedClass

*

*0..1

+javaClass

*0..1

+implementedInterface

6.1.2. Rules Specification

UML packages are mapped as Java Packages, UML classes are mapped as Java classes and UML
interfaces are mapped as Java interfaces. The UML classes stereotyped <<EJBEntity>> have a special
treatment. The following rules apply:

- An EJBEntity maps into four entities: a Home and a Remote interface, an implementation class and
a primary key class. Any reference to a UML EJBEntity – for instance in parameters - is treated as a
reference to the Remote interface.

- The Home interface inherits of the predefined java.ejb.EJBHome interface. The remote interface
inherits from the pre-defined java.ejb.EJBObject interface. The implementation class inherits from
the pre-defined java.ejb.homeEntityBean. The primary key class inherits from the java.io.serializable
interface.

- Persistent attributes in a UML EJBEntity (stereotyped <<EJBPersistent>>) are mapped as persistent
attributes of the implementation class.

- Comparison attributes in a UML EJBEntity (stereotyped <<EJBCmpField>>) are mapped as
attributes of the implementation class.

- Primary key fields in a UML EJBEntity (stereotyped <<EJBPrimaryKeyField>>) are mapped as an
attribute in the implementation class and two utility methods – equals() and hashCode() - in the
primary key class.

- Ordinary non-stereotyped operations in a UML EJBEntity are mapped as operations in the
implementation class.

- Operations stereotyped <<EJBRemoteOperation>> are mapped as an operation in the
implementation class and another in the remote interface.

- Operations stereotyped <<EJBCreateOperation>> are mapped as operations named "create" in the
home interface.

- Operations stereotyped <<EJBFinderOperation>> are mapped as operations named
"findByPrimaryKey" in the home interface.

- The "context" attribute of type java.ejb.EntityContext is added to the implementation class in addition
of other predefined methods – not detailed here.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 27 of 85

Remark: Not all the details of the mapping are provided here. For instance all primitive UML types are to be
translated into Java primitive types.

6.1.3. Typical Test Example

A test model and the expected output model (optional).

6.1.4. Definition using MergeQVT

Version using QVT/Mappings

This solution uses two passes: first the Java types are built, then, in the second pass, the UML EJBEntity
classes are converted. We use the "merge" extension facility – defined by the QVT Merge submission
version 1.8 – to split in various rules the mapping of an EJBEntity.

Remark: this example has not been checked yet and executed using a tool, so it may contain errors.

module UmlEjbToJavaBean
 [in umlEjb:UML] (in javaLib:JAVA): javaBean:JAVA;
 -- UML and JAVA represent the imported model types. The variables umlEjb,
 -- javaLib and javaBean represent the extents (the models).

-- The 'getJavaClassByName' below is a utility query defined on a JAVA model type.
-- This method encapsulates the access to the pre-defined java classes
-- It accesses the top level JAVA::Package of the 'javaLib' extent and then
-- it navigates through the nested packages until reaching the class denoted
-- by the path parameter. The body is intentionally not provided to illustrate
-- the definition of black-box queries …
query JAVA::getJavaClassByName(in path:String) : JAVA::Object;

-- global accessible properties to factorize code
var javaBooleanType : JAVA::Type
 = javaLib.getJavaClassByName("java.lang.Boolean");
var javaIntegerType : JAVA::Type
 = javaLib.getJavaClassByName("java.lang.Integer");
var javaFloatType : JAVA::Type
 = javaLib.getJavaClassByName("java.lang.Real");
var javaStringType : JAVA::Type
 = javaLib.getJavaClassByName("java.lang.String");

mapping main() { -- the top level mapping
 -- using shorthands: '[xxx]' means '->select(xxx)'
 -- and '#MyType' means oclIsKindOf(MyType)
 var umlTopPack := umlEjb->objects()[#UML::Model]->first();
 umlTopPack.transformUmlPackagesAndTypes(); -- first pass
 umlTopPack.transformUmlEjbEntities(); -- seconfd pass
}

-- REMINDER on the mapping operation signature syntax:
-- mapping <name> [<ctxparam>] (<otherparam>,) : <outparams>

-- REMINDER on mapping invocation: the guard need to be satisfied
-- in order for a mapping to be invoked. The complete guard is made
-- of the constraints on the parameters and the condition appearing
-- after the guard keyword. If the guard is not satisfied, 'null'
-- (undefined) is returned.

--
--- FIRST PASS: Convert Packages and UML types into JAVA types ---
--

mapping transformUmlPackagesAndTypes [in UML::Package]() : JAVA::Package
{
 init {
 -- invokes the 'transformUmlType' for each UML::Classifier
 var javaTypes := self.ownedElement->transformUmlType();
 }
 -- population section below for the 'result' parameter
 name := self.name;

Page 28 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

 primitiveType := javaTypes[#JAVA::PrimitiveDataType]; --
 javaClass := javaTypes[#JAVA::Class];
 interface := javaTypes[#JAVA::Interface];
 -- recursive call (for each owned element of type UML::Package)
 nestedPackage := self.ownedElement->transformUmlPackagesAndTypes();
}

mapping transformUmlType [in UML::Classifier](): JAVA::Type
 disjuncts
 -- one of three rules are invoked depending on guard evaluation
 -- ('null' is returned if all guards fail)
 transformUmlClassType,
 transformUmlEjbEntityType,
 transformUmlPrimitiveType;
 transformUmlInterfaceType;

mapping transformUmlClassType [in UML::Class]() : JAVA::Class
 guard not self.isStereotypedBy("EJBEntity") {}

mapping transformUmlEjbEntityType [in UML::Class]() : JAVA::Class
 guard self.isStereotypedBy("EJBEntity") {}

mapping transformUmlInterfaceType [in UML::Interface]() : JAVA::Interface {}

mapping transformUmlPrimitiveType [in UML::PrimitiveDataType]()
 : JAVA::PrimitiveDataType
{
 init {
 result := switch (
 self.name="boolean" ? javaBooleanType,
 self.name="string" ? javaStringType,
 self.name="integer" ? javaIntegerType,
 self.name="real" ? javaFloatType,
 }
}

--- Second PASS: Conversion of <<EJBEntity>> UML classes --

-- Remark: the ":=" has additive semantics for multivalued properties
-- In addition 'null' values are skipped in multivalued assignments

mapping transformUmlEjbEntities[in UML::Package](): JAVA::Package
{
 init {
 -- the Java package is retrieved since it already created
 result := self.resolveone(JAVA::Package);
 var items:Sequence(
 Tuple {impl:JAVA::Class,home:JAVA::Interface,
 remote::JAVA::Interface,pkey:JAVA::Class})
 := self.ownedElement->transformUmlEjbEntity();
 }
 -- shorthand used here x := {a;b;c;}
 -- concatenates the results of the evaluation of a, b and c
 javaClass := {items->i.impl;items->i.pkey;};
 interface := {items->i.home;items->i.remote;};
 nestedPackage := self.ownedElement->transformUmlEjbEntities();
}

mapping transformUmlEjbEntity [in UML::Class]()
 : impl:JAVA::Class, home:JAVA::Interface,
 remote:JAVA::Interface,pkey:JAVA::Class
 guard self.isStereotypedBy("EJBEntity")
{
 init {
 -- 'resolveoneByRule' retrieves the object created by 'transformUmlType'
 remote := self.resolveoneByRule(transformUmlType);
 }
 out impl: JAVA::Class {
 name := self.name + "_Bean";
 implementedInterface := javaLib.getJavaClassByName("java.ejb.EntityBean");
 }
 out home: JAVA::Interface {
 name := self.name + "_Home";
 superClass := javaLib.getJavaClassByName("java.ejb.EJBHome");
 }

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 29 of 85

 out remote: JAVA::Interface { -- this object is not re-created
 name := self.name;
 superClass := javaLib.getJavaClassByName("java.ejb.EJBObject");
 };
 out pkey : JAVA::Class {
 name := self.name + "_PK";
 implementedInterface := javaLib.getJavaClassByName("java.io.Serializable");
 };
 }
}

--

mapping transformPersistentAttribute [in UML::Class] ()
 merges transformUmlEjbEntity
{
 out impl : Class {
 -- '*EJBPersistent' is a shorthand for 'isStereotypedBy(EJBPersistent)'
 attribute := self.feature[#Attribute and *EJBPersistent]
 ->copyAttribute();
 }
}

mapping transformCmpField [in UML::Class] ()
 merges transformUmlEjbEntity
{
 out impl : Class {
 attribute := self.feature[#Attribute and *EJBCmpField]
 ->copyAttribute();
 }
}

mapping transformPrimaryKeyField [in UML::Class] ()
 merges transformUmlEjbEntity
{
 out impl : Class {
 attribute := self.feature[#Attribute and *EJBPrimaryKeyField]
 ->copyAttribute();
 }
 out pkey : Class {
 var javaObjectType := javaLib.getJavaClassByName("java.lang.Object")
 method := {
 -- the pre-defined 'tuple' operation creates an anonymous Tuple
 createMethod(
 "equals",Set{tuple("obj",javaObjectType)},javaBooleanType);
 createMethod("hashCode",Set{},javaIntegerType);
 };
 -- put here what to do in the primary key class
 }
}

mapping transformOrdinaryOperation [in UML::Class] ()
 merges transformUmlEjbEntity {
 init {var ops := self.feature[#Operation and hasEmptyStereotype()];}
 out impl : Class {
 method := ops->copyOperation();
 };
}

mapping transformRemoteOperation [in UML::Class] ()
 merges transformUmlEjbEntity
{
 init {var ops := self.feature[Operation and *EJBRemoteOperation];}
 out impl : Class {
 method := ops->copyOperation();
 };
 out remote : Class {
 method := ops->copyOperation();
 };
}

mapping transformCreateOperation [in UML::Class] ()
 merges transformUmlEjbEntity
 guard self.feature![#Operation and *EJBCreateMethod]<>null
{
 out impl : Class {
 method := createMethod("ejbCreate",Set{},pkey);

Page 30 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

 };
 out home : Class {
 method := createMethod("create",Set{},remote);
 };
}

mapping transformFinderOperation [in UML::Class] ()
 merges transformUmlEjbEntity
 guard self.feature![#Operation and *EJBFinderMethod]
{
 out home : Class {
 method := findOps->createMethod("findByPrimaryKey",Set{},remote);
 };
}

mapping addPredefinedProperties [in UML::Class] ()
 merges transformUmlEjbEntity
{
 out impl : Class {
 attribute := createAttribute("context",
 javaLib.getJavaClassByName("java.ejb.EntityContext"));
 method := {
 -- add here all predefined operations of the Bean
 };
 };
}

mapping copyAttribute [in UML::Attribute]() : JAVA::Attribute {
 name := self.name;
 type := self.type.resolveoneByRule(transformUmlType);
}

mapping copyOperation [in UML::Operation] () : JAVA::Method {
 name := self.name;
 parameter := self.parameter->collect(i|
 out Parameter {
 name:=i.name;
 type:=i.type.resolveoneByRule(transformUmlType);
 });
 type := self.type.resolveoneByRule(transformUmlType);
}

-- The createAttribute is defined globally (no context parameter)
mapping createAttribute (in attrname:String,in attrtype:JAVA::Type)
 : JAVA::Attribute
{
 name := attrname;
 type := attrtype;
}

-- The createMethod is defined globally (no context parameter)
mapping createMethod (
 in opname:String,
 in inputs:Set(Tuple{name:String,type:String}),
 in resType:JAVA::Type)
 : JAVA::Method
{
 name := opname;
 parameter := inputs->collect(i|
 out Parameter{name:=i.name;type:=i.type;});
 type := resType;
}

-

6.1.5. Discussion

Table 3 Evaluation of example-dependant properties : EJB/UML EJB/Java

Criteria Scale
Measure

Absolute Weight Comments Score
(normalized

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 31 of 85

 range =
[1,6]

measure *
weight)

Ease of use in
simple
transformations
(MAPPINGS –
TEXTUAL)

2 =
Neither

No 6 The code has a proper structure of
nicely separated mappings that are
also ordered in an inheritance
hierarchy which increases the
reusability and maintenance. All of
the mappings are also relatively
concise so it is easy to grasp the
main idea.

The main drawback is that several of
the single statements uses long and
cryptic shorthand notations that
require a lot of mental effort and are
very difficult to interpret. This applies
to collections, iterator variables, use
of implicit and shorthand notations.
Example1 :

var items : Sequence(
Tuple{impl:JAVA::Class,home:JAVA::Interface,

remote::JAVA::Interface,pkey:JAVA::Class})

:= self.ownedElement-
>transformUmlEjbEntity();

3

6.2. Example 2: XSLT2XQuery
The XSLT to XQuery example (originally described in [6]) describes a simplified transformation of XSLT code
to XQuery code.

6.2.1. Metamodels

The source metamodel of XSLT has been modelled for this simplified transformation example. It is based on
an XML metamodel, which it extends. Consequently, the XML metamodel has to be explained before the
XSLT metamodel.

The XML metamodel presented (see Figure 3 XML) describes an XML document (Document) composed of
one root node (RootNode). Node is an abstract class having two direct children, namely ElementNode and
AttributeNode. ElementNode represents the tags, for example a tag named xml: <xml></xml>.
ElementNodes can be composed of many Nodes. AttributeNode represents attributes, which can be found in
a tag, for example the attr attribute: <xml attr="value of attr"/>. ElementNode has two sub classes, namely
RootNode and TextNode. RootNode is the root element. The TextNode is a particular node, which does not
look like a tag; it is only a string of characters.

Page 32 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Figure 3 XML

The XSLT metamodel developed for this example (see Figure 4 XSLT) is an extension of the XML
metamodel. The extension consists of classes represented in grey. The main class is called XSLTNode and
inherits from ElementNode. The XSLTNode class has sub classes representing XSLT elements, namely
xsl:apply-templates, xsl:template, xsl:if, xsl:value-of. For reasons of simplification, several features such as
xsl:for-each, xsl:choose, xsl:sort, xsl:copy-of elements have been ignored; this is why these are neither in the
metamodel nor in the transformation code.

Figure 4 XSLT

XSLT

{orded}

ValueOf
+select : String

XSLTNode

ForEach
+select : String

If

+test : String

Document
+documentName : String

RootNode

Node

+name : String

ElementNode AttributeNode

+value : String

TextNode

+value : String

ApplyTemplates

+select : String

Template

+match : String

XSLTRootNode

rootNode_document

parentNode
0..1

0..*

nodes_parentNode +nodes

+document

+rootNode

nodes_parentNode

0..1

0..*

+nodes

parentNode

XML

{orded}

Document
+documentName : String

RootNode

Node

+name : String

ElementNode AttributeNode

+value : String

TextNode

+value : String

parentNode
0..1

0..*

nodes_parentNode +nodes

+document

+rootNode

nodes_parentNode

0..1

0..*

+nodes

parentNode

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 33 of 85

The target metamodel of this example is XQuery (see Figure 5 XQuery). It contains also parts of the XML
metamodel (Node, ElementNode, AttributeNode and TextNode). An XQueryProgram is composed of
ExecutableExpressions which can be FLWOR expressions, function calls (FunctionCall) and function
declarations (FunctionDeclaration).

The main class is FLWOR, it represents FLWOR expressions which are composed of For, Let, Where, Order
by and Return statements. For is composed of an XPath expression representing the value stored by the
variable defined by the var attribute. Let is also composed of an XPath expression representing the value
stored by the variable defined by the var attribute. Where is composed of a boolean XPath expression used
to do a selection on the variables of the For statements. OrderBy is composed of an XPath expression
defining how to order the output. Return is composed of Expressions representing the output data.
Expression is the superclass of ExecutableExpressions, (XML-) Nodes and ReturnXPath expressions. The
Node class and its sub classes are the same as those of the XML metamodel. There are two different XPath
classes. In the ReturnXPath class the corresponding String expression (value) has to be put between
braces, in the XPath class the expression is without braces.

Figure 5 XQuery

6.2.2. Rules Specification

The transformation can be divided into three types of rules:

• the rule for the creation of an XQueryProgram from an XSLTRootNode instance,

• the rules for the transformation of XSLT elements into XQuery expressions and

XQuery

TextNode

ElementNode AttributeNode

+value : String

Node

+name : String
ExcutableExpression

FunctionDeclaration

+name : String

FunctionCall

+name : String

XQueryProgram

BooleanExp

Return

OrderBy

Where

Let

+var : String

For

+var : String

FLWOR

Expression

ReturnXPath

+value : String

+parentNode
0..1

+nodes
0..*

+expression
1..*

+functionDeclaration

+xqueryProgram

1..*
+expressions

+functionCall

+parameters

0..*
1..*

+orderBy_priority

+priority

+let

+for

1..*
+expressions

expressions_return

for_xpath

+let

let_xpath

+expression+where

where_expression

+return

XPath

1..*
+expression

+functionDeclaration

+xqueryProgram

1..*
+expressions

+expression+where

where_expression

0..*

+functionCall

1..*
+priority

+orderBy_priority

for_xpath
let_xpath

+let

+orderBy

+where

+for

0..*

+parentNode

+nodes

0..1

expressions_return

+expressions
1..*

+rt

Page 34 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

• the rules for copying XML elements and XML attributes.

These are the rules to transform an XSLT model to an XQuery model:

• For the XSLTRootNode instance, an XQueryProgram instance has to be created. This involves
follow-up instantiations and value attributions:

o A new FLWOR instance has to be created and its references have to be set.

 The xQueryProgram reference has to be set to the newly created XQueryProgram.
The for and the return references have to point to the corresponding instances that
will be described in the following.

o A new For instance has to be created.

 Its var attribute has to be set to ‘$var’.

 Its expression reference has to point to the XPath instance that will be described in
the following.

o A new XPath instance has to be created.

 Its value is set to ‘document(\”xmlFile.xml\”)’

o A new Return instance has to be created.

 The expressions reference set in Return has to contain all those grandchildren
nodes (defined by the recursive use of the nodes reference in ElementNode) of
which the children Template nodes of the XSLTRootNode have the match value ‘/’.
In other words, select all instances of XSLTRootNode referenced in nodes and
choose all those Templates having the match value ‘/’. Let the expressions
references of this Return instance point to all those elements referenced by the
elements that correspond to the nodes of the chosen Templates.

• For each XSLT Template instance, an XQuery FunctionDeclaration instance has to be created, if the
match value is not ‘/’. This involves follow-up instantiations.

o The new FunctionDeclaration instance has the following value and references:

 The name of the FunctionDeclaration is ‘fct’ concatenated with the match String.

 Its expression reference is a sequence of FLWOR instances that will be described
below.

 Its xQueryProgram reference points to the first XSLTRootNode instance.

o A new FLWOR has to be created.

 Its for and return references have to point to the corresponding instances described
in the following.

o A new For instance has to be created.

 Its var value is ‘$var’.

 Its forExpresson points to the corresponding XPath instance described in the
following.

o A new Path instance has to be created.

 Its value attribute has to be set to ‘$paramVar’

o A new Return instance has to be created.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 35 of 85

 Its expressions references corresponds the node references of Template.

• For each XSLT If instance, an XQuery FLWOR instance has to be created.

o This involves also the instantiation of a Let, a Where and a Return variable which have to be
referenced by the corresponding references (let, where and return) in this FLWOR instance.

o A new Let instance has to be created.

 The expression reference has to reference the new XPath instance described
below.

 The var attribute has to be set to ‘$var’.

o A new XPath instance has to be created.

 The value attribute has to be set to ‘$var’.

o A new Where instance has to be created.

 The expression reference has to reference the new BooleanExp instance described
below.

o A new BooleanExp has to be created.

 Its value attribute has to be set to ‘$var’ concatenated with the test attribute of the If
instance.

o A new Return instance has to be created.

 Its expressions references have to point to the elements that correspond to the
nodes references of the If instance.

• For each XSLT ApplyTemplate instance, an XQuery FunctionCall instance has to be created.

 The name attribute has to be set to ‘fct’ concatenated with the select attribute of the
ApplyTemplate instance.

 Its parameters reference has to reference the XPath described below.

o A new XPath instance has to be created.

 Its value attribute has to be set to ‘$var’ concatenated with the select attribute of the
ApplyTemplate instance.

• For each XSLT ValueOf instance, an XQuery ReturnXPath instance has to be created.

o Its value attribute has to be set to ‘$var’ concatenated with the _valueOf attribute of the
ValueOf instance.

• For each XSLT ElementNode instance that has a name different from xsl:otherwise, xsl:when,
xsl:choose, xsl:copy-of, xsl:sort, xsl:foreach, xsl:if, xsl:apply-template, xsl:value-of, xsl:template and
xsl:stylesheet, an XQuery ReturnXPath instance has to be created.

o The name attributes of ElementNode and ReturnXPath have to correspond.

o The nodes references of ElementNode and ReturnXPath have to correspond.

• For each XSLT AttributeNode instance, an XQuery AttributeNode instance has to be created with the
same values.

o The name attributes of ElementNode and ReturnXPath have to correspond.

o The value attributes of ElementNode and ReturnXPath have to correspond.

Page 36 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

The transformation described is simplified with the following constraints:

• All the template tags must be direct children of the root node. This constraint simplifies the behaviour
of templates.

• The value of a select attribute of an apply-template must be a tag name, it must not be an XPath
expression. This constraint hides the main difference between a template and a function call. An
apply-template tag applies all available templates to a set of elements and each template treats only
the elements that it is dedicated to. Whereas a function call applies a function to a set of elements;
the test of type of the elements must be explicitly described in the function declaration.

The XSLT programmer has to write one template matching to ’/’. It defines indirectly the starting point. This
information is necessary with respect to the XQuery program. XQuery is partly an imperative language; it
defines the order of the program execution.

6.2.3. Typical Test Example

The following example illustrates the transformation from XSLT to XQuery. It searches for all employees with
a salary greater than 2000 and returns their name and their first name.

From the XSLT source code:
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
 <xsl:template match="/">
 <emps>
 <xsl:apply-templates select="employee"/>
 </emps>
 </xsl:template>
 <xsl:template match="employee">
 <xsl:if test="salary>2000">
 <emp>
 <xsl:value-of select="name"/>
 <xsl:value-of select="firstname"/>
 </emp>
 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

the following XQuery code is produced:

define function fctemployee($paramVar) {

for $var in $paramVar
return

let $var := $var
where $var/salary>2000
return

<emp>{$var/name}{$var/firstname}</emp>
}
for $var in document("xmlFile.xml")/*
return

<emps>{fctemployee($var/employee)}</emps>

6.2.4. Definition using MergeQVT

Version with QVT/Mappings

The QVT/Mapping code for the transformation of XSLT to XQuery is provided below:

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 37 of 85

modeltype XSLT, XQuery;
module XSLT2XQuery(inModel:XSLT) : outModel:XSLT;

-- renaming is needed to avoid clashes with keywords
renamed property FLWOR::_where = "where";
renamed property FLWOR::_var = "var";
renamed property FLWOR::_let = "let";

mapping P2P [in XSLTRootNode] () : res:XQueryProgram
-- 'self' refers to the input context parameter
-- Three objects are created here but a unique object is returned
{
 out res:XQueryProgram {
 expressions := out FLWOR {
 for := out For {
 _var := '$var';
 XPath := out XPath {
 value := 'document(\"xmlFile.xml\")/*';
 };
 };
 };
 return := out Return {
 expressions := self.nodes[#Template][t|t.match = '/']
 ->nodes->flatten()->NodeToExpression();
 };
 };
}

mapping NodeToExpression [in XSLT::ElementNode] () : XQuery::Expression
merges
 –- the following rules are potentially called by this mapping
 -- a mapping is called only if the signature and/or guard matches
 Template2FLOWR, Attribute2Attribute, ApplyTemplates2FunctionCall,
 ValueOf2ReturnXPath, ElementNode2ElementNode, If2FLOWR
{}

mapping Template2FLOWR [in Template] () : pFlwor:FLWOR
guard self.match <> '/'
{
 out pFdecl:FunctionDeclaration {
 name := 'fct' + self.match;
 expression := Sequence {pFlwor};
 xQueryProgram := outModel->objectsOfType(XSLTRootNode)->first();
 };
 out pFlwor : FLWOR {
 for := out For {
 XPath := out XPath { value := '$paramVar';};
 _var := '$var';
 };
 return := out Return {
 expressions := self.nodes->NodeToExpression();
 }
 };
}

mapping If2FLOWR [in If] () : pFlwor:FLWOR
{
 out pFlwor : FLWOR {
 _let := out Let { XPath := pLetExpression; _var := '$var';};
 _where := out Where {expression := pWhereExpression;};
 return := out Return {expressions := self.nodes->NodeToExpression();};
 };
 -- this two object creations are not inlined simply for readability
 out pLetExpression : XPath {value := '$var';};
 out pWhereExpression : BooleanExp {value := '$var/' + self.test;};
}

mapping ApplyTemplates2FunctionCall [in ApplyTemplates] () {
 out functionCall : FunctionCall {
 name := 'fct' + self.select;
 parameters := out XPath {value := '$var/' + self.select;};
 };
}

Page 38 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

-- we use here a notation shorthand
-- the body contains an implicit 'out result: ReturnXPath' block
mapping ValueOf2ReturnXPath [in ValueOf] () : ReturnXPath {
 value := '$var/' + self.select;
}

literal xslkeys = Sequence(String) {
 'xsl:otherwise', 'xsl:when', 'xsl:choose', 'xsl:copy-of',
 'xsl:sort', 'xsl:foreach', 'xsl:if', 'xsl:apply-templates',
 'xsl:value-of', 'xsl:template', 'xsl:stylesheet'
}

mapping ElementNode2ElementNode [in XSLT::ElementNode] ()
: XQuery::ElementNode
guard not xslkeys->exists(self.name)
{
 name := self.name;
 nodes := self.nodes->ElementNode2ElementNode();
}

mapping Attribute2Attribute [in XSLT::AttributeNode] ()
: XQuery::AttributeNode
guard not xslkeys->exists(self.name)
{
 name:=self.name;
 value:=self.value;
}

6.2.5. Discussion

Table 4 Evaluation of example-dependant properties : XSLT XQuery

Criteria Scale
Measure

Absolute Weight

range =
[1,6]

Comments Score
(normalized
measure *
weight)

Ease of use in
complex
transformations
(MAPPINGS –
TEXTUAL)

3 = Agree No 6 Nicely separation into
independent rules and the
overall transformation is quite
easy for this relatively complex
task.

The extensive use of out
expressions is confusing. One
would expect that they refer to
separate out parameters which
they don’t. Furthermore the
mapping signatures lack some
out parameters (Not good if this
is legal code) and there are a
few single statements that are
long and cryptic.

4,5

6.3. Example 3: UML SPEM profile UML SPEM metamodel

The SPEM standard (Software Process Engineering Metamodel) is defined using a metamodel and a UML
Profile. The profile is typically used within a UML case tool. Another tool may implement only the metamodel.
The profile to metamodel transformation allow exchanging between these two kinds of tools. Note that the
inverse transformation is not straightforward because there may be various ways to encode a single SPEM
concepts using UML – this is the case for instance for work definitions which may be represented using

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 39 of 85

UseCases or using ActivityGraphs. In our example we assume that work definitions are represented using
use-cases.

6.3.1. Metamodels

The used metamodels are the UML 1.4 metamodel [xxx] and the SPEM 1.0 metamodel [7]. The SPEM
metamodel extends a sub-set of the UML metamodel with a list of process-specific concepts.

NOTE: The metamodels are too large to be described in this document.

6.3.2. Rules Specification

Below a partial definition of the mapping rules:

- A UML package is translated to a SPEM Package unless it represents a ProcessComponent or a
Discipline.

- A UML Package stereotyped ProcessComponent is translated to a ProcessComponent

- A UML Package stereotyped Discipline is translated to a Discipline

- A UML UseCase stereotyped LifeCycle is translated to a LifeCycle.

- A UML UseCase stereotyped Phase is translated to a Phase.

- A UML UseCase stereotyped Iteration is translated to a Iteration.

- A UML UseCase stereotyped Activity is translated to a Activity.

- A UML UseCase stereotyped WorkDefinition is translated to a WorkDefinition.

- A UML Actor stereotyped ProcessRole is translated to a ProcessRole

- A UML Actor stereotyped ProcessPerformer is translated to ProcessPerformer

- A UML Constraint stereotyped "precondition" is translated to Precondition

- A UML Constraint stereotyped "goal" is translated to "Goal"

- The performer of a WorkDefinition is derived using the associations between the UseCase and the
Actors stereotyped "perform". This applies in particular to all sub-classes of work definitions (Phase,
Iteration, Activity and LifeCycle). If no performer is found the performer will be a ProcessPerformer
unique instance defined for the entire modelled process. Note that a WorkDefinition can only have
one performer.

- The assistants of the Activities are derived using the associations between the UseCase and the
Actors stereotyped "assist".

- The work definition decomposition is derived using the UseCase dependencies stereotyped
"includes".

6.3.3. Typical Test Example

A test model and the expected output model (optional).

6.3.4. Definition using MergeQVT

Version with QVT/Mappings

module SpemProfile2Metamodel[in umlmodel:UML] () : SPEM;

query UML::Classifier::getOppositeAends() : Set(AssociationEnd);

Page 40 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

main () {
 -- first pass: create all the SPEM elements from UML elements
 umlmodel.objects[#Model]->createDefaultPackage();
 -- second pass: add the dependencies beyween SPEM elements
 umlmodel.objects[#UseCase]->addDependenciesInWorkDefinition();
}

mapping createDefaultPackage [in UML::Package] () : SPEM::Package {
 name := self.name;
 ownedElement := self.ownedElement->createModelElement();
}

mapping createProcessComponent [in UML::Package] () : ProcessComponent
 inherits createDefaultPackage
 guard self.isStereotypedBy("ProcessComponent")
 {}

mapping createDiscipline [in UML::Package] () : Discipline
 inherits createDefaultPackage
 guard self.isStereotypedBy("Discipline") {}

mapping createModelElement [in UML::ModelElement] () : SPEM::ModelElement
 disjuncts
 createProcessRole, createWorkDefinition,
 createProcessComponent, createDiscipline
 {}

mapping createWorkDefinition [in UseCase] () : WorkDefinition {
 disjuncts
 createLifeCycle, createPhase, createIteration,
 createActivity, createCompositeWorkDefinition
 {}
}

mapping createProcessRole [in Actor] () : ProcessRole
 guard self.isStereotypedBy("ProcessRole")
 {}

-- rule to vreate the default process performer singleton
mapping createOrRetrieveDefaultPerformer () : ProcessPerformer {
 init {
 result := resolveoneByRule(createOrRetrieveDefaultPerformer);
 }
}

abstract mapping createCommonWorkDefinition [in UseCase] () : WorkDefinition
{
 name := self.name;
 constraint := {
 self.constraint[*precondition]->createPrecondition();
 self.constraint[*goal]->createGoal();
 };
}

mapping createActivity [in UseCase] () : WorkDefinition
 inherits createCommonWorkDefinition
 guard self.isStereotypedBy(Activity)
 {}

mapping createPhase [in UseCase] () : Phase
 inherits createCommonWorkDefinition
 guard self.isStereotypedBy(Phase)
 {}

mapping createIteration [in UseCase] () : Iteration
 inherits createCommonWorkDefinition
 guard self.isStereotypedBy(Iteration)
 {}

mapping createLifeCycle [in UseCase] () : LifeCycle
 inherits createCommonWorkDefinition
 guard self.isStereotypedBy(LifeCycle)
 {}

mapping createCompositeWorkDefinition [in UseCase] () : WorkDefinition
 inherits createCommonWorkDefinition

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 41 of 85

 guard self.isStereotypedBy(WorkDefinition)
 {}

mapping createPrecondition [in UML::Constraint] () : Precondition {
 body := self.body;
}

mapping createGoal [in UML::Constraint] () : Goal {
 body := self.body;
}

mapping addDependenciesInWorkDefinition [in UseCase] () : WorkDefinition {
 init {
 result := self.resolveone(WorkDefinition);
 var performers
 := self.getOppositeAends()[i|i.association[*perform]->notEmpty()];
 assert("A unique performer is allowed",self,
 not performers->size()>1)
 }
 subWork := self.clientDependency[*includes].supplier
 ->resolveone(WorkDefinition);
 performer := if performers then performers->first()
 else createOrRetrieveDefaultPerformer() endif;
}

mapping addDependenciesInActivity [in UseCase] () : WorkDefinition
 merges addDependenciesInWorkDefinition
 guard self.isStereotypedBy("Activity")
 {
 assistant := self.getOppositeAends[i|i.association[*assist]->notEmpty()]->resolve();
 }

6.3.5. Discussion

Table 5 Evaluation of example-dependant properties : UML SPEM profile UML SPEM metamodel

Criteria Scale
Measure

Absolute Weight

range =
[1,6]

Comments Score
(normalized
measure *
weight)

Ease of use in
complex
transformations
(MAPPINGS –
TEXTUAL)

3 = Agree No 6 Nicely separation into
independent rules and good
exploitation of the inheritance
possibilities.

A few single statements that are
long and cryptic requires a lot of
mental effort.

4,5

6.4. Example 4 UML RDBMS

This transformation example illustrates the translation of a UML class-diagram like model into a relational
data base. This example is directly taken from the MergeQVT submission version 1.8.

6.4.1. Metamodels

A simplified UML meta-model is shown in Figure A2-1. A class has attributes. An attribute's type can be
either a primitive data type or another class (complex types). Classes are related to each other through
Association objects. Only classes that are marked as persistent for the property kind are considered for
mapping. Some attributes have the property kind set to Primary to indicate that they are the key attributes.

Page 42 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

PrimitiveDataType

Classifier

Attribute
visibility : String

Association

Package
ModelElement

name : String
kind : String **+ownedElement

Class
*

1
+attribute

*
1

*

1

+forward
*

+source
1

*

1

+reverse
*

+destination

1

*
*

+derived
*

+super *

TypedElement
1

*+type
1

+typed
*

Operation
visibility : String*

1

+operation

*

1

Parameter
kind : String*

1
+parameter

*

1

Figure A2-1 : A simple UML meta-model

A sample RDBMS meta-model is shown in Figure below. A table has columns. Every table has a mandatory
primary key (Key). A table may optionally have foreign keys. A foreign key refers to a primary key of another
associated table.

ForeignKey Table

10..1
+owner

1

+foreignKey

0..1

Column
type : String

*

1

+column
*

+owner
1

*

*

+column *

+foreignKey
*

Key

1*
+refersTo

1

+referredBy
*

1 1

+owner

1

+key

1

*

*

+column*

+belongsTo
*

ForeignKey Column Table Key

ModelElement
name : String
kind : String

Figure A2-2 : A simple RDBMS meta-model

.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 43 of 85

6.4.2. Rules Specification

"A class maps on to a single table. A class attribute of primitive type maps on to a column of the table.
Attributes of a complex type are drilled down to the leaf-level primitive type attributes; each such primitive
type attribute maps onto a column of the table. An association maps on to a foreign key of the table
corresponding to the source of the association. The foreign key refers to the primary key of the table
corresponding to the destination of the association."

6.4.3. Typical Test Example

A test model and the expected output model (optional).

6.4.4. Definition using MergeQVT

Version with QVT/Relations

The solution is provided using the graphical notation.

[TODO: Provide explanatory text here].

Page 44 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Version with QVT/Mappings
-- declaring the transformation module

module Uml2Rdb(in srcModel:UML) : RDBMS;

-- defining specific helpers and derived properties

metamodel UML {
 query Association.isPersistent() =
 (self.source.kind='persistent' and self.destination.kind='persistent');
 derived property Class.leafAttributes : Sequence(LeafAttribute);
}

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 45 of 85

-- defining intermediate data to reference leaf attributes that may
-- appear when struct data types are used

class LeafAttribute {name:String;kind:String;attr:Attribute;};

-- defining the default entry point for the module
-- first the tables are created from classes, then the tables are
-- updated with the foreign keys implied by the associations

main() {
 srcModel.objects()[#Class]->class2table(); -- first pass
 srcModel.objects()[#Association]->asso2table(); -- second pass
}

-- maps a class to a table, with a column per flattened leaf attribute

mapping class2table [in Class] () : Table
 guard self.kind='persistent' -- 'self' refers to the first parameter
{
 init { -- performs any needed intialization
 self.leafAttributes := self.attribute->attr2LeafAttrs();
 }
 -- population section for the table
 name := 't_' + self.name;
 column := self.leafAttributes->leafAttr2OrdinaryColumn();
 key := out Key { -- nested population section for a 'Key'
 name := 'k_'+ self.name; column := t.column[kind='primary'];
 };
}

-- Mapping that creates the intermediate leaf attributes data.

mapping attr2LeafAttrs [in Attribute]
 (in prefix:String="",in pkind:String="")
: Sequence(LeafAttribute) {
 init {
 var k := if pkind="" then self.kind else pkind endif;
 result :=
 if self.type.isKindOf(PrimitiveDataType)
 then -- creates a sequence with a LeafAttribute instance
 {out LeafAttribute {attr:=self;name:=prefix+self.name;kind:=k;}}
 else self.type.attribute.attr2LeafAttrs(self.name+"_",k)
 endif;
 }
}

-- Mapping that creates an ordinary colum from a leaf attribute

mapping leafAttr2OrdinaryColumn [in LeafAttribute] (in prefix:String="")
: Column {
 name := prefix+self.name;
 kind := self.kind;
 type := if self.attr.type.name='int' then 'NUMBER' else 'VARCHAR' endif;
}

-- mapping to update a Table with new columns of foreign keys

mapping asso2table[in Association] () : Table
 guard self.isPersistent()
{
 init { result := self.destination.resolveone(Table); }
 foreignKey := self.asso2ForeignKey();
 column := result.foreignKey.column;
}

-- mapping to build the foreign keys

mapping asso2ForeignKey [in Association] {
 name := 'f_' + name;
 refersTo := self.source.resolveone(Table).key;
 column := self.source.leafAttributes[kind='primary']
 .leafAttr2ForeignColumn(source.name+'_');
}

-- Mapping to create a Foreign key from a lef attributes
-- Inheriting of leafAttr2OrdinaryColumn has the effect to call the
-- inherited rule before entering the property population section

Page 46 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

mapping leafAttr2ForeignColumn [in LeafAttribute] (in prefix:String) : Column
 inherits leafAttr2OrdinaryColumn {
 kind := "foreign";
}

6.4.5. Discussion

Table 6 Evaluation of example-dependant properties: UML RDBMS

Criteria Scale
Measure

Absolute Weight

range =
[1,6]

Comments Score
(normalized
measure *
weight)

Ease of use in
simple
transformations
(RELATIONS –
GRAPHICAL)

1 =
Disagree

No 6 It is hard to understand the
graphs involving sets of objects.

The use of WHEN seems
inappropriate when there is just
an assignment. One would
expect a boolean condition
following such a keyword.

The graphical definitions lacks
associating comments that
explains the non-trivial issues.

Ease of use in
simple
transformations
(MAPPINGS –
TEXTUAL)

2 =
Neither

No 6 It is confusing to have two
parameter lists and it is not
intuitive that the “self” reference
refers to the first parameter.

When to use “ ” and when to
use “.” for invoking a mapping
method associated with an
object.

6.5. The Example 5: Book Publication

The Book to Publication example describes a very simple transformation task. In the metamodel Book the
class Book contains an ordered set of Chapters. These Chapters hold the information of the number of
pages of Chapters. The metamodel Publication is simpler; its class Publication contains a title and the total
number of pages. For the transformation, all chapters of a Book have to be visited to calculate the total
number of pages.

6.5.1. Metamodels

The source metamodel Book (see Figure 6 Book) consists of the class Book which contains a set of
Chapters. Each Book has a title and each Chapter a title. The Chapter instances hold the information of the
number of pages.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 47 of 85

Book

+title :String

Chapter

+nbPages :Integer
+title :String

chapters+*

Figure 6 Book

The target metamodel Publication (see Figure 7 Publication) consists of the class Publication which holds a
title and the number of pages.

Publication

+title:String
+nbPages:Integer

Figure 7 Publication

6.5.2. Rules Specification

These are the rules to transform a Book model to a Publication model:

• For each Book instance, a Publication instance has to be created. The attributes of the Publication
instance are set as follows:

o The title of a Publication has to be set with the title of a Book.

o The total number of pages of a Publication is the sum of the pages of the Chapters of a
Book.

6.5.3. Typical Test Example

A test model and the expected output model (optional).

6.5.4. Definition using MergeQVT

Version using QVT/relations

The code for the transformation of a Book to a Publication consists of one relation. In this transformation the
sum of the number of pages of all Chapters corresponds to the number of pages of a publication.

relation Book_and_Publication {
 domain b:Book {title = t};
 domain Publication {title = t, nbPages = b.chapters.nbPages->sum()};
}

Page 48 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Version using QVT/Mappings

The code for the transformation of a Book to a Publication consists of one mapping.

mapping Book_to_Publication [in Book]() : Publication {
 title := self.title;
 nbPages := self.chapters.nbPages->sum();
}

6.5.5. Discussion

Table 7 Evaluation of example-dependant properties : Book Publication

Criteria Scale
Measure

(Min = 0,
Max = 1)

Absolute Weight

range =
[1,6]

Comments Score
(normalized
measure *
weight)

Ease of use in
simple
transformations
(RELATIONS-
TEXTUAL)

3 = Agree No 6 It is a bit difficult to come up with
and feel certain of the
correctness of the expression
b.chapters.nbPages->sum().

b.chapters is obviously a set,
while b.chapters.nbPages is not
so obviously a set.

Ease of use in
simple
transformations
(MAPPINGS-
TEXTUAL)

3 = Agree No 6 <<Same as above>>

6.6. The Example 6: EDOC J2EE
This example is a transformation of the EDOC metamodel to the J2EE metamodel. The transformation was
originally used within the Fraunhofer transformation tool chain. This tool chain is based on a different
approach and is not using QVT or a QVT like language to express the transformations. The transformations
are directly implemented in C++ code.

The transformations described within this example are used in an industry related project that was aiming a
special application domain. For this reason the used J2EE metamodel is not supposed to be a general
purpose metamodel for J2EE that could be used for all J2EE based applications in general. But is a
metamodel that sufficiently serves the purpose to support the transformation from EDOC models to the J2EE
models and J2EE applications respectively. In that sense the transformation described here are also limited
to the scope of the code generation for this particular scope of the application domain.

The next sections describe the source metamodel which is the EDOC metamodel, the target metamodel
which is the Fraunhofer specific J2EE metamodel and the transformation rules expressed in different styles
which allows the transformation from EDOC to J2EE.

6.6.1. Metamodels

For this example two metamodels are of importance. The first one is the EDOC metamodel. This metamodel
is part of the EDOC specification [8]. The second metamodel is the J2EE metamodel. Since there is no
standardised metamodel for J2EE a proprietary metamodel was designed. This metamodel does not cover

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 49 of 85

all concepts of J2EE but it is sufficient to be used in a Fraunhofer tool chain that produces J2EE code
skeletons.

6.6.1.1. EDOC Metamodel

The description of the EDOC metamodel is not done here explicitly since it is directly used from the EDOC
specification [8]. The EDOC metamodel and more details about EDOC are within this specification. Parts of
the EDOC metamodel are displayed later on for the overall description of the transformations.

6.6.1.2. The J2EE Metamodel

The J2EE metamodel that is described is based on a Java metamodel that covers parts of the Java
language. This is done to allow the generation of Java classes implementing the abstract concepts of J2EE.
This metamodel is not only used to describe the basic data types of the parameters and exceptions.
Additionally it defines basic entities like Java interfaces and classes that are used as supertypes of J2EE
specific artefacts. The following rules apply:

• A remote interface is (extends) a javax.ejb.EJBObject that itself is a java.rmi.Remote interface.

• A local interface is a javax.ejb.EJBLocalObject interface.

• A home interface is a javax.ejb.EJBHome that itself is a java.rmi.Remote interface.

• A local home interface is a javax.ejb.EJBLocalHome interface.

• A bean’s implementation class implements either a javax.ejb.SessionBean or a javax.ejb.EntityBean
or a javax.ejb.MessageDrivenBean interface, which are all javax.ejb.EnterpriseBean interfaces,
which itself is a java.io.Serializable interface.

Thus the J2EE metamodel will be a superset of the Java metamodel.

6.6.1.2.1. Java Metamodel

JavaElement

ClassMember

JavaPackage

Constructor

FeatureParameter

BehavioralFeature

Field Initializer

Method

JavaClass

MetaTagAttribute
name : String
value : String

ClassFeatureMetaTag
name : String

0..n

1

+attributes
0..n

+tag1

TagParameters

10..n

+the_feature

1

+tags

0..n

Tags

EnterpriseBean
(from Enterprise)

Page 50 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Figure 8 Main Elements of Java Metamodel

The most important parts of the Java metamodel and their inheritance hierarchy are shown in Figure 8. The
elements Method, JavaClass, and ClassFeature are of special interest.

• A JavaClass represents Java classes and interfaces and will be used as a hook to connect the Java
and J2EE metamodels.

• All methods that are used for the definition of the remote, local, and home interfaces as for the
implementation class are instances of the model element Method.

• The ClassFeature will be used as a hook to add meta tags to Java elements.

Some other parts of the Java metamodel will be used as targets of the transformation process thus they will
be introduced shortly.

JavaPackages and JavaClasses represent the corresponding artefacts in Java. Packages can be included in
them selves to create a hierarchy of packages, a so called package tree. The same mechanism is available
for classes, so called nested classes, see Figure 9.

JavaPackage

0..1
0..n

+outerPackage

0..1

ASubPackages

+subPackages
0..n

JavaClass

0..1
0..n

+declaringClass

0..1

/ANestedClasses

+nestedClasses
0..n

1..1

0..n

+javaPackage
1..1

+classes
0..n

APackageClasses

Figure 9 Java packages and classes

Adding content to a Java class is modelled with the following features.

• A Method represents a, possibly typed, Java method.

• A Constructor is a special, untyped method that is always called once while creating a new instance.

• A Field holds the state of a class explicitly for one instance or shared over all instances of a class.

• An Initializer is used for the initialization of class attributes.

• A ClassDescriptor describes the inheritance hierarchy and the implemented interfaces of the
referenced Java class.

• A FeatureParameter specifies the parameters of constructors and methods. It holds relations to its
type and is declared explicitly for each element.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 51 of 85

Constructor Method Field Initializer

ClassDescriptor

JavaClass

0..1

0..n

+declaringClass
0..1

+constructors
0..n

/AConstructors

0..1

0..n

+declaringClass
0..1

+methods
0..n

/AMethods

0..1

0..n

+declaringClass
0..1

+fields 0..n

/AFields

0..1

0..n

+declaringClass

0..1

+initializers
0..n

/AInitializers
0..n

0..n

+implementors
0..n

+interfaceNames

0..n

/AImplementsType

0..n

0..1

+subclasses
0..n

+superclassName
0..1

AExtendsType

0..1

1

+javaClass

0..1

+className
1

AResolvesTo

FeatureParameterBehavioralFeature

1..1 0..n

+behavioralFeature

1..1

+parameters

{ordered}
0..nAHasParameters

Figure 10 Features of a Java class

A Java primitive type is specified by the PrimitiveTag enumeration that is modelled as an attribute in the
PrimitiveType class.

PrimitiveType
kind : JM::Java::Standard::PrimitiveTag

PrimitiveTag
PT_Boolean
PT_Byte
PT_Char
PT_Double
PT_Float
PT_Integer
PT_Long
PT_Short
PT_Void

<<enumeration>>

Figure 11 Java Primitive Types

Page 52 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

6.6.1.2.2. EJB Metamodel

Three types of enterprise beans exist: session, entity, and message driven beans. Thus the part of the EJB
metamodel that represents the implementers view looks like the diagram shown in Figure 12. The three
types of enterprise beans are shown as subtypes of the generic EnterpriseBean that itself is a JavaClass.
Additionally it is shown that entity beans have an attribute called primary_key that is of the type
ClassDescriptor.

Enterprise
Bean

EntityBean
primary_key : ClassDescriptor

SessionBean MessageDrivenBean

JavaClass
(from Standard)

Figure 12 Implementers view of enterprise beans

Complementary the client view on enterprise beans is shown in Figure 13. This part of the metamodel
expresses, that the four possible interface types of an enterprise beans are all EJBInterfaces that itself is a
JavaClass. Additionally it is shown that every enterprise bean has an association to one or zero of these
interfaces.

HomeInterface

LocalHomeInterface

RemoteInterface

EnterpriseBean

1

0..1

1

+home_interface

0..1

1

0..1

1+local_home_interface

0..1

1

0..1

1

+remote_interface

0..1

LocalInterface

1

0..1

1
+local_interface

0..1

JavaClass
(from Standard)

EJBInterface

Figure 13 Client view of enterprise beans

Figure 12shows only the upper part of the hierarchy of enterprise beans. The whole tree is shown in Figure
14. Additionally the relationships between entity beans are modelled as an association called cmr.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 53 of 85

EnterpriseBean

EntityBean
primary_key : ClassDescriptor

SessionBeanMessageDrivenBean

BMPEntityBean CMPEntityBean

+end1

+end2

cmr

StatelessSessionBean StatefullSessionBean

Figure 14 Complete hierarchy of enterprise beans

In the next step the specific characteristics of the enterprise beans have to be expressed. The Object
Constrained Language OCL is used for this purpose. Figure 15 shows that a session bean has to implement
the javax.ejb.SessionBean class.

Session
Bean

StatefullSessionBean StatelessSessionBean

OCL immediate:
inv session_beans:

self.interfaceNames->exists(cd: JM::Java::Physical::ClassDescriptor |
 cd.descriptor = 'javax.ejb.SessionBean')

Figure 15 Definition of a session bean

Similar definitions can be given for entity beans, see Figure 16, and for message driven beans.

Page 54 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

OCL immediate:
inv cmp_entity_bean:

self.fields->size() = 0 and
self.modifier = JM::Java::Physical::ModifierKind::MK_Abstract

EntityBean
primary_key : ClassDescriptor

CMPEntityBean

OCL immediate:
inv entity_beans:

self.nestedClasses->size() = 0 and
self.declaringClass->size() = 0 and
self.scope = JM::Java::Physical::ScopeKind::SK_Instance and
self.visibility = JM::Java::Physical::ScopeKind::SK_public and
self.interfaceNames->exists(cd: JM::Java::Physical::ClassDescriptor |
cd.descriptor = 'javax.ejb.EntityBean')

Figure 16 Definition of an entity bean

The specification of the J2EE artefacts that occur in the client view can be refined accordingly, as is shown in
Figure 17.

OCL immediate:
inv ejb_interface:

self.isInterface = true and
self.isAnonymous = false and
self.constructors->size() = 0 and
self.modifier = JM::Java::Physical::ModifierKind::MK_Normal and
self.nestedClasses->size() = 0 and
self.declaringClass->size() = 0 and
self.scope = JM::Java::Physical::ScopeKind::SK_Instance and
self.visibility = JM::Java::Physical::ScopeKind::SK_public

EJBInterface

HomeInterface LocalHomeInterface

LocalInterfaceRemoteInterface

Figure 17 Definition of EJB interfaces

6.6.2. Rules Specification

The mapping of EDOC to J2EE follows these principles:

• Entities become entity beans and the entity data are used to define the enterprise bean’s view of
data in the database as well as the abstract persistence schemas in the deployment descriptor.

• The process components become session beans or message driven beans.

• A data manager is mapped to a POJO Java class.

• The ports are mapped to the interface and methods of the enterprise bean.

For the transformation from EDOC modelling elements to J2EE modelling elements some general rules hold:

• Pure “client” components will be ignored. They are not transformed to enterprise beans.

• Each created enterprise bean has a home interface with the type specific default methods. Specific
create, finder, and select methods are not created during this transformation. They will be created in
the J2EE to Java transformation step.

• Flows (flow ports) are transformed to Java methods, message driven beans or JMS are currently not
considered in the transformations.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 55 of 85

• The transformation process starts with the most specialized EDOC modelling elements. For example
an Entity that is a DataManager that is a ProcessComponent will be transformed according to the
rules for Entities.

6.6.3. Typical Test Example

The rules specified here are currently not evaluated by a tool and are therefore not checked for
completeness and correctness. But for illustrational purposes two screen shots are provided that
demonstrate the source and the result of the transformation using the Fraunhofer tool chain.

The first screen shot shows the EDOC Model that is used as source model. In the example a restaurant is
modelled.

Figure 18 EDOC Model of the restaurant

The second screen shot illustrates the result of the transformation. It shows the ECLIPSE IDE with a project
that includes the Java classes resulting from the transformation.

Page 56 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Figure 19 Eclipse project with Java classes of the restaurant

6.6.4. Definition using MergeQVT

In the following the rules are defined by using MergeQVT/Mappings. To illustrate the rules they are headed
by semi-formal textual notation.

6.6.4.1. Top level rule to invoke all rules

We provide here the transformation definition and the entry "main" mapping rule. Note that in QVT/Mapping
rule invocation is explicit. Even if we define all the rules without no ordering assumption we need to write at
least one top-level rule to execute all the other rules. In order for the "resolve" rule to work we need to create
the target instances before retrieving them. To ensure this, the main mapping executes in two passes.

QVT:

module Edoc_To_J2EE (in edocModel:EDOC): j2eeModel:J2EE;
main () {
 edocModel.objects->firstPass();
 edocModel.objects->secondPass();
}
mapping firstPass(in EDOC::ModelElement) : JavaElement
 disjuncts Package_to_Package, EDOC_ProcessComponent_To_Java_Interface {}
mapping secondPass(in EDOC::ModelElement) : JavaElement
 disjuncts
 PackageContainement,
 FlowPort_To_Method,
 Protocol_FlowPort_To_Method,

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 57 of 85

 OperationPort_To_Method,
 Protocol_OperationPort_To_Method,
 InitiatingFlowPort_of_OperationPort_To_Field,
 SharedProcessComponent_To_RI_EnterpriseBean,
 OtherProcessComponent_To_ImplClass
{}

6.6.4.2. Package to Package

Semi-formal text:

For each EDOC Package create a Java package with the same name.

QVT:

mapping Package_to_Package [in EDOC::PackageDef] () : J2EE::JavaPackage {
 name := self.name;
}

6.6.4.3. Package to Package with containment

Note: This rule is not complete due to a lack of understanding. (Needs to by fixed with help of an QVT
expert.)

Semi-formal text:

For each EDOC package P1
 Find the corresponding Java package J1

For each ownedElement of P1 OEP1
Find the corresponding JavaPackage JO1
Set JO1.outerpackage to J1 and add JO1 to J1.subPackages

QVT:

mapping PackageContainement [in EDOC.PackageDef] () : J2EE.JavaPackage {
 init {
 var result := self.resolveone(J2EE.JavaPackage);
 }
 subPackages := self.ownedElement[EDOC::PackageDef]
 ->resolveone(J2EE.JavaPackage);
}

6.6.4.4. ProcessComponent to Java Interface

Semi-formal text:

For each EDOC.ProcessComponent PC
 Find JavaPkg jpkg corresponding to the PC.namespaceContainer

(remark: the EDOCPkg containing PC)
 Create a JavaClass JC and set
 JC.name = PC.name
 JC.isInterface = true
 JC.javaPackage = jpkg

Page 58 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

QVT:

mapping EDOC_ProcessComponent_To_Java_Interface
 [in EDOC.ProcessComponentDef] () : J2EE.JavaClass {
 name := self.name;
 isInterface := true;
 javaPackage := self.namespaceContained.resolveone(J2EE.JavaPackage);
}

6.6.4.5. ProcessComponent Flowport to Method

Semi-formal text:

For each Flowport fp with direction Responds and isSynchronous = true
 When owner is ProcessComponent or Protocol
 Find the Interface jc realizing the owner
 Create a method m with
 m.visibility = public
 m.name = fp.name
 m.declaringClass = jc

QVT:

mapping FlowPort_To_Method [in EDOC::FlowPortDef] () : J2EE.Method
 guard
 (self.direction = "Responds" and self.isSynchronous=true) and
 (self.the_owner.isKindOf(EDOC::ProcessComponent) or
 self.the_owner.isKindOf(EDOC::ProtocolDef))
{
 visibility := “public”;
 name := self.name;
 declaringClass := self.the_owner.resolveone(J2EE.JavaClass);
}

6.6.4.6. ProtocolPort FlowPort to Method

Semi-formal text:

For each ProtocolPortDef pp
 For each FlowPortDef fp
 When (fp.the_owner = pp.the_protocol, fp.direction = pp.direction)
 Find j2ee.interface jc that corresponds to pp.the_owner
 Create j2ee.method m with
 m.visibility = public,

m.declaringClass = jc,
 m.name = append(pp.name, append(“_”, fp.name)

QVT:

mapping Protocol_FlowPort_To_Method
 (in pp:EDOC::ProtocolPortDef, in fp:EDOC::FlowPortDef) : J2EE.Method
 guard match (fpo, fpd, ppp, ppd)
 fp:{the_owner = fpo, direction = fpd },

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 59 of 85

 pp:{the_protocol = ppp, direction = ppd}
 when { fpo = ppp, fpd = ppd}
{
 visibility := “Public”;
 name := pp.name.concat("_").concat(fp.name);
 declaringClass := pp.the_owner.resolveone(J2EE.JavaClass);
}

6.6.4.7. ProcessComponent OperationPort to Method

Semi-formal text:

For each OperationPortDef op
 With op.direction = Responds
 Find j2ee.interface owning_jc corresponding to the_owner of op
 Create j2ee.JavaClass ret_jc with
 ret_jc.name = append(op.name, “Return”)
 ret_jc.isInterface = false
 Create j2ee.Method m with
 m.name = op.name
 m.declaringClass = owning_jc

QVT:

mapping OperationPort_To_Method [in EDOC::OperationPortDef] ()
 : jm : J2EE::Method, jc : J2EE::JavaClass
{
 out jc:J2EE::JavaClass {
 name := self.nameconcat(“Return”);
 isInterface := false;
 }
 out jm:J2EE::Method {
 jm.name := self.name;
 jm.declaringClass := resolveone(self.the_owner);
}

6.6.4.8. Protocol OperationPort to Method

Semi-formal text:

For each OperationPortDef op

For each ProtocolPortDef pp
 For each ProcessComponentDef pc
 when (pc = pp.the_owner,

op.the_owner = pp.the_protocol and
 op.direction = pp.direction)
 Find JavaClass owning_jc corresponding to pc
 create j2ee.JavaClass ret_jc with
 ret_jc.name = append(op.name,”Return”)
 ret_jc.isInterface = false
 create j2ee.Method m with
 m.name = append(pp.name,append(“_”,op.name)
 m.declaringClass = owning_jc,

Page 60 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

QVT:

mapping Protocol_OperationPort_To_Method
 (in op : EDOC::OperationPortDef,
 in pp : EDOC::ProtocolPortDef,
 in pc : EDOC::ProcessComponentDef)
 :jc : J2EE::JavaClass, jm : J2EE.Method
 guard match (ppo, opo, ppp, opd, ppd)
 pp:{the_owner = ppo, direction = ppd, the_protocol = ppp},
 op:{the_owner = opo, direction = opd]
 when { pc = ppo and opo = ppp and opd = ppd}
{
 out jc: J2EE::JavaClass {
 name := op.name.concat(”Return”);
 isInterface := false;
 };
 out jm : J2EE.Method {
 name := pp.name.concat(“_”).concat(op.name));
 declaringClass := pc.resolveone(J2EE.JavaClass);
 };
}

6.6.4.9. Initiates Flowports owned by Operation Ports to Fields of method

Semi-formal text:

For each FlowPortDef fp
 when (fp.direction = “Initiates” and type of fp.the_owner = OperationPortDef)
 Find the corresponding JavaClass jc of fp.the_owner
 Create J2EEField fld with
 fld.name = fp,name

fld.declaringClass = jc
fld.isFinal = true
fld.isVolatile = true

QVT:

mapping InitiatingFlowPort_of_OperationPort_To_Field
 [in EDOC.FlowPortDef] () : J2EE.Field
 guard match (fpo) self:{the_owner = fpo}
 when { fpo.isKindOf(EDOC.OperationPortDef) }
{
 name := self.name;
 declaringClass := fpo.resolveone(J2EE.JavaClass);
 isFinal := true;
 isVolatile := true;
}

6.6.4.10. “Shared” ProcessComponent to EnterpriseBean with Remote Interface

Semi-formal text:

For each ProcessComponentDef pc
 when (pc.granularity = “Shared” or pc.granularity = “Program”)

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 61 of 85

 Create J2EE.RemoteInterface ri
 Create StateLessSessionBean slsb
 with

slsb.name = append(pc.name,”Session”)
slsb.remote_interface = ri

QVT:

mapping SharedProcessComponent_To_RI_EnterpriseBean
 [in EDOC.ProcesscomponentDef]() :
 ri:J2EERemoteInterface,
 ssb:J2EE.StateLessSessionBean
guard match (pcg)
 self:EDOC.ProcessComponentDef { granularity = pcg }
 when { pcg = “Shared” or pcg = “Program”}
{
 out ssb: J2EE.StateLessSessionBean {
 name := append(self.name, “Session”);
 remote_interface := ri;
 };
}

6.6.4.11. “Other” ProcessComponents to implementing class

Semi-formal text:

For each ProcessComponentDef pc
 when (NOT (pc.granularity = “Shared” OR pc.granularity =”Program”))
 Create J2EE.JavaClass class with
 class.name = append(pc.name,”Impl”)
 class.isInterface = false

QVT:

mapping OtherProcessComponent_To_ImplClass
 [in EDOC.ProcessComponentDef] () : J2EE.JavaClass
 match (pcg) self:EDOC.ProcessComponentDef { granularity = pcg}
 when { not (pcg = “shared” or “pcg = “Program”) }
{
 name := self.name.concat(“Impl”);
 isInterface := false;
}

6.6.5. Discussion

Table 8 Evaluation of example-dependant properties : EDOC J2EE

Criteria Scale
Measure

Absolute Weight

range =
[1,6]

Comments Score
(normalized
measure *
weight)

Page 62 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Ease of use in
complex
transformations
(MAPPINGS –
TEXTUAL)

3 = Agree No 6 The code is nicely separated in
different, understandable rules.
At the time being this example is
not fully defined so it is hard to
evaluate this example fully.

4,5

At the current stage the rules defined with QVT for the transformation of EDOC to J2EE could not be
checked by using a tool. Most likely the list of rules is incomplete or some rules are possibly incorrect.

Furthermore, the usage of the tool could help to improve the understanding of the nature of QVT and to
define proper QVT rules. This would also help to learn the language more easily and to use it in an efficient
way.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 63 of 85

7. Summary of the QVT Merge Example-Based Evaluation
This section summarizes the evaluation of the QVT Merge language on the most important criteria, ease of
use, which also is among the hardest to come up with an objective measurement of. The table below shows
the average-based score for ease of use calculated from the examples. Based on the examples, the QVT
Merge language scores a bit higher for complex than for simple transformations and vertical+structural
transformations gets a lower score than the other categories of transformations. We need more discussion
and more examples in order to show that these trends are valid in general. But the overall average ease of
use is evaluated as approximately 2.5. This is half way between neither easy to use and agree easy to use.
This is based on eight different transformation examples (two of the transformation examples have
alternative definitions as graphical/textual and relations/mappings) and has thus quite strong reliability.

Table 9 Is the transformation language easy to use? (0= Strongly disagree, 1 = Disagree, 2 = Neither, 3 = Agree, 4
= Strongly agree)

Example simple

max=4

complex

 max = 4

Vertical and
structural

max = 4

Vertical
and
behaviour
al

max = 4

Horiz. and
structural

max = 4

Horiz.
and
behaviou
ral

max = 4

Score
simple

max=6

Score
complex

max=6

Example 1 2

Example 2 3

Example 3 3

Example 4 1,5

Example 5 3

Example 6 3

Average 2,17 3 1,75 3 3 3 3,3 4,5

When reviewing the example transformations some negative findings were discovered that may be used to
further improve the specification before it is finalized as an OMG adopted specification:
• It is confusing when to use arrow and when to use dot for referencing part attributes/associations, built-in

functions, inherited OCL functions etc.
• There is a mixture of procedural style with object-oriented style when defining and invoking methods.

Object method calls are object-oriented (theXSLTRoot.P2P), while the signature uses an input
parameter to represent the object type on which we can invoke the method like in the code extract
signature above. This makes it non-intuitive to understand the much used “self” keyword that refers to
the context parameter.

• It is hard to discover calls to the mappings rules. When doing transformations it is crucial to easily see
where calls are made recursively or to other mapping rules. These calls cannot easily be distinguished
from other calls to built-in functions, attribute/association references or OCL functions. XSLT has a
solution for this by letting all calls to other mapping rules happen with the apply-templates instructions.

In addition to the negative findings described above, some issues were controversial because there were
different opinions in the review group if the issues are negative findings or not:

• Long and cryptic expressions. Single expressions are sometimes very long and cryptic to
understand which requires a lot of mental effort. (Example: return := out Return {
expressions := self.nodes[#Template][t|t.match = '/']->nodes->flatten()-
>NodeToExpression();) This is a heritage of OCL style and syntax. QVTMerge introduces
additional short-hands to avoid excessive verbosity in single expressions – like the '#MyType'
expression mapped as a call to the 'oclIsKindOf(MyType)' pre-defined operation . It is not clear yet

Page 64 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

whether these additional short-hands help on ease-of-use of the language. It is also possible for a
transformation writer to split a computation in various lines using intermediate variables.

• Two-pass. Some of the transformations use a two-pass approach in order to ensure that some
target instances are produced so that the resolve() methods will get the proper element in a
different context. This is a consequence of the explicit execution strategy in QVTMerge/Mappings
which might be perceived as an advantage or as a disadvantage depending on writer preferences.
An interesting issue here is to know whether it is possible to handle automatically object resolutions -
so that the language user does not need to worry about this – without loosing the advantages of the
explicit execution strategy.

The review of all the code examples shows nice program code structure, inheritance, and modularity by
separation into manageable mapping rules. We believe that reusability and maintenance will be positive
side-effects when the transformation code is written as they were in the examples. The example-based ease-
of-use evaluation of the QVTMerge language shows slightly higher scores for complex than for simple
transformations and the combination of vertical and structural transformations gets a lower score than the
other categories of transformations. We need more examples in order to show that these trends are valid in
general. But the overall average ease-of-use is evaluated as approximately 2.5 on a scale from 0 to 4, where
4 is the goal. It should be stressed that the evaluation of ease-of-use are subjective judgments of the
MODELWARE participants who performed the example-based testing.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 65 of 85

8. Evaluation of QVT Compuware/Sun
Our Modelware evaluation framework has also been applied to the QVT Compuware/Sun submission to
compare it with the results of the QVT Merge evaluation. It is important to note that the evaluation of the QVT
Compuware/Sun is carried out on a single reference example only.

8.1. QVT Compuware/Sun Language-Based Evaluation
The criteria that can be evaluated by manual inspection of the language itself and that does not depend on a
tool or on observation in examples are presented in the following table.

Table 10 Evaluation of QVT Compuware/Sun language-dependant properties

Criterion How it is supported by QVT Compuware/Sun M S
Traceability

This is not part of the language, and thus it becomes a tool issue. A
compliant tool may have no support for traceability.
Note: Violation of an absolute criterion.

0 (2) 0 (5)

Unidirectionality Supported. 1 (1) 4 (4)

Complete
textual notation

Supported. 1 (1) 4 (4)

Black-box
interoperability

Not supported.
Note: Violation of an absolute criterion.

0 (1) 0 (4)

Composition of
transformations

Not supported.
Note: Violation of an absolute criterion.

0 (2) 0 (3)

QoS mapping Source and target can be expressed as MOF models and we believe
that QVT Compuware/Sun can be used to transform between any MOF
models.

1 (1) 3 (3)

Graphical
notation

There is no evidence in the submission that the graphical notation can
be used to fully define any transformation that can be defined textually.

1 (3) 0.7
(2)

Updating
source model(s)

Supported 1 (1) 2 (2)

Resolution of
QoS properties

Source and target can be expressed as MOF models and we believe
that QVT Compuware/Sun can be used to transform between any MOF
models.

1 (1) 2 (2)

Page 66 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

Incomplete
transformations
completed with
pattern
parameters

Not evaluated. - -

Modularity Supported by grouping into UML packages 1 (1) 6 (6)
Reusability Full support. 2 (2) 5 (5)
Restricting
conditions/pre-
conditions

OCL expressions can be used to restrict the source model(s) 1 (1) 4 (4)

Object
orientation

Inheritance and encapsulation is supported. Identity and polymorphism
is considered not supported.

2 (4) 1.5
(3)

Bidirectionality Supported. 1 (1) 2 (2)
Multiple source
models

Supported 1 (1) 2 (2)

Learning Curve
Measurement: 3 = Agree.

The conciseness of the specification and the reuse of UML, MOF and
OCL with very few extensions make it easy to learn this language.
The disadvantage is the lack of examples and explaining of some of the
syntax used.

3 (4) 1.5
(2)

Multiple target
models

It seems likely that the user can textually define several target models. It
is more unclear how this can be achieved graphically.

1 (1) 1 (1)

Constraints
between rules

Rule ordering and pre-/postconditions can be specified. 1 (1) 1 (1)

Repetitiveness Not been tested since this requires a lot of work on building a large proof
based on the entire language specification.

- -

 TOTAL 19
(29)

40
(55)

Note that since there are three violated absolute criteria the total score is assigned to 0, but the total
summation is included so that it is easier to compare the evaluation of Compuware/Sun with QVTMerge.

8.2. QVT Compuware/Sun Example-Based Evaluation

The only example evaluated at this stage is the example provided by the current submission which is the
UML to RDBMS example. The full description of this example with source and target metamodels will not be
repeated here since it is also given in 6.4. In this section we will only present the transformation definition
copied from the submission and the final evaluation table.

8.3. Definition using QVT Compuware/Sun

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 67 of 85

The diagram above is a class model of our object-relational transformation definition. It is a
standard class model as any other UML-infrastructure based class model, with exception of the
direction declarations in it. The directions are depicted according to the standard diagram-notation
extension of EXMOF. You can easily see which properties are bundled in the uml direction, and
which are bundled in the rdbms direction.

The class model defines the structural aspects of the transformation. The classes and properties
do imply neither behavior nor side effects. However, they do define which mapping structures
between simple UML and simple RDBMS are well formed.

For example, we can see that one package can be mapped to one schema and that one class can
be mapped to one table, one (primary) key and one column (because ClassToTable specializes
ToColumn).

Note that the above model does not imply that all instances of class are mapped to tables and
primary keys. The actual rules that define the derivations can limit the amount of instances that are
actually transformed.

The classes FromAttribute, FromAttributeOwner, AttributeToCollumn and NonLeafAttribute define
the structure used to flatten the complex data types. These classes have a recursive structure to
support the recursive flattening of complex data types containing attributes with complex data
types.

All classes of UMLTORDBMS except PackageToSchema are derived classes. A transformation
can be executed when an instance of PackageToSchema exists, whose properties umlPackage
and schema have a value.

Page 68 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

The attribute typeName should be given a value for each instance of PrimitiveToName to define
the primitive-data-type marshaling.

The following EXMOF code defines the package UMLTORDBMS including all the EXMOF rules
that define the derivation of our OO and relational language:

-- A Transformation definition from SimpleUML to SimpleRDBMS

package UMLTORDBMS imports SimpleUML, SimpleRDBMS {

 direction uml uses SimpleUML;
 direction rdbms uses SimpleRDBMS;

 -- Primitive data type marshaling
 class PrimitiveToName {
 owner : PackageToSchema opposites primitivesToNames;

 -- uml
 primitive : PrimitiveDataType to uml;

 -- rdbms
 typeName : String to rdbms;
 }

 class PackageToSchema {
 composite classesToTables : Set(ClassToTable) opposites owner;

 composite primitivesToNames : Set(PrimitiveToName) opposites owner;

 name : String;

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 69 of 85

 -- uml of PackageToSchema
 umlPackage : Package to uml;

 name :=: umlPackage.name;

 map primitivesToNames[compose pn] :#

umlPackage.elements[prim:PrimitiveDataType]
 {
 pn.primitive :== prim;
 }
 map classesToTables[compose c2t] :#:

umlPackage.elements[compose cls:Class|kind='persistent']
 {
 c2t.umlClass :== cls;
 }
 map classesToTables.associationToForeignKeys[a2f|not inherited]
 #: umlPackage.elements[compose assoc:Association|

 source.kind='persistent' and destination.kind='persistent']
 {
 a2f.association :== assoc;
 a2f.owner.umlClass =: source;
 a2f.referenced.umlClass =: destination;
 a2f.name =: name;
 }

 -- rdbms of PackageToSchema
 schema : Schema to rdbms;

 schema.name :=: name;

 map schema.tables[compose tbl|kind<>'meta'] :#:

classesToTables[compose c2t]
 {
 tbl ==: c2t.table;
 }
 }

 abstract class FromAttributeOwner {
 composite fromAttributes : Set(FromAttribute) opposites owner;

 -- uml
 getAllSupers(cls : Class) : Set(Class) {
 cls.general->collect(gen|

self.getAllSupers(gen))->including(cls)->asSet()
 }
 getAllAttributes(cls : Class) : Set(Attribute) {
 getAllSupers(cls).attribute
 }
 getAllForwards(cls : Class) : Set(Association) {
 getAllSupers(cls).forward
 }
 }

Page 70 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

 class ClassToTable extends FromAttributeOwner, ToColumn {
 owner : PackageToSchema opposites classesToTables;

 composite associationToForeignKeys :

OrderedSet(AssociationToForeignKey) opposites owner;

 name : String;

 -- all columns are mapped via the following property
 toColumns : OrderedSet(ToColumn) :=
 OrderedSet(ToColumn){self}->union(fromAttributes.leafs)->
 union(associationToForeignKeys);

 -- uml of ClassToTable
 umlClass : Class to uml;

 umlClass.name :=: name;

 map self.associationToForeignKeys[compose a2f] :#

 self.getAllForwards(umlClass)[assoc] #
 ClassToTable->allInstances()[dest]

 {
 self.getAllSupers(c2t.umlClass)

->includes(assoc.destination);

 a2f.association :== assoc;
 a2f.referenced :== dest;
 a2f.inherited := assoc.source<>self.umlClass or
 assoc.destination<>dest.umlClass;
 }
 map fromAttributes[compose a2c:AttributeToColumn] :#
 getAllAttributes(umlClass)[attr] #
 PrimitiveToName->allInstances()[p]
 {
 attr.type = p.primitive;

 a2c.attribute :== attr;
 a2c.inherited := attr.owner<>self.umlClass;
 a2c.name := name;
 }
 map fromAttributes[compose nla:NonLeafAttribute] :#
 getAllAttributes(umlClass)[attr|type.oclIsKindOf(Class)]
 {
 nla.attribute :== attr;
 nla.name := attr.name;
 }
 map fromAttributes[a2c:AttributeToColumn|not inherited] #:

 umlClass.attribute[compose attr|
 type.oclIsKindOf(PrimitiveDataType)

 {
 a2c.attribute :== attr;
 a2c.name =: attr.name;
 }

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 71 of 85

 -- rdbms of ClassToTable
 table : Table to rdbms;

 primaryKey : Key to rdbms;

 table.name :=: name;
 table.kind := 'base';
 column := primaryKey.column->first();
 column.key := Set(Key) {self.primaryKey};
 column.name := self.name+'_tid';
 column.type := 'NUMBER';

 map table.column[compose c|

 not foreignKey.refersTo.owner.kind->includes('meta')] :#
 toColumns[tc]
 {
 c ==: tc.column;
 }
 -- map columns from rdbms, except columns that originated from

 -- inherited and complex-data-type attributes
 map table.column[c|key->isEmpty() and foreignKey->isEmpty() and
 self.fromAttributes->select(fa|fa.inherited or
 fa.oclIsKindOf(NonLeafAttribute)).
 leafs.column->excludes(c)] #:

self.fromAttributes[compose a2c:AttributeToColumn|
 not inherited]

 {
 c ==: a2c.column;
 a2c.inherited := false;
 }
 map table.foreignKey[compose fk|
 not refersTo.owner.kind->includes('meta')] :#
 associationToForeignKeys[a2f]
 {
 fk ==: a2f.foreignKey;
 }
 -- map foreign keys from rdbms, except foreign keys that

 -- originated from inherited associations
 map table.foreignKey[fk|self.associationToForeignKeys->
 select(af|af.inherited).foreignKey->excludes(fk)] #:
 associationToForeignKeys [compose a2f|not inherited] #
 ClassToTable->allInstances()[c2t]
 {
 fk.refersTo.owner = c2t.table;

 fk ==: a2f.foreignKey;
 c2t ==: a2f.referenced;
 false =: a2f.inherited;
 }
 map table.key[compose pk] :# self[c2t]
 {
 pk ==: c2t.primaryKey;
 pk.kind := 'primary';
 pk.name := c2t.name+'_pk';
 }
 } -- end of class ClassToTable

Page 72 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

 abstract class FromAttribute {
 name : String;

 kind : String;

 owner : FromAttributeOwner opposites fromAttributes;

 leafs : Set(AttributeToColumn);

 inherited : Boolean;

 -- uml
 attribute : Attribute to uml;

 kind :=: attribute.kind;
 }

 abstract class ToColumn {

 -- SimpleRdbms
 column : Column to rdbms;
 }

 class AttributeToColumn extends FromAttribute, ToColumn {
 type : PrimitiveToName;

 leafs := Set(AttributeToColumn) {self};

 -- uml
 attribute.type := type.primitive;

 map type[t] :# attribute.type[at]
 {
 t.primitive = at;
 }

 -- rdbms
 column.name :=: name;
 column.kind :=: kind;
 column.type := type.typeName;

 map type[t] :# column.type[ct]
 {
 t.typeName = ct;
 }
 }

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 73 of 85

 class NonLeafAttribute extends FromAttributeOwner, FromAttribute {
 leafs := fromAttributes.leafs;

 -- uml
 map fromAttributes[compose a2c:AttributeToColumn] :#
 getAllAttributes(attribute.type.oclAsType(Class))[attr] #
 PrimitiveToName->allInstances()[p]
 {
 a2c.attribute :== attr;
 attr.type = p.primitive;
 a2c.name := self.name+'_'+name;
 }
 map fromAttributes[compose nla:NonLeafAttribute] :#

getAllAttributes(attribute.type.oclAsType(Class))[attr]
 {
 attr.type.oclIsKindOf(Class);

 nla.attribute :== attr;
 nla.name := self.name+'_'+name;
 }
 }

 class AssociationToForeignKey extends ToColumn {
 referenced : ClassToTable;

 owner : ClassToTable opposites associationToForeignKeys;

 name : String;

 inherited : Boolean;

 -- uml
 association : Association to uml;

 name := if (not inherited)
 then association.name
 else association.name+'_'+referenced.umlClass.name

 endif;

 -- rdbms
 foreignKey : ForeignKey to rdbms;

 foreignKey.refersTo := referenced.primaryKey;
 foreignKey.name :=: name;
 column := foreignKey.column->first();
 column.foreignKey := Set(ForeignKey) {self.foreignKey};
 column.name := self.name+'_tid';
 column.type := 'NUMBER';
 }

} –- end of package UMLTORDBMS

Page 74 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

8.4. Discussion

Only the textual approach is evaluated since the diagrammatic syntax cannot be used to define the complete
transformation or this definition is not given in the submission.

Table 11 Evaluation of example-dependant properties: UML RDBMS

Criteria Scale
Measure

Absolute Weight

range =
[1,6]

Comments Score
(normalized
measure *
weight)

Ease of use in
simple
transformations
(TEXTUAL)

1 =
Disagree

No 6 The textual syntax is very hard to
understand as stand-alone
without referring extensively to
the diagrammatic overview. The
diagram information is also
copied into the textual part and
will thus need to be maintained
two places.

There is a large variety of ways
to specify assignments using
different mixtures of colon and
equal sign, as well as a lot of
different mixtures of colon and
hash-symbol (#). The clear
definition of all these as well as a
justification for why all of these
are needed is lacking in the
current submission.

The textual syntax uses many
code lines to accomplish the
task. The map fromAttributes is
repeated three times. This
seems bothersome and the code
is also hard to read.

1,5

8.5. Summary of QVT Compuware/Sun Evaluation

The QVT Compuware/Sun Evaluation has the shortcoming that it has only been evaluated towards one
single example. In addition the evaluator has become more familiar with the QVT Merge language by looking
at more examples and also communication with a QVT Merge expert that helped to sort out some
misunderstandings.

The specification reuses MOF, OCL and class diagrams so that very few new constructions are needed. This
will give newcomers a low learning curve. Some more examples and clarification on the syntax definitions
are needed to make the submission more understandable. Since a UML class structure is used to define the
entire transformation, large and complex transformations will need a large number of mapping classes and a
large number of inheritance and aggregation associations. A major concern is to see if this structure
becomes too difficult to follow and maintain. Even for the quite small example of UML to RDBMS the class
diagram becomes overloaded with relations and is quite hard to read. Furthermore it was not clear if the
graphical notation could be used to define complete transformations. The reference example uses the
graphical notation only as an incomplete overview of the transformation. Unfortunately the class structure
definitions and its inheritance relations and aggregations need to be copied in the accompanying textual
notation. This will make it hard to maintain consistency between the two unless there is some automatic tool
support.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 75 of 85

We have compared the Compuware/Sun submission with the MergeGroup submission. The
Compuware/Sun approach violates three absolute criteria (composition, black-box and traceability), while the
MergeGroup approach violates none of the absolute criterion tested. For the tested criteria the MergeGroup
approach achieves a significantly higher score than Compuware/Sun. Furthermore we have compared the
number of code lines for the textual notation of the two approaches for the UML to RDBMS example. 209
code lines are used to define the Compuware/Sun transformation and 59 code lines are used to define the
same transformation using MergeGroup. Although counting code lines is a controversial quality rating, this is
a clear indication that the Compuware/Sun approach requires much more effort to write a transformation.

Page 76 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

9. Related Work
This report has identified a list of requirements for a model to model transformation tool that are important in
the Modelware project. We will compare our requirements with those identified by other parties.

The QVT Request for Proposal (QVT RFP) [5] identified a list of required and optional requirements for
submissions. Compared to Modelware some of their requirements are more focused on fitting the new QVT
specification into the set of existing OMG specifications so to reuse and align well with existing
recommendations and on the submission form. The Modelware requirements on the other hand are higher
level, yet the reuse of successful existing recommendations may lead to good evaluation towards the
Modelware requirements. The QVT RFP has identified portability and declarative transformation language in
addition to the Modelware requirements. But it is unclear if a declarative transformation language implies that
all parts of the language must be declarative or if hybrid languages are allowed where the user may use
either declarative or imperative constructions. There are several Modelware requirements not mentioned in
the QVT RFP: object-orientation, QoS support, composition of transformations, multiple source models,
multiple target models, repetitiveness, black-box interoperability, modularity and user transparent rule
ordering.

Gardner et. al [3] have reviewed the initial 8 submissions to the QVT RFP and proposed recommendations
for the final specification. These recommendations are mostly implementation proposals rather than high
level desired properties as this report focuses on. Gardner et. al propose a hybrid language with both
declarative and imperative constructions, where the declarative part is simple and declarative as the only
option for the querying part. They share Modelware’s concern that ease of use and usability are critical
requirements. In addition they also emphasize the importance of transformation consistency checking,
composition, reuse and the ability to define complex transformations. Langlois et. al [4] have also
investigated the 8 initial submissions, reviewed Garner et. al’s contribution and compiled a list of
recommendations based on the end-user experience of THALES. Langlois et al. have come up with four
main criteria: portability, maintainability, usability and functionality. They stress the need for defining precise
semantics for the transformation execution.

Sendall and Kazaczynski [9] proposes these desired properties: executability, efficiency, fully expressive and
unambiguous, clear separation of source model selection rules from target producing rules, graphical
constructs to complement a textual notation, composition of transformations, and “conditions under which the
transformation is allowed to execute”. They also propose that declarative constructions should be used for
implicit mechanisms that are intuitive, but also warns that too many implicit and complicated constructs may
be more difficult to understand than the more explicit and verbose counterpart.

This report has proposed an evaluation framework based on the requirements of the Modelware project. The
focus of the requirements is to measure the goodness and quality of the approach regardless of any existing
inheritance and compliance issues with existing OMG recommendations. The list of requirements at this level
is more extensive than all of the previously published efforts. For each requirement we have specified a
measurement scale, a weight for the importance of the requirement and if the requirement is absolute. Then
the actual measurements are used as input to an overall score algorithm that can be used to compare the
quality of different approaches to model to model transformation. We have also gone further than previous
efforts by defining six reference examples to measure the ease of use requirement which is of uttermost
importance but requires such case studies in order to be measured.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 77 of 85

10. Conclusions
This report has identified 29 weighted evaluation criteria representing desired properties of a model to model
transformation language. These criteria have then been used to evaluate the current QVT Merge
specification. We have so far only been able to evaluate 21 of these criteria, mainly due to missing tool
support. Some of the criteria are considered absolute in the sense that missing to fulfill such a criterion is
considered a failure. The 21 evaluated criteria give a score of 59 out of a maximum possible score of 68
(language-based + example-based testing). We have also compared the QVT-Merge submission with the
QVT-Compuware/Sun submission and at the time being the QVT-Merge seems to be the preferred one due
to more support on the absolute criteria and better easy-to-use score.

Eight transformation examples for solving six different transformation tasks have given a lot insight on the
ease of use criteria for both simple and complex transformations. The average score is 2,5 as an answer to
the question: Is the transformation language easy to use? (0= Strongly disagree, 1 = Disagree, 2 = Neither, 3
= Agree, 4 = Strongly agree). The advantages are the modularity and nice structure of the program code into
manageable separate transformation constraints and rules. Disadvantages are that there are many ways to
define a transformation using either the relations or mappings, textual or graphical. Many different
programming styles can be used and mixed including imperative, declarative, object-oriented and
procedural. All these options require more effort to be skilled and it may cause messy code if used
incautiously. The evaluator has also experienced difficulties interpreting some of the single statements that
are very long and cryptic. Such expressions are commonly used and they require a lot of mental effort.

When defining transformations using QVT Merge we believe that a lot of effort may be required in order to
define the source and target metamodels. Defining the metamodels will give a nice documentation of the
transformation context. Repositories should be used to register metamodels so that they can be reused by
others. The graphical notation has not been investigated enough but a hypothesis is that it is well suited for
simple transformations and for providing a quicker and higher level view of the elements involved in the
transformation. We strongly encourage that a fully defined bidirectional transformation be defined between
the graphical notation and the textual notation, and then implemented in a QVT tool so that the
transformation architect at any time can switch between the two depending on the working mode.

The evaluation in this report could be improved by using the reference examples with alternative approaches
published in the literature. An available QVT-Merge tool is necessary in order to provide evaluations of all the
suggested criteria. In order to further investigate the usability of the graphical notation, we need to define
more of the transformation examples graphically. Only one of the examples has been specified graphically in
this version. The current evaluation has been done by a single evaluator who has only reviewed the
transformation code that was written by somebody else. The evaluation will be further improved by
incorporating input from other evaluators as well as evaluation from those who wrote the transformation
code.

Page 78 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

11. References

[1] QVT-Merge_Group, Revised submission for MOF 2.0
Query/Views/Transformations RFP (ad/2002-04-10).
2004,www.omg.org.

[2] Compuware_Corporation_and_SUN_Microsystems, EXMOF Queries,
Views and Transformations on Models using MOF, OCL and EXMOF,
Proposal to document: MOF 2.0 Query / Views / Transformations RFP
ad/2002-04-10. 2004,www.omg.org.

[3] Gardner, T. and C. Griffin. A review of OMG MOF 2.0 Query / Views /
Transformations Submissions and Recommendations towards the final
Standard. in MetaModelling for MDA Workshop. 2003. York, England,
UK.

[4] Langlois, B. and N. Farcet. THALES recommendations for the final
OMG standard on Query / Views / Transformations. in 2nd OOPSLA
Workshop on Generative Techniques in the context of Model Driven
Architecture. 2003. Anaheim, California, USA.

[5] OMG, Object Management Group MOF 2.0 Query / Views /
Transformations RFP. 2002,www.omg.org.

[6] Bézivin, J., et al. First experiments with the ATL model transformation
language: Transforming XSLT into XQuery. in 2nd OOPSLA Workshop
on Generative Techniques in the context of Model Driven Architecture.
2003. Anaheim, California, USA.

[7] OMG, Software Process Engineering Metamodel (SPEM), version 1.0.
2002,http://www.omg.org/technology/documents/formal/spem.htm.

[8] OMG, UML Profile for enterprise distributed Object Computing (EDOC)
version 1.0; OMG Adopted Specification ptc/02-02-05.
2002,http://www.omg.org/technology/documents/formal/edoc.htm.

[9] Sendall, S. and W. Kozaczynski, Model Transformation – the Heart and
Soul of Model-Driven Software Development. IEEE Software, Special
Issue on Model Driven Software Development, 2003.

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 79 of 85

12. Appendix

12.1. EDOC to J2EE using the Frauhofer formalism
This section will illustrate the transformation specification used in the Fraunhofer FOKUS tool chain. The
transformation rules of this tool chain are not explicitly expressed but are implemented as C++ code. For
illustrational purposes the rules are also described in terms of transformation diagrams and explaining text.

In the following figures the EDOC source modelling elements are shown as green boxes and the target J2EE
modelling elements are shown as blue boxes.

12.1.1. Transformation of Package Structure

Package structures in EDOC are transformed to JavaPackage structures. Nested packages become nested
packages and names are preserved.

Figure 20 Transformation to Java packages

12.1.2. Transformation of primitive and composite data

EDOC CompositeDataDefs with attributes are transformed to JavaClass with Fields. The containment,
name, and inheritance relations remain unchanged.

EDOC DataTypeDefs are transformed to Java PrimitiveTypes.

PackageContentDef

name : String
(from ModelManagement)

JavaPackage
(from Standard)

0..1

0..n

+outerPackage

0..1

ASubPackages

+subPackages

0..n

PackageDef
(from ModelManagement)

0..1

0..n

+namespaceContainer

0..1

+ownedElements

0..n

ElementNamespace <<transformation>>

Page 80 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

PrimitiveTag

PT_Boolean
PT_Byte
PT_Char
PT_Double
PT_Float
PT_Integer
PT_Long
PT_Short
PT_Void

(from Standard)

<<enumeration>>

ClassDescriptor
(from Standard)

JavaClass
(from Standard)

0..n

0..1

+subclasses
0..n

+superclassName

0..1

AExtendsType

CompositeDataDef
(from DocumentModel)

0..1

0..n

+supertype

0..1

Generalization

+subtypes
0..n

<<transformation>>

Field
(from Standard)

0..1

0..n

+declaringClass
0..1

+fields 0..n

AFields

AttributeDef
(from DocumentModel)

1

0..n

+owner1

+feature0..n

DataAttribute

<<transformation>>

PrimitiveType

kind : J2EE::Java::Standard::PrimitiveTag
(from Standard)DataTypeDef

(from DocumentModel)

<<transformation>>

Figure 21 Transformation to Java classes and primitive types

12.1.3. Transformation of Data Managers

An EDOC DataManager is a functional component that provides access to and may perform operations on
its associated Composite Data, i.e. its state. The Data Manager defines ports for access to operations on the
state data. A DataManager inherits from Process Component and adds the quality of having an associated
state. A Data Manager has two attributes:

• Network Access: A Boolean value which indicates if the DataManager is intended to be accessible
over the network.

• Sharable: A Boolean value which indicates if the DataManager can be shared by multiple
transactions/sessions.

DataManagers are mapped to Java classes. The fields of the Java class correspond to the attributes of the
associated CompositeData.

If (NetworkAccess == true | Sharable == true), the JavaClass is implemented as a JavaRemote Object. The
containment and name relations remain unchanged.

CompositeDataDef
(from DocumentModel)

DataManagerDef

NetworkAccess : Boolean
Sharable : Boolean

(from Entity)

0..1

1

+the_manager
0..1

+compositeData
1

Manages

JavaClass
(from Standard)

<<transformation>>

<<transformation>>

ProcessComponentDef

granularity : EDOC::ECA::CCA::GranularityKindDef = Program
isPersistent : Boolean
primitiveKind : String
primitiveSpec : String

(from CCA)

Figure 22 Transformation to Java class

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 81 of 85

12.1.4. Transformation of Entities

Entity specialises DataManager for the representation of identifiable business domain artefacts.

EntityData is the data structure that represents a concept in the business domain. It is equivalent to an entity
in data modelling or a relation in a relational database. In a DataManager or its specialisation, such as Entity,
it represents the state of an object. EntityData must have a prime Key that is unique within the extent of the
EntityData type.

EDOC Entities are transformed to EntityBeans. Attributes of managed EntityData are mapped to Fields of
the entity bean. Corresponding set/get methods are generated as part of the bean’s remote or/and local
interface.

A JavaClass is generated for the EDOC KeyDef . It becomes the primary_key of the entity bean.

EnterpriseBean
(from Enterprise)

EntityDataDef
(from Entity)

DataManagerDef

NetworkAccess : Boolean
Sharable : Boolean

(from Entity)

KeyDef

PrimeKey : Boolean
(from Entity)

1

0..n

+data1

+entity0..n
Key

CompositeDataDef
(from DocumentModel)

0..1

1

+the_manager 0..1

+compositeData
1

Manages JavaClass
(from Standard)

<<transformation>>

AttributeDef
(from DocumentModel)

1 0..n
+owner

1

+feature

0..n

DataAttribute
Field

(from Standard)

0..1

0..n

+declaringClass
0..1

+fields
0..n

AFields

<<transformation>>

EntityBean

primary_key : ClassDescriptor
(from Enterprise)

EntityDef

Managed : Boolean
(from Entity)

<<transformation>>

Figure 23 Transformation to entity beans

12.1.5. Transformation of Process Components

The mapping from EDOC process components to enterprise beans depends on the value of the attribute
GranularityKind, which defines the scope in which the EDOC component operates. The values may be:

• Program – the component is local to a program instance (default).

• Owned – the component is visible outside of the scope of a particular program but dedicated to a
particular task or session which controls its life cycle.

• Shared – the component is generally visible to external entities via some kind of distributed
infrastructure.

The type of the target enterprise bean depends on the usage context of the source EDOC component.

If the granularity kind is shared and the component is used at the outermost level of a community process it
is mapped to a remote accessible stateless session bean as shown in Figure 24. The containment, name,
and inheritance relations remain unchanged.

Page 82 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

GranularityKindDef

program
owned
shared

(from CCA)

<<enumeration>>

EJBInterface
(from Enterprise)

SessionBean
(from Enterprise)

JavaClass
(from Standard)

EnterpriseBean
(from Enterprise)

StatelessSessionBean
(from Enterprise)

RemoteInterface
(from Enterprise)

1

0..1

+ejb_of_remote_interface
1

+remote_interface
0..1

ARemoteInterface

ProcessComponentDef

granularity : EDOC::ECA::CCA::GranularityKindDef = Program
isPersistent : Boolean
primitiveKind : String
primitiveSpec : String

(from CCA)

<<transformation>>

<<transformation>>

Figure 24 Transformation to a remote accessible stateless session bean

If the granularity kind is shared and the component is used within compositions it is mapped to a local
accessible stateless session bean as shown in Figure 25.

GranularityKindDef

program
owned
shared

(from CCA)

<<enumeration>>

EJBInterface
(from Enterprise)

SessionBean
(from Enterprise)

JavaClass
(from Standard)

EnterpriseBean
(from Enterprise)

StatelessSessionBean
(from Enterprise)

LocalInterface
(from Enterprise)

1

0..1

+ejb_of_local_interface
1

+local_interface
0..1 ALocalInterface

ProcessComponentDef

granularity : EDOC::ECA::CCA::GranularityKindDef = Program
isPersistent : Boolean
primitiveKind : String
primitiveSpec : String

(from CCA)

<<transformation>>

<<transformation>>

Figure 25 Transformation to a local accessible stateless session bean

12.1.6. Transformation of EDOC Ports

In general EDOC Ports are transformed to Java interfaces. The following rules depicted in Figure 26 hold for
the transformation process:

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 83 of 85

DirectionTypeDef

initiates
responds

(from CCA)

<<enumeration>>

ProtocolPortDef
(from CCA)

OperationPortDef
(from CCA)

EnumerationDef
(from DocumentModel)

DataTypeDef
(from DocumentModel)

EJBInterface
(from Enterprise)

CompositeDataDef
(from DocumentModel)

JavaClass
(from Standard)

Method
(from Standard)

0..10..n
+declaringClass

0..1
+methods

0..n

/AMethods

BehavioralFeature
(from Standard)

FlowPortDef
(from CCA)

<<transformation>>

FeatureParameter
(from Standard)

1..1

0..n

+behavioralFeature
1..1

+parameters
0..n

AHasParameters

DataElementDef
(from DocumentModel)

0..n

0..1

+the_port

0..n

+the_type

0..1

FlowType

<<transformation>>

RemoteInterface
(from Enterprise)

PortDef

name : String
isSynchronous : Boolean
isTransactional : Boolean
direction : EDOC::ECA::CCA::DirectionTypeDef
postCondition : EDOC::ECA::CCA::StatusDef

(from CCA)

<<transformation>>

LocalInterface
(from Enterprise)

<<transformation>>

Figure 26 Transformation to interfaces, methods, and parameters

• FlowPorts with the direction response are transformed to methods of a Java interface. Interface is
either:

• a bean’s remote interface,

• a bean’s local interface or

• a Java class with isInterface == true,

• depending on the transformation of the owning ProcessComponent of the flow port.

• OperationPorts with the direction response are transformed to Methods. Contained flow ports
become parameters or return types of methods, depending of the direction (initiates or response).

• Other Ports as ProtocolPorts and MultiPorts are recursively decomposed according to their structure.
Contained flow ports and operational ports with direction response become methods as described
above. Other contained ports are further decomposed.

• Outermost flow ports and operational ports with direction initiates are ignored.

• A DataElement of a flow port becomes a FeatureParameter, a parameter of the method.

Page 84 of 85 MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal
v.1.0, 31st of March 2005

MODELWARE – 511731 – Evaluation of the QVT Merge Language Proposal v.1.0, 31st of March 2005
Page 85 of 85

