
Electronic Communications of the EASST
Volume 9 (2008)

Guest Editors: David H. Akehurst, Martin Gogolla, Steffen Zschaler
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the Workshop
Ocl4All: Modeling Systems with OCL

at MoDELS 2007

Sharing OCL Constraints by Using Web Rules

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner and Vladan Devedžić

18 Pages

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ECEASST

2 / 18 Volume 9 (2008)

Sharing OCL Constraints by Using Web Rules

Milan Milanović1, Dragan Gašević2, Adrian Giurca3,
Gerd Wagner3, and Vladan Devedžić1

1milan@milanovic.org, devedzic@etf.bg.ac.yu

FON-School of Business Administration, University of Belgrade, Serbia

2dgasevic@acm.org
School of Computing and Information Systems, Athabasca University, Canada

3Giurca@tu-cottbus.de, G.Wagner@tu-cottbus.de
Institute of Informatics, Brandenburg Technical University at Cottbus, Germany

Abstract: This paper presents an MDE-based approach to interchanging rules between
the Object Constraint Language (OCL) and REWERSE I1 Rule Markup Language
(R2ML). The R2ML tends to be a standard rule markup language by following up the
W3C initiative for Rule Interchange Format (RIF). The main benefit of this approach is
that the transformations between languages are completely based on the languages’
abstract syntax (i.e., metamodels) and in this way we keep the focus on the language
concepts rather than on technical issues caused by different concrete syntax. In the current
implementation, we have supported translation of the OCL invariants into the R2ML
integrity rules. While most of the OCL expression could be represented in the R2ML and
other rule languages, we have also identified that collection operators could only be
partially supported in other rule languages (e.g., SWRL).

Keywords: MDE, OCL, UML, MOF, XML, EBNF, RIF, R2ML, Model transformations,
ATL, SWRL

1 Introduction
The Unified Modeling Language (UML) [UML06] presents a de-facto standard for modeling
object-oriented systems. In the UML, various model elements like classes or state machines
can be annotated by logical constraints defined by using the Object Constraint Language
(OCL). In this way, UML models constrained by OCL expressions are more accurate and
complete. The OCL is today used in a number of tools, and it is accepted as a standard by the
OMG (Object Management Group); it can be also used to define constraints on MOF (Meta
Object Facility)-based metamodels [MOF06]. The OCL 2.0 specification [OCL06] explicitly
defines a concrete and an abstract syntax of the language, i.e., a MOF-based metamodel and a
textual concrete syntax.

In the research community, there have been a lot of efforts to enable sharing UML models
with other languages. One such effort is to share UML models and ontologies, and thus enable
the reconciliation of the Semantic Web and software engineering communities [BKK02],
[Cra01], [GDD06]. However, none of the present efforts have so far considered the problem of
sharing OCL constraints with other types of constraint or rule languages such as Semantic
Web Rule Language [HPB*04], F-Logic, or Jess. This has a consequence that one can not

Sharing OCL Constraints by Using Web Rules

Proc. Ocl4All 2007 3 / 18

translate OCL constraints defined on UML models into, for example, corresponding
constraints defined over OWL ontologies.

Nevertheless, the W3C consortium started an initiative called Rule Interchange Format
(RIF) [Gin06], which tries to define a standard for sharing rules. That is, RIF should be
expressive enough, so that it can represent concepts of various rule languages. Besides RIF,
one should also develop a (two-way) transformation between RIF and any rule language that
should be shared by using RIF. Currently, there is no official submission to RIF, but the
RuleML [HBG*06] and the REWERSE I1 Rule Markup Language (R2ML) [WGL05] are two
well-known RIF proposals.

In this paper, we propose transformations between the R2ML and OCL to enable
interchanging OCL rules with other rule languages via R2ML. However, we want our solution
to be completely based on the abstract syntax of both languages, unlike other similar
approaches proposed in the context of rule interchange [RTJ06] that mainly focus on a
concrete syntax without efficient mechanisms to check whether the implemented
transformations are valid w.r.t. the abstract syntax. In this paper, we propose using Model-
Driven Engineering (MDE) principles and model transformations to address this issue. This
means that we have to provide a two way mapping between the OCL and R2ML. The main
benefit of such an approach is that we can actually map OCL constraints into all other rule
languages (e.g., SWRL, Jess, F-Logic, and Prolog) that have mappings defined with R2ML. In
our previous work [MGG*06], we defined technical requirements for fully implementation of
this approach, while in this paper we focus on the details of the mappings between OCL and
R2ML constructs. The mappings between the OCL and R2ML include those OCL constructs
which are interchangeable with other rule languages, i.e., we have defined mappings of such
OCL expressions that could be represented in rule languages for which we have already
defined mappings.

2 Motivation
In order to motivate sharing rules expressed in the OCL and R2ML, let us consider the
following UML model from Figure 1 that represents an excerpt from the EU-Rent Vocabulary
Business Context. EU-Rent is a car rental company owned by EU-Corporation and it is used as
an example in the Semantics of Business Vocabulary and Business Rules (SBVR) standard
[SBVR05]. At the UML class Person, there is a following OCL invariant defined: a barred
driver is a person known to EU-Rent as a driver who has at least 3 bad experiences. This
invariant is in a UML note attached to the Person class and shown on the UML diagram from
Figure 1.

Given the great diversity of rule concepts and existing rule languages, the R2ML
metamodel consists of overlapping metamodels for the following types of rules: integrity,
derivation, reaction, and production rules. This means, we first have to decide to what type of
R2ML rules we should transform the above OCL constraint. Having in mind the nature of the
OCL invariant above, which defines that something must be true for all instances of that type
at any time, we actually should transform the above rule into an R2ML integrity rule, or more
specifically an alethic integrity rule (see more details about notion of R2ML integrity rules in
Section 4.1) [WGL05]. In general, we can say that an OCL invariant, which is universally
quantified formula over a set of objects corresponding to the context in a form of an alethic
integrity rule (necessity), can be translated to an R2ML rule. Due to the nature of the OCL

 ECEASST

4 / 18 Volume 9 (2008)

invariants, it has to be translated onto the R2ML integrity rule. In Figure 2, we show the OCL
invariant from Figure 1 in the R2ML XML-based concrete syntax. This R2ML alethic rule has
a universally quantified formula as its constraint, while this universally quantified formula is
an implication which is obtained from the OCL implies element. Mappings between the OCL
invariant shown in Figure 1 and the R2ML rule shown in Figure 2, will be explained in detail
in Section 4.3.

Figure 1. OCL invariant and its corresponding UML class Person in the UML class diagram

Once we transform the OCL invariant into an R2ML alethic integrity rule, we can further

transform it onto all other rule languages supporting integrity rules by exploiting the existing
transformations for R2ML [R2ML07] (e.g., SWRL [MGG*06]). However, we should mention
here that we have supported only those OCL constructs which can be translated into other rule
languages (see Section 4.3 for details).

From the above facts, it is obvious that in both examples we use the concrete syntax of the
languages (i.e., OCL and R2ML). However, a language is usually defined by its abstract
syntax (i.e., metamodel), while concrete (visual or textual) syntax is employed to represent
physically rules. Thus, defining and implementing mappings between languages should be
done on the level of their abstract syntax, as this actually allows us to focus on mappings
between language constructs, rather than on the implementation details of their concrete
syntax. Being driven by this approach, in the rest of the paper, we describe mappings between
R2ML and OCL on the level of their abstract syntax, and yet bridge the gap between R2ML
and OCL’s abstract and concrete syntax by using MDE principles.

Sharing OCL Constraints by Using Web Rules

Proc. Ocl4All 2007 5 / 18

<r2ml:AlethicIntegrityRule>
 <!--Namespace definitions are omitted to reduce the size of this example-->
 <r2ml:constraint>
 <r2ml:UniversallyQuantifiedFormula>
 <r2ml:ObjectVariable r2ml:name="person" r2ml:classID="ex:Person"/>
 <r2ml:Implication>
 <r2ml:antecedent>
 <r2ml:DatatypePredicateAtom
 r2ml:datatypePredicateID="swrlb:greaterThan">
 <r2ml:dataArguments>
 <r2ml:DatatypeFunctionTerm r2ml:datatypeFunctionID="fn:count">
 <r2ml:dataArguments>
 <r2ml:AttributeFunctionTerm
 r2ml:attributeID="ex:badExperience">
 <r2ml:contextArgument>
 <r2ml:ObjectVariable r2ml:name="person"
 r2ml:classID="ex:Person"/>
 </r2ml:contextArgument>
 </r2ml:AttributeFunctionTerm>
 </r2ml:dataArguments>
 </r2ml:DatatypeFunctionTerm>
 <r2ml:TypedLiteral r2ml:lexicalValue="3"
 r2ml:datatypeID="xs:integer"/>
 </r2ml:dataArguments>
 </r2ml:DatatypePredicateAtom>
 </r2ml:antecedent>
 <r2ml:consequent>
 <r2ml:ObjectClassificationAtom r2ml:classID="ex:BarredDriver">
 <r2ml:ObjectVariable r2ml:name="person" r2ml:classID="ex:Person"/>
 </r2ml:ObjectClassificationAtom>
 </r2ml:consequent>
 </r2ml:Implication>
 </r2ml:UniversallyQuantifiedFormula>
 </r2ml:constraint>
</r2ml:AlethicIntegrityRule>

Figure 2. An R2ML (alethic) integrity rule equivalent to the OCL invariant from Figure 1

3 Model Transformations for Rules
In this section, we summarize transformation chain used to implement mappings between two
languages, while the detailed discussion on the technical requirements is given in [MGG*06].
The first step (see Figure 3) is between OCL rules (invariants) represented in the OCL
concrete syntax (i.e., in the EBNF technical space [KBA02]) and models compliant with the
OCL metamodel (in the MOF technical space) [OCL06]. In the second step, the MOF-based
OCL rules obtained (i.e., OCL models) are transformed to R2ML models compliant with the
R2ML metamodel. In the third step, R2ML models are transformed into the XML models (i.e.,
instances of the XML metamodel) by using transformations that we created in our previous
work for bridging between the R2ML abstract and concrete syntax [MGG*07]. Finally, in the
fourth step, such XML models (from the MOF technical space) are serialized into the R2ML
XML format (compliant with the R2ML XML Schema) by using the ATL XML Extractor tool
[ATL07a].

Having in mind all the above transformations, we have the core of the solution that is based
on abstract syntax, but we actually can transform between OCL invariants and R2ML XML-
based rules.

 ECEASST

6 / 18 Volume 9 (2008)

Figure 3. The transformation scenario between OCL and R2ML

4 Mappings between R2ML and OCL
In this section, we first describe the parts of the R2ML abstract syntax relevant for
representing OCL rules. We then describe the OCL abstract syntax, and finally, mappings
between R2ML and OCL in detail.

4.1 R2ML Abstract Syntax
The R2ML metamodel is defined by using the MOF metamodeling language. R2ML supports
four kinds of rules, namely, integrity rules, derivation rules, production rules, and reaction
rules. R2ML covers almost all of the use case requirements of RIF [Gin06]. Although OCL
can represent both integrity constraints and derivation rules, we only describe R2ML integrity
rules here. An integrity rule, also known as (integrity) constraint, consists of a constraint
assertion, which is a sentence in a logical language such as first-order predicate logic or OCL
(see Figure 4Error! Reference source not found.). The R2ML framework supports two kinds
of integrity rules: the alethic and deontic ones. An alethic integrity rule can be expressed by a
phrase, such as “it is necessarily the case that” and a deontic one can be expressed by phrases,
such as “it is obligatory that” or “it should be the case that.”.

Figure 4. The metamodel of integrity rules

Sharing OCL Constraints by Using Web Rules

Proc. Ocl4All 2007 7 / 18

The corresponding LogicalFormula must have no free variables, that is, all the variables
from this formula must be quantified. R2ML defines the general concept of LogicalFormula
(see Figure 5) that can be Conjunction, Disjunction, NegationAsFailure, StrongNegation, and
Implication. The concept of a QuantifiedFormula is essential for R2ML integrity rules, and it
subsumes existentially quantified formulas and universally quantified formulas. Figure 5 also
contains elements such as AtLeastQuantifiedFormula, AtMostQuantifiedFormula, and
AtLeastAndAtMostQuantifiedFormula for defining cardinality constraints with R2ML rules.
Atoms are basic constituents of formulas in R2ML, and they together with formulas correspond
to the boolean OCL expressions. Atoms are compatible with all important concepts of UML
and OCL. R2ML distinguishes object atoms, data atoms, and generic atoms.

Figure 5. The concept of a logical formula in R2ML

Terms are the basic constituents of atoms, which can be viewed as a first-order predicate-

logic-based version of the OCL metamodel fragment of non-Boolean OCL expressions.
Similarly to atoms, the R2ML language distinguishes between object terms, data terms and
generic terms. We here describe only data terms due to the size limit, while object and generic
atoms are defined in a similar way. A DataTerm is a DataLiteral, DataVariable, or
DataFunctionTerm that can be DataOperationTerm, AttributeFunctionTerm, and
DatatypeFunctionTerm (see Figure 6).

 ECEASST

8 / 18 Volume 9 (2008)

Figure 6. R2ML Data Terms

A DataOperationTerm is formed with the help of a contextArgument, a user-defined

operation, and an ordered collection of arguments. The AttributeFunctionTerm corresponds to
a datatype attribute in a UML class model. DatatypeFunctionTerm is represented with
datatypeFunction and dataArguments. DataVariable stands for plain data types, while
DataLiteral can be PlainLiteral and TypedLiteral with some datatype.

4.2 OCL Abstract Syntax
The OCL metamodel (i.e., abstract syntax for OCL version 2.0) is also defined by using MOF
[OCL06]. In this abstract syntax, a number of meta-classes from the UML 2.0 metamodel are
imported [UML06]. The OCL metamodel is divided into several packages: the Types package
describes the concepts that define the type system of OCL. It shows the types predefined in
OCL as well as the types that are deduced from the UML models; the Expressions package
describes the structure of OCL expressions; and the EnhancedOCL1 package that we have
added to the standard OCL metamodel to represent invariant constructs that are not supported
in the standard OCL.

The Expressions package defines kinds of OCL expressions. An overview of the inheritance
relationships between all classes defined in the package is shown in Figure 7. The basic
structure of the package consists of the OCL metamodel classes such as OclExpression that is
an abstract superclass for all OCL expressions; and Feature–CallExp that is superclass for the
OperationCallExp and PropertyCallExp classes. OperationCallExp represents an operation
defined on a Classifier, while PropertyCallExp models a reference to an Attribute of a
Classifier defined in a UML model.

1 We are very grateful to Mr. Mariano Belaunde for his generous help in defining the EnhancedOCL
package.

Sharing OCL Constraints by Using Web Rules

Proc. Ocl4All 2007 9 / 18

Figure 7. The basic structure of expressions in the OCL metamodel

Since the standard specification of the OCL metamodel [OCL06] does not contain support

for OCL invariants, we introduced the EnhancedOCL package. This package contains the
Invariant class, as a subclass of the OclModuleElement class (see Figure 8), white classes are
from the UML metamodel, white gray colored ones are from the standard OCL metamodel and
dark gray are classes that we have defined).

Figure 8. Elements of the EnhancedOCL package in the OCL metamodel

OclModuleElement represents a superclass for following elements: OCL invariant elements

(represented with the Invariant class); OCL operations and properties, i.e., “def” elements
(represented with the abstract class OclFeature) that are represented with classes
OclOperation and OclProperty, respectively; and OCL derivation rules, i.e., "derive" elements
(represented with class DeriveOclModuleElement).

 ECEASST

10 / 18 Volume 9 (2008)

OclModuleElement contains a definition of an invariant context that is represented with the
OclContextDefinition class. In addition, the OclModule class is introduced to represent a basic
class in an OCL model, and it contains other OclModuleElements. We also added the
OperatorCallExp class into the standard expression package of the OCL metamodel to
represent operation call expressions that use operators, and it inherits OperationCallExp class.
We had to do this in order to be able to develop the OCL parser that fully covers all OCL
constructs. Due the limited size for this paper, we do not show these classes and their relations.

4.3 Conceptual mappings between OCL and R2ML
In order to share rules between OCL and R2ML, we have defined isomorphic mappings
between certain constructs of OCL and R2ML on the level of their abstract syntax. Every OCL
invariant which is in the form of an OCL implies is mapped to an R2ML AlethicIntegrityRule
whose constraint is a UniversallyQuantifiedFormula, while its formula is an Implication
mapped from an OCL implies element. Besides OCL implies expression, we have supported
all other OCL expression that can be written in invariants. We further expand the mappings
between OCL and R2ML to specify mappings between elements that are part of OCL and
R2ML expressions. In Table 1, we give an excerpt of the mappings that we defined between
both languages metamodels. The complete mappings between the R2ML and OCL
metamodels contain 37 rules. In the rest of this subsection, we describe the mappings of the
main OCL expressions, which could be used in invariants, into the R2ML. As an illustration,
we refer to the EU-Rent case study shown in Figure 1. (N.B. every OCL invariant expression
is defined in the context of a UML Class such as context RentalCar).

• OCL attribute (e.g., self.age), which is represented in the OCL metamodel as
PropertyCallExp, is mapped into an R2ML AttributionAtom, which consists of an
object term as “subject” and a data term as “value“. For example, startDate(r1, sd),
where startDate is an attribute, r1 is an object term (subject), and sd is a data term
(data value). Note that the AttributionAtom, as well as all other R2ML atoms, inherit
the Atom class shown in Figure 5.

• OCL operation call, which is represented in the OCL metamodel as OperationCall-
Exp, is mapped:

o to R2ML DataOperationTerm, if the operation call returns a primitive OCL
datatype. The DataOperationTerm refers to a non-state-changing user-defined
Operation and consists of a list of data or object arguments and an object term
as a context argument. The result of an Operation is a data term (value). An
example of a DataOperationTerm is x.getAge(), which returns the age of a car
x. The DataOperationTerm corresponds to a Java path expression calling an
operation which returns a datatype as result (e.g., int).

o to R2ML ObjectOperationTerm, if the operation call returns an object. The
ObjectOperationTerm refer to a non-state-changing operation. The
ObjectOperationTerm may have data terms and object terms as operation
arguments and is evaluated to an object. For example, the expression
x.getLastRental(), which returns the last rental of a rental car, is an object
operation term, where getLastRental() denotes an operation and x is the
context argument (see Figure 1). The ObjectOperationTerm corresponds to a
Java path expression calling an operation which returns an object as result.

Sharing OCL Constraints by Using Web Rules

Proc. Ocl4All 2007 11 / 18

• A UML association is navigated in the OCL by using its opposite association end (in
the OCL metamodel, this is represented with PropertyCallExp). If the maximal
multiplicity of the association end is 1 (i.e., cases “0..1” or “1”), then the value of this
expression is an object, and such an expression is mapped into an R2ML
ReferencePropertyFunctionTerm. The R2ML ReferencePropertyFunctionTerm is a
function, which returns the value of an association end for a given object. For
example, the expression x.pickupBranch, where pickupBranch is an association end
name of a Branch in the association between classes Rental and Branch (see Figure 1)
is a reference property function term, where x is an object term and pickupBranch is a
reference property. However, if the multiplicity of the association end is more than
one (“*”), then the navigation will result in a Set, and such an expression is mapped
into an R2ML AttributeFunctionTerm (with “set“ as the type category). The
AttributeFunctionTerm refers to an attribute and an object term as a context argument.
For example, the expression x.reservationDate is an attribute function term, where x is
an object term and reservationDate is an attribute of class Rental. When the
association is adorned with {ordered}, the navigation results in an OrderedSet and in
this case the AttributeFunctionTerms type category is “orderedSet.” For two other
kinds of collections (Bag and Sequence), the AttributeFunctionTerm has
corresponding type categories.

• OCL collections may have a large number of predefined collections operations on
them (e.g., the size operation, which returns the number of elements in a collection, or
the isEmpty operation, which returns true if the collection is empty or false otherwise).
These operation calls (represented in the OCL metamodel with OperationCallExp) are
mapped into the R2ML DatatypePredicateAtoms, in the case when on the left side of
the equality operator is collection operation call and on the right side is any other OCL
expression (e.g., badExpirience->size()=1). The operation calls are also mapped into
the R2ML DatatypePredicateAtoms, in the case when a collection operation call on an
association end (with multiplicity more than one) is evaluated to a boolean value (e.g.,
badExpirience->isEmpty). The DatatypePredicateAtom describes a relation between
several data terms, using a data predicate which represents a SWRL built-in function
[HPB*04] that is translated from the operation on a collection. For example,
self.badExpirience->isEmpty() is translated into an R2ML DatatypePredicateAtom
where „swrlb:empty“ is data predicate and self is an AttributeFunctionTerm (with the
Person class as an object term) with “bag“ as the type category. In the case of the
notEmpty operation, the DataTypePredicateAtom is negated (with the property
isNegated, which is set to true). However, in case when the collection operation call is
used in an expression with comparison operators to some other evaluated expression
(e.g., self.badExperience->size()>3), the collection operation call is mapped into an
R2ML DatatypeFunctionTerm, where the collection operation call is translated into
the (XPath) datatype function. We have made this decision because comparison
operators (other than equality) are mapped into DatatypePredicateAtoms whose
arguments must be terms. For example, the OCL size operation is translated into the
XPath count operation. Besides this, we have also a special case when the collection
operation call returns just one element, but not the entire collection (e.g., the first
operation), in which case the operation call is mapped into an R2ML
ObjectOperationTerm.

 ECEASST

12 / 18 Volume 9 (2008)

• OCL equality operation between two association ends, which is represented in the
OCL metamodel with OperationCallExp, is mapped into an R2ML
ReferencePropertyAtom. The ReferencePropertyAtom associates object terms as
“subjects” with other object terms as “objects.” For example, returnBranch(r1, rb),
where returnBranch is a reference property and r1 (subject) and rb (object) are object
terms. In the case of the inequality operator, the property isNegated of the
ReferencePropertyAtom is set to true. Note that translation of any negated OCL
expression (denoted with “not” operator) into an R2ML atom is done by setting
property isNegated of such atom to true.

• OCL oclIsKindOf(t) operator, which is a property that determines whether t is either
the direct type or one of the supertypes of an called object, is mapped into an R2ML
ObjectClassificationAtom. The ObjectClassificationAtom consists of a class type (as
“base type”) and an object term, variable, constant or function term.
ObjectClassificationAtom accommodates the concept of an OperationCallExp in the
OCL metamodel with a TypeExp argument (e.g., Rental(r1)).

• OCL implies operation, which is represented in the OCL metamodel as
OperationCallExp, is mapped into an R2ML Implication. The R2ML Implication
consists of an antecedent (body) and a consequent (head), each of which consists of a
set of atoms.

• In R2ML, functions range over individuals, like in standard first-order predicate logic.
Since OCL allows function terms (such as navigation call expressions) to range over
sets (more precisely, collections) and because the current R2ML metamodel does not
support collections, the R2ML only captures a fragment of the OCL collection
expressions. This will be subject for the future work to allow set-valued functions in
the R2ML metamodel and then to provide a full support for such OCL expressions.

• In the current implementation, we have partially supported following OCL collection
operations: select, reject, includesAll, and forAll. Due to size of this paper we do not
describe mapping of every operation in detail. As an example, we may say that the
select operation (represented in the OCL metamodel as IteratorExp), which specifies a
subset of a collection, is mapped into an R2ML Conjunction of an AttributionAtom
and ExistentiallyQuantifiedFormula. The AttributionAtom represents a mapping of an
association end which is a collection, and the ExistentiallyQuantifiedFormula is
mapped from the select’s boolean expression (also, iterator variables are mapped into
the R2ML GenericAtoms). Note that there a constraint here, that is, we have only
supported the translation of the following select construct: collection->select(v |
boolean-expression-with-v), where v is called iterator variable. When the select
construct is evaluated, v iterates over the collection and the boolean-expression-with-v
is evaluated for each v. The v variable is a reference to the object from the collection
and can be used to refer to the objects themselves from the collection (e.g.,
self.employee->select(age>10)->notEmpty()). In a similar way, we have mapped other
collection operations.

• OCL tuple type, which is used to compose several values and consists of named parts
and which is represented in the OCL metamodel with TupleLiteralExp, is mapped into
the R2ML ObjectDescriptionAtom. The ObjectDescriptionAtom refers to a class as a
base type and to zero or more classes as categories, and consists of a number of
property/term pairs (i.e., R2ML attribute data term pairs and reference property object

Sharing OCL Constraints by Using Web Rules

Proc. Ocl4All 2007 13 / 18

term pairs). Any instance of such atom refers to one particular object, that is
referenced by an objectID, if it is not anonymous.

Using the mappings between OCL and R2ML presented in above and shown in Table 1, we
now illustrate the transformation process by using the example of the OCL rule from Figure 1
and its corresponding R2ML rule from Figure 2. As we have already mentioned, the OCL
invariants (Invariant elements from Figure 8) are transformed into R2ML integrity rules
(AlethicIntegrityRule elements from Figure 2). An OCL Implies element (i.e.,
OperationCallExp class with name “implies”) is transformed to an R2ML AlethicIntegrityRule
(shown in Figure 4) with UniversallyQuantifiedFormula element as its constraint, where
UniversallyQuantifiedFormula has an Implication for its formula. The R2ML ObjectVariable
in the R2ML UniversallyQuantifiedFormula element is obtained by transforming the
contextual class (Class element) from the OCL Invariant element (shown in Figure 8). As it is
shown in Table 1, an OCL operator call expression (OperatorCallExp element) which with
name “=”, is transformed into an R2ML AttributionAtom element, where the OCL
OperatorCallExp’s source element is transformed into the AttributionAtom’s attribute element
(i.e., Attribute class). The R2ML AttributionAtom’s dataValue element is obtained from the
OCL OperatorCallExp’s argument element. The OCL OperatorCallExp “>” is transformed
into an R2ML DatatypePredicateAtom, and an OCL OperationCallExp, represents an
operation call, is transformed into an R2ML DataOperationTerm, if such an operation returns
a data value, otherwise, it is transformed to an R2ML ObjectOperationTerm.

Table 1. An excerpt of mappings between the R2ML metamodel elements and the OCL meta-

model elements
R2ML metamodel OCL metamodel
RuleBase OclModule
AlethicIntegrityRule Invariant
Conjunction OperatorCallExp (name = 'and')
Implication OperationCallExp (name = 'implies')

AttributionAtom OperatorCallExp (name = '=')
 source = PropertyCallExp (subject)

ObjectVariable VariableExp

ReferencePropertyFunctionTerm
PropertyCallExp
 referredProperty (name = 'property')
 source = VariableExp

ObjectOperationTerm CollectionOperationCallExp

DatatypePredicateAtom OperatorCallExp (name = ">")
 source = OperationCallExp

DataOperationTerm OperationCallExp

5 Implementation Expirience
In this section, we explain the transformation steps undertaken to transform between OCL
invariants and R2ML integrity rules. Here we refer to Figure 3 from Section 3.3 in order to

 ECEASST

14 / 18 Volume 9 (2008)

position each specific transformation/step in this process of transformation. As we have
already mentioned in Section 3.3, the transformation process between R2ML and OCL is split
into four major steps.

Step 1. In this step, we bridge between the OCL (EBNF-based) concrete syntax and the
OCL abstract syntax (i.e., OCL metamodel). Because the OCL textual concrete syntax is
located in the EBNF technical space, we need to create an instance of the OCL metamodel
(abstract syntax) in the MOF technical space. To do this, we first use the EBNF injector, (see
Figure 3, step 1: EBNF injection), a part of the ATL toolkit, and the OCL Lexer and Parser.
We generated the OCL Parser and Lexer by using the TCS (Textual Concrete Syntax) tools
which are also part of the ATL toolkit [JBK06]. TCS represents domain specific language
(DSL) for defining textual concrete syntax in MDE. The OCL Parser automatically transforms
OCL invariants like the one given in Figure 1 into the models conforming to the MOF-based
OCL metamodel. Once we created the OCL TCS and generated OCL Parser and Lexer based
on it, the EBNF injector takes for input the OCL metamodel, OCL code that we want to parse
(as .ocl textual file), generated OCL Lexer and Parser, and it returns a MOF-based OCL model
as output. Once we inject OCL invariants into a MOF-based representation (OCL Rule in
Figure 3), we can manipulate with them like with any other MOF-based model.

Step 2. This step is the core of our transformation between the OCL abstract syntax (i.e.,
OCL metamodel) and the R2ML abstract syntax (Figure 3, step 2). This transformation step is
fully based on the conceptual mappings between the elements of the OCL and R2ML
metamodel described in Section 4.2. The transformations between the OCL metamodel and the
R2ML metamodel are defined as a sequence of rules in the ATL language (see Figure 3,
OCL2R2ML.atl and R2ML2OCL.atl).

Step 3. In order to serialize the R2ML model (from the MOF technical space) that is
obtained in the previous step into the R2ML XML concrete syntax (i.e., to the XML technical
space), we first need to use the R2ML2XML.atl transformation (Figure 3, step 3) to get an
XML model from R2ML model. After applying this transformation to the input R2ML model
XML models are stored in the model repository (R2ML rule - XML model from Figure 3).
The output XML model conforms to the XML metamodel. Such XML model is serialized into
the R2ML XML format in the next step. [MGG*07] gives details about bridging the R2ML
concrete and abstract syntax.

Step 4. The step is the XML extraction from the MOF technical space to the XML technical
space (Step 4 in Figure 3). We transform the XML model (shown in Figure 3) which conforms
to the MOF-based XML metamodel and is generated in step 3 to an R2ML rule represented the
R2ML XML concrete syntax, which is shown in Figure 2.

An R2ML rule in the R2ML XML concrete syntax can be transformed into some other
language for which there is a translator defined with the R2ML language [RTR07], [WK03].
We have also defined the opposite transformations, from the XML metamodel into the R2ML
metamodel (XML2R2ML.atl in Figure 3), and from the R2ML metamodel into the OCL
metamodel (R2ML2OCL.atl in Figure 3). As the ATL toolkit has the XML Injector tool, that
can transform an R2ML rule from the R2ML XML concrete syntax into the XML metamodel
(i.e., the MOF technical space), such an XML model can then be transformed into an R2ML
model by using the XML2R2ML.atl transformation. As well, by using the R2ML2OCL.atl
transformation, we can transform that R2ML model into the OCL model. The ATL toolkit has
also the EBNF extractor tool that can extract an OCL model (i.e., from the MOF technical
space) into the OCL concrete textual syntax by using the OCL TCS that we defined. In this

Sharing OCL Constraints by Using Web Rules

Proc. Ocl4All 2007 15 / 18

way, we have enabled a round-trip engineering between the R2ML general rule interchange
language and the OCL language).

6 Discussion
The transformations implemented between the OCL and R2ML abstract syntax comprise
translation of the OCL invariants. However, we have yet not finalized the implementation of
all OCL iterator construct variations (e.g., select, forAll, and collect), because those constructs
do not exists in other rule languages, and thus R2ML. Our current transformations do not
support the full transformation of all UML class related elements (e.g., associations) to R2ML.
In the future, we plan to support fully the translation of all UML (core) model elements into
the R2ML Vocabulary. This will enable us to recognize property types in the OCL textual
concrete syntax (e.g., when a property is referenced via another property). With the currently
implemented solution, we can translate an OCL invariant from Figure 1 into R2ML rule (see
Figure 2) and then into some other language for which there is a transformation with R2ML
already defined. For example, we can translate that OCL invariant into a SWRL rule
[HPB*04], as we have defined transformations between SWRL and R2ML [MGG*06].

As we have shown in this paper, our transformations can translate OCL invariants into the
R2ML integrity rules. However, our OCL Parser also supports OCL derivation rules (i.e.,
"derive" expressions), and we plan to extend our transformations between OCL and R2ML to
enable for the translation between OCL derive rules and R2ML derivation rules. Generally,
this will only require adding rules for translating head of OCL derive rules, since their body
expression is the same as in invariants (and that is represented with the OclExpression element
in the OCL metamodel). Once we support derivation rules, it will be possible to translate OCL
rules into F-Logic, Jess, RuleML, which are supported by the present R2ML translators for
derivation rules [RTR07].

We have tested our transformations between OCL and R2ML on 25 OCL invariant
examples which included all of the OCL expressions described in Section 4.3. Those OCL
invariants are collected from different sources such as EU Rent case study [EUC05], Warmer
and Kleppe’ book [WK03], and Dresden OCL Toolkit (i.e., OCL test and demonstration
constraints) [DOT07]. All these OCL invariants are also translated to SWRL [HPB*04] via
R2ML. Note also that the complete source code of the transformations presented can be found
in the ATL Transformations Zoo [ATL07b] [ATL07c].

7 Conclusion
In this paper, we have shown how to transform rules between R2ML and OCL by employing
model transformation principles. We have mapped OCL invariants into the R2ML integrity
rules, and thus we enabled sharing OCL invariants with other rule languages. In the current
implementation, we support only OCL invariants, but in the next versions of our
transformation, we plan to support other kinds of the OCL constraints (i.e., derive, init, pre-
and post- conditions), which we have already supported in the TCS-based parser and lexer for
OCL. The mappings between R2ML and OCL do not cover OCL collection operators
completely, but just a basic ones (as it has been shown in Section 4.3). We have made this
decision since all of the OCL collection operations could not be represented in the R2ML,
because the R2ML does not support collection operators as OCL does. Note that the desing of
the R2ML is based on a hypothesis that most of web rule languages (e.g., F-Logic, Jess,
JenaRules, ILOG JRules, and JBoss Rules) do not have collection operators supported in OCL.

 ECEASST

16 / 18 Volume 9 (2008)

The transformation implementation is done by using the ATL (between OCL and R2ML, and
the R2ML MOF-based abstract syntax and R2ML XML schema) and the TCS (between the
OCL MOF-based abstract syntax and the OCL textual concrete syntax).

The solution presented in this paper represents the first practical example of approaching
Web and Software engineering rule and constraints standards, after the activities done in the
ODM standardization [GDD06]. To the best of our knowledge, there is no available solution of
mapping between Web rule languages and OCL, and thus our solution represents an important
contribution to the further reconciliation of the software engineering and Web communities.
We hope that our results will stimulate collaborative research of the two communities, so that
the designs of rule languages (e.g., RIF) will integrate needs and best practices of both
communities. For example, in this paper, we demonstrated that the current Web rule languages
(R2ML and RIF) do not have support for advance OCL collection operators, and this could be
an important input of the OCL community to the RIF standardization efforts. This could allow
developers to leverage OCL when model Semantic Web applications.

A similar approach to ours is applied in the ODM specification [ODM06] where the
(model) transformations between OWL and the languages such as UML, Topic Maps, and ER
models are defined on the level of their abstract syntax (i.e., metamodels). Our solution goes
one step further and demonstrates how to bridge between concrete and abstract syntax of rule
languages. Besides the obvious benefit of developing transformations between rule languages
on the level of abstract syntax, the use of model transformations and languages such as ATL is
more suitable than XSLT. Although, in principle, we could use XSLT to map between abstract
syntax thanks to XMI in which all MOF-based metamodels can be stored, the available
analysis of the use of XSLT for sharing knowledge indicates that XSLT is hard to maintain
where modifications of input and output formats can completely invalidate previous versions
of XSLTs [JG05].

We are now in the phase of the evaluation of the results of the translation between the OCL
and R2ML languages, and potentials for sharing rules between OCL and other rule languages
via R2ML. In this paper, we just reflected on an exchange with the SWRL language, while our
subsequent analysis will fully explore this exchange and exchange of OCL constraints with
other relevant rule languages such as Jess, Jena, and F-Logic. In our future publications, we
are going to report on transformation implementation in more detail and evaluation results. We
also plan to use this approach to provide mappings between R2ML, Web services, and policy
rule-based languages (e.g., KAoS and Rei). This will enable modeling Web services and
policies by using MDE principles and will be a further reconciliation of Web research efforts
with MDE principles.

8 References
[ATL07a] ATLAS Transformation Language (ATL), http://www.sciences.univ-

nantes.fr/lina/atl, 2007.

[ATL07b] ATL Scenario OCL to R2ML,

http://www.eclipse.org/m2m/atl/atlTransformations/#OCL2R2ML.

[ATL07c] ATL Scenario: R2ML to OCL:

http://www.eclipse.org/m2m/atl/atlTransformations/#R2ML2OCL.

Sharing OCL Constraints by Using Web Rules

Proc. Ocl4All 2007 17 / 18

[BKK02] K. Baclawski, M. M. Kokar, P. A. Kogut, L. Hart, J. E. Smith, J. Letkowski,

P. Emery, Software and Systems Modeling, Vol. 1, No. 2, pp. 142-156, 2002.

[Cra01] S. Cranefield. UML and the Semantic Web, In Proceedomgs of the Int’l

Semantic Web Workshop Symposium, Stanford University, CA, USA, 2001.

[DOT07] Dresden OCL Toolkit, Technische Unversität Dresden, Software Engineering

Group, http://dresden-ocl.sourceforge.net, 2007.

[EUC05] EU Rent Case Study, http://www.eurobizrules.org/ebrc2005/eurentcs.

[GDD06] D. Gašević, D. Djurić, V. Devedžić. Model Driven Architecture and Ontology

Development, Springer, Berlin, 2006.

[Gin06] A. Ginsberg. RIF Use Cases and Requirements, W3C Working Draft,

http://www.w3.org/TR/rif-ucr/, 2006.

[HBG*06] D. Hirtle, H. Boley, B. Grosof, M. Kifer, M. Sintek, S. Tabet, G. Wagner.

Schema Specification of RuleML 0.91, 2006.

[HPB*04] I. Horrocks, P. F. Patel-Scheider, H. Boley, S. Tabet, B. Grosof, M. Dean.

SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
W3C Member Submission, http://www.w3.org/Submission/SWRL/, 2004.

[JG05] J. Jovanović, D. Gašević. XML/XSLT-Based Knowledge Sharing, Expert

Systems with Applications, Vol. 29, No. 3, pp. 535-553, 2005.

[JBK06] F. Jouault, J. Bézivin, I. Kurtev. TCS: Textual Concrete Syntax, In

Proceedings of the 2nd AMMA/ATL Workshop ATLAS group (INRIA &
LINA), Nantes, France, 2006.

[KBA02] I. Kurtev, J. Bézivin, M. Aksit. Technological Spaces: an Initial Appraisal, In

Proceedings of the CoopIS, DOA'2002 Federated Confs., Industrial track,
Irvine, USA, 2002.

[MGG*06] M. Milanović, D. Gašević, A. Giurca, G. Wagner, V. Devedžić. On

Interchanging between OWL/SWRL and UML/OCL, In Proceedings of the
6th Workshop on OCL for (Meta-)Models in Multiple Application Domains,
pp. 81-95, 2006.

[MGG*07] M. Milanović, D. Gašević, A. Giurca, G. Wagner, S. Lukichev, V. Devedžić.

Bridging Concrete and Abstract Syntax of Web Rule Languages, In
Proceedings of the 1st Int’l Conference on Web Reasoning and Rule Systems,
Innsbruck, Austria, 2007.

 ECEASST

18 / 18 Volume 9 (2008)

[MOF06] OMG Meta Object Facility (MOF) Core, v2.0. OMG Document formal/06-01-
01, http://www.omg.org/cgi-bin/doc?formal/2006-01-01, 2006.

[ODM06] OMG ODM. Ontology Definition Metamodel, 6th Revised Submission, 2006.

[OCL06] OMG OCL. Object Constraint Language, OMG Specification, Version 2.0,

formal/06-05-01, http://www.omg.org/docs/formal/06-05-01.pdf, 2006.

[R2ML07] R2ML. The REWERSE I1 Rule Language, http://oxygen.informatik.tu-

cottbus.de/rewerse-i1/?q=node/6, 2007.

[RTR07] R2ML Translators. http://oxygen.informatik.tu-cottbus.de/rewerse-

i1/?q=node/15, 2007.

[SBVR05] OMG Semantics of Business Vocabulary and Business Rules (SBVR),

Revised Submission to BEI RFP br/2003-06-03,
http://www.omg.org/docs/bei/05-08-01.pdf, 2005.

[RTJ06] Translator from RuleML to Jess. http://www.ruleml.org/jess/, 2006.

[QVT05] OMG MOF QVT Final Adopted Specification. OMG document 05-11-01,

http://www.omg.org/docs/ptc/05-11-01.pdf, 2005.

[UML06] OMG, Unified Modeling Language (UML) 2.0, Docs. formal/05-07-04 &

formal/05-07-05, 2006.

[WGL05] G. Wagner, A. Giurca, S. Lukichev. R2ML: A Usable Interchange Format for

Rich Syntax Rules Integrating OCL, RuleML and SWRL, In Proceedings of
Reasoning on the Web 2006, RoW2006, Edinburgh, Scotland, 2006.

[WK03] J. Warmer, A. Kleppe. The Object Constraint Language: Getting Your Models

Ready for MDA, Second Edition, Addison Wesley, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

