7 research outputs found

    OBIA System for Identifying Mesoscale Oceanic Structures in SeaWiFS and MODIS-Aqua Images

    Get PDF
    The ocean covers over 70% of the surface of our planet and plays a key role in the global climate. Most ocean circulation is mesoscale (scales of 50–500 km and 10–100 days), and the energy in mesoscale circulation is at least one order of magnitude greater than general circulation; therefore, the study of mesoscale oceanic structures (MOS) is crucial to ocean dynamics, making it especially useful for analyzing global changes. The detection of MOS, such as upwellings or eddies, from satellites images is significant for marine environmental studies and coastal resource management. In this paper, we present an object-based image analysis (OBIA) system which segments and classifies regions contained in sea-viewing field-of-view sensor (SeaWiFS) and Moderate Resolution Imaging Spectro-radiometer (MODIS)-Aqua sensor satellite images into MOS. After color clustering and hierarchical data format (HDF) file processing, the OBIA system segments images and extracts image descriptors, producing primary regions. Then, it merges regions, recalculating image descriptors for MOS identification and definition. First, regions are labeled by a human-expert, who identifies MOS: upwellings, eddies, cool, and warm eddies. Labeled regions are then classified by learning algorithms (i.e., decision tree, Bayesian network, artificial neural network, genetic algorithm, and near neighbor algorithm) from selected features. Finally, the OBIA system enables images to be queried from the user interface and retrieved by means of fuzzy descriptors and oceanic structures. We tested our system with images from the Canary Islands and the North West African coast

    A location-based approach to the classification of mesoscale oceanic structures in SeaWiFS and Aqua-MODIS images of Northwest Africa

    Get PDF
    This study presents a different approach to the classification of Mesoscale Oceanic Structures (MOS) present in the Northwest African area, based on their location. The main improvement stems from the partition of this area in four large zones perfectly differentiated by their morphological characteristics, with attention to seafloor topography and coastal relief. This decomposition makes it easier to recognize structures under adverse conditions, basically the presence of clouds partly hiding them. This is observed particularly well in upwellings, which are usually very large structures with a different morphology and genesis in each zone. This approach not only improves the classification of the upwellings, but also makes it possible to analyse changes in the MOS over time, thereby improving the prediction of its morphological evolution. To identify and label the MOS classified in the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Aqua-MODIS (Moderate Resolution Imaging Spectroradiometer) chlorophyll-a and temperature images, we used a tool specifically designed by our group for this purpose and which has again shown its validity in this new proposal

    Remote Sensing of the Aquatic Environments

    Get PDF
    The book highlights recent research efforts in the monitoring of aquatic districts with remote sensing observations and proximal sensing technology integrated with laboratory measurements. Optical satellite imagery gathered at spatial resolutions down to few meters has been used for quantitative estimations of harmful algal bloom extent and Chl-a mapping, as well as winds and currents from SAR acquisitions. The knowledge and understanding gained from this book can be used for the sustainable management of bodies of water across our planet
    corecore