192 research outputs found

    A numerical study of entropy generation, heat and mass transfer in boundary layer flows.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.This study lies at the interface between mathematical modelling of fluid flows and numerical methods for differential equations. It is an investigation, through modelling techniques, of entropy generation in Newtonian and non-Newtonian fluid flows with special focus on nanofluids. We seek to enhance our current understanding of entropy generation mechanisms in fluid flows by investigating the impact of a range of physical and chemical parameters on entropy generation in fluid flows under different geometrical settings and various boundary conditions. We therefore seek to analyse and quantify the contribution of each source of irreversibilities on the total entropy generation. Nanofluids have gained increasing academic and practical importance with uses in many industrial and engineering applications. Entropy generation is also a key factor responsible for energy losses in thermal and engineering systems. Thus minimizing entropy generation is important in optimizing the thermodynamic performance of engineering systems. The entropy generation is analysed through modelling the flow of the fluids of interest using systems of differential equations with high nonlinearity. These equations provide an accurate mathematical description of the fluid flows with various boundary conditions and in different geometries. Due to the complexity of the systems, closed form solutions are not available, and so recent spectral schemes are used to solve the equations. The methods of interest are the spectral relaxation method, spectral quasilinearization method, spectral local linearization method and the bivariate spectral quasilinearization method. In using these methods, we also check and confirm various aspects such as the accuracy, convergence, computational burden and the ease of deployment of the method. The numerical solutions provide useful insights about the physical and chemical characteristics of nanofluids. Additionally, the numerical solutions give insights into the sources of irreversibilities that increases entropy generation and the disorder of the systems leading to energy loss and thermodynamic imperfection. In Chapters 2 and 3 we investigate entropy generation in unsteady fluid flows described by partial differential equations. The partial differential equations are reduced to ordinary differential equations and solved numerically using the spectral quasilinearization method and the bivariate spectral quasilinearization method. In the subsequent chapters we study entropy generation in steady fluid flows that are described using ordinary differential equations. The differential equations are solved numerically using the spectral quasilinearization and the spectral local linearization methods

    Numerical study of chemical reaction effects in magnetohydrodynamic Oldroyd B oblique stagnation flow with a non-Fourier heat flux model

    Get PDF
    Reactive magnetohydrodynamic (MHD) flows arise in many areas of nuclear reactor transport. Working fluids in such systems may be either Newtonian or non-Newtonian. Motivated by these applications, in the current study, a mathematical model is developed for electrically-conducting viscoelastic oblique flow impinging on stretching wall under transverse magnetic field. A non-Fourier Cattaneo-Christov model is employed to simulate thermal relaxation effects which cannot be simulated with the classical Fourier heat conduction approach. The Oldroyd-B non-Newtonian model is employed which allows relaxation and retardation effects to be included. A convective boundary condition is imposed at the wall invoking Biot number effects. The fluid is assumed to be chemically reactive and both homogeneous-heterogeneous reactions are studied. The conservation equations for mass, momentum, energy and species (concentration) are altered with applicable similarity variables and the emerging strongly coupled, nonlinear non-dimensional boundary value problem is solved with robust well-tested Runge-Kutta-Fehlberg numerical quadrature and a shooting technique with tolerance level of 10−4. Validation with the Adomian decomposition method (ADM) is included. The influence of selected thermal (Biot number, Prandtl number), viscoelastic hydrodynamic (Deborah relaxation number), Schmidt number, magnetic parameter and chemical reaction parameters, on velocity, temperature and concentration distributions are plotted for fixed values of geometric (stretching rate, obliqueness) and thermal relaxation parameter. Wall heat transfer rate (local heat flux) and wall species transfer rate (local mass flux) are also computed and it is observed that local mass flux increases with strength of heterogeneous reactions whereas it decreases with strength of homogeneous reactions. The results provide interesting insights into certain nuclear reactor transport phenomena and furthermore a benchmark for more general CFD simulations

    Mathematical models for heat and mass transfer in nanofluid flows.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.The behaviour and evolution of most physical phenomena is often best described using mathematical models in the form of systems of ordinary and partial differential equations. A typical example of such phenomena is the flow of a viscous impressible fluid which is described by the Navier-Stokes equations, first derived in the nineteenth century using physical approximations and the principles of mass and momentum conservation. The flow of fluids, and the growth of flow instabilities has been the subject of many investigations because fluids have wide uses in engineering and science, including as carriers of heat, solutes and aggregates. Conventional heat transfer fluids used in engineering applications include air, water and oil. However, each of these fluids has an inherently low thermal conductivity that severely limit heat exchange efficiency. Suspension of nanosized solid particles in traditional heat transfer fluids significantly increases the thermophysical properties of such fluids leading to better heat transfer performance. In this study we present theoretical models to investigate the flow of unsteady nanofluids, heat and mass transport in porous media. Different flow configurations are assumed including an inclined cylinder, a moving surface, a stretching cone and the flow of a polymer nanocomposite modeled as an Oldroyd-B fluid. The nanoparticles assumed include copper, silver and titanium dioxide with water as the base fluid. Most recent boundary-layer nanofluid flow studies assume that the nanoparticle volume fraction can be actively controlled at a bounding solid surface, similar to temperature controls. However, in practice, such controls present significant challenges, and may, in practice, not be possible. In this study the nanoparticle flux at the boundary surface is assumed to be zero. Unsteadiness in fluid flows leads to complex system of partial differential equations. These transport equations are often highly nonlinear and cannot be solved to find exact solutions that describe the evolution of the physical phenomena modeled. A large number of numerical or semi-numerical techniques exist in the literature for finding solutions of nonlinear systems of equations. Some of these methods may, however be subject to certain limitations including slow convergence rates and a small radius of convergence. In recent years, innovative linearization techniques used together with spectral methods have been suggested as suitable tools for solving systems of ordinary and partial differential equations. The techniques which include the spectral local linearization method, spectral relaxation method and the spectral quasiliearization method are used in this study to solve the transport equations, and to determine how the flow characteristics are impacted by changes in certain important physical and fluid parameters. The findings show that these methods give accurate solutions and that the speed of convergence of solutions is comparable with methods such as the Keller-box, Galerkin, and other finite difference or finite element methods. The study gives new insights, and result on the influence of certain events, such as internal heat generation, velocity slip, nanoparticle thermophoresis and random motion on the flow structure, heat and mass transfer rates and the fluid properties in the case of a nanofluid

    Magnetohydrodynamic free convection boundary layer Flow of non-Newtonian tangent hyperbolic fluid from a vertical permeable cone with variable temperature

    Get PDF
    The nonlinear, non-isothermal steady-state boundary layer flow and heat transfer of an incompressible tangent hyperbolic non-Newtonian (viscoelastic) fluid from a vertical permeable cone with magnetic field are studied. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using the second-order accurate implicit finite difference Keller-box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely a Weissenberg number (We), rheological power law index (m), surface temperature exponent (n), Prandtl number (Pr), magnetic parameter (M) suction/injection parameter (fw) and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the boundary layer regime, is examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. It is observed that velocity, surface heat transfer rate and local skin friction are reduced with increasing Weissenberg number, but temperature is increased. Increasing m enhances velocity and surface heat transfer rate but reduces temperature and local skin friction. An increase in non-isothermal power law index (n) is observed to decrease the velocity and temperature. Increasing magnetic parameter (M) is found to decrease the velocity and increase the temperature. Overall, the primary influence on free convection is sustained through the magnetic body force parameter, M, and also the surface mass flux (injection/suction) parameter, fw. The rheological effects, while still prominent, are not as dramatic. Boundary layers (both hydrodynamic and thermal) are, therefore, most strongly modified by the applied magnetic field and wall mass flux effect. The study is pertinent to smart coatings, e.g., durable paints, aerosol deposition processing and water-based solvent thermal treatment in chemical engineering

    Effect of partial slip on an unsteady MHD mixed convection stagnation-point flow of a micropolar fluid towards a permeable shrinking sheet

    Get PDF
    AbstractThe objective of the present study was to investigate the partial slip effect on an unsteady two-dimensional mixed convection stagnation point flow towards a permeable shrinking sheet. The governing equations are reduced to a system of non-dimensional partial differential equations using a semi-similarity transformation, before being solved numerically by using Keller-box method. The features of the flow characteristics for different values of the governing parameters are analysed and discussed. The results indicate that the momentum, thermal and concentration boundary layer thicknesses increase with increasing mixed convection parameter for opposing flow, whereas the opposite effect is observed for assisting flow. The results also show that the surface velocity is higher when there is slip at a sheet compared to its absent. Further, the study indicates that the boundary layer thicknesses become thicker and thicker with increasing shrinking parameter, while the opposite effect is observed with increasing Hartmann number. Comparison with previously published work for special cases is performed and found to be in excellent agreement

    Unsteady nonlinear magnetohydrodynamic micropolar transport phenomena with hall and ion-slip current effects : numerical study

    Get PDF
    Unsteady viscous two-dimensional magnetohydrodynamic micropolar flow, heat and mass transfer from an infinite vertical surface with Hall and Ion-slip currents is investigated theoretically and numerically. The simulation presented is motivated by electro-conductive polymer (ECP) materials processing in which multiple electromagnetic effects arise. The primitive boundary layer conservation equations are transformed into a non-similar system of coupled non-dimensional momentum, angular momentum, energy and concentration equations, with appropriate boundary conditions. The resulting two-point boundary value problem is solved numerically by an exceptionally stable and welltested implicit finite difference technique. A stability analysis is included for restrictions of the implicit finite difference method (FDM) employed. Validation with a Galerkin finite element method (FEM) technique is included. The influence of various parameters is presented graphically on primary and secondary shear stress, Nusselt number, Sherwood number and wall couple stress. Secondary (cross flow) shear stress is strongly enhanced with greater magnetic parameter (Hartmann number) and micropolar wall couple stress is also weakl y enhanced for small time values with Hartmann number. Increasing thermo-diffusive Soret number suppresses both Nusselt and Sherwood numbers whereas it elevates both primary and secondary shear stress and at larger time values also increases the couple stress. Secondary shear stress is strongly boosted with Hall parameter. Ion slip effect induces a weak modification in primary and secondary shear stress distributions. The present study is relevant to electroconductive non-Newtonian (magnetic polymer) materials processing systems

    Magnetized suspended carbon nanotubes based nanofluid flow with bio-convection and entropy generation past a vertical cone

    Get PDF
    © 2019, The Author(s). The captivating attributes of carbon nanotubes (CNT) comprising chemical and mechanical steadiness, outstanding electrical and thermal conductivities, featherweight, and physiochemical consistency make them coveted materials in the manufacturing of electrochemical devices. Keeping in view such exciting features of carbon nanotubes, our objective in the present study is to examine the flow of aqueous based nanofluid comprising single and multi-wall carbon nanotubes (CNTs) past a vertical cone encapsulated in a permeable medium with convective heat and solutal stratification. The impacts of heat generation/absorption, gyrotactic-microorganism, thermal radiation, and Joule heating with chemical reaction are added features towards the novelty of the erected model. The coupled differential equations are attained from the partial differential equations by exercising the local similarity transformation technique. The set of conservation equations supported by the associated boundary conditions are worked out numerically by employing bvp4c MATLAB function. The sway of numerous appearing parameters in the analysis on the allied distributions is scrutinized and the fallouts are portrayed graphically. The physical quantities of interest including Skin friction coefficient, the rate of heat and mass transfers are assessed versus essential parameters and their outcomes are demonstrated in tabulated form. It is witnessed that the velocity of the fluid decreases for boosting values of the magnetic and suction parameters in case of both nanotubes. Moreover, the density of motile microorganism is decreased versus larger estimates of bio-convection constant. A notable highlight of the presented model is the endorsement of the results by matching them to an already published material in the literature. A venerable harmony in this regard is achieved

    Flows with Slip of Oldroyd-B Fluids over a Moving Plate

    Get PDF
    A general investigation has been made and analytic solutions are provided corresponding to the flows of an Oldroyd-B fluid, under the consideration of slip condition at the boundary. The fluid motion is generated by the flat plate which has a translational motion in its plane with a time-dependent velocity. The adequate integral transform approach is employed to find analytic solutions for the velocity field. Solutions for the flows corresponding to Maxwell fluid, second-grade fluid, and Newtonian fluid are also determined in both cases, namely, flows with slip on the boundary and flows with no slip on the boundary, respectively. Some of our results were compared with other results from the literature. The effects of several emerging dimensionless and pertinent parameters on the fluid velocity have been studied theoretically as well as graphically in the paper

    Computational Treatment of Transient MHD Slip Flow of an Arrhenius Chemical Reaction in a Convectively Heated Vertical Channel

    Get PDF
    A numerical computational treatment of transient electrically conducting fluid with an Arrhenius chemical reaction in the presence of Navier slip and Newtonian heating is obtained by using implicit finite difference scheme. A transverse magnetic field is applied to the flow direction due to the exothermic nature of the fluid. Numerical computation shows that, higher values of Frank-Kamenetskii parameter (λ) and Biot number (Br) significantly influence the transport phenomenon. Irrespective of smaller or larger time, Magnetic parameter (M) reduces velocity of the fluid as well as wall shear stress
    corecore