29 research outputs found

    Scattering of Ocean Surfaces in Microwave Remote Sensing by Numerical Solutions of Maxwell Equations

    Full text link
    Sea-surface scattering has long been studied using various analytical methods. These analytical methods include the two scale method (TSM), the small-slope approximation (SSA), the small-perturbation method (SPM), the Advanced Integral Equation Method (AIEM), and the Geometrical/Physical Optics (GO/PO) method. These analytical methods rely on making approximations and assumptions in the modelling process. Some of these assumptions undermine their applicability in a wide range of situations. The input for analytical methods are usually the ocean spectrum. In real implementations, there are 2 sources of uncertainty in such approaches: (1) the analytical methods have a limited range of applicability to the surface scattering problem; the approximations made in these methods are questionable and (2) the various ocean spectra are another source of uncertainty. We earlier applied a numerical method in 3-dimensions (NMM3D) to the scattering problem of soil surfaces. Through comparison with measured data, we established the accuracy and applicability of NMM3D. We see a drastic increase of ocean remote sensing applications in recent years. It is thus feasible to extend NMM3D to the sea-surface scattering problem. Compared to soil, sea water has a much higher permittivity, e.g., 75+61i at L-band. The large permittivity dictates the need for using a much denser mesh for the sea surface. In addition, the root mean square (rms) height of the sea surface is large under moderate to high ocean wind speeds, which requires a large simulation area to account for the influence of long scale wave like gravity waves. Compared to the two-scale model commonly used for the ocean scattering problem, NMM3D does not need an ad-hoc split wavenumber in the ocean spectrum. Combined with a fast computational algorithm, it was shown that NMM3D can produce accurate results compared to measured data like the Aquarius missions. TSM could also match well with Aquarius provided with a pre-selected splitting wavenumber. But it was observed that the result of TSM changes with different splitting wavenumbers. It is seen that TSM is fairly heuristic while NMM3D can serve as an exact method for the scattering problem. On the other hand, through our study of NMM3D, we found that with a fine grid, the final impedance matrix converges slowly and also it becomes hard to perform simulations for a large surface. This has provoked us to (1) solve low convergence problem for a dense mesh and (2) resolve difficulties in simulations of large surfaces. Inspired by the existing impedance boundary condition (IBC) method, we proposed a neighborhood impedance boundary condition (NIBC) method to solve the slow convergence problem caused by the dense grid. Different from IBC where the surface electric field and the surface magnetic field are related locally, NIBC relates the surface electric field to the magnetic field within a preselected bandwidth BW. Through numerical simulations, we found that the condition number can be reduced using NIBC. Errors of NIBC are controllable through changing BW. We applied NIBC to various wind speeds and surface types and found NIBC to be quite accurate when surface currents only suffer an error norm of less than 1%.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145797/1/qiaot_1.pd

    Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and Wave Functional Materials

    Full text link
    The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell’s equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell’s equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5~2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green’s function, we have developed the method of broadband Green’s function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We’ve applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green’s functions including periodic scatterers.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135885/1/srtan_1.pd

    Vegetation/Forest Effects in Microwave Remote Sensing of Soil Moisture

    Full text link
    This thesis includes (1) the distorted Born approximation (DBA) and an improved coherent model for vegetation-covered surfaces at L-band for data-cube based soil moisture retrieval; (2) a unified approach for combined active and passive remote sensing of vegetation-covered surfaces with the same input physical parameters; (3) Numerical Maxwell Model in 3D (NMM3D) simulations of a vegetation canopy comprising randomly distributed dielectric cylinders; and (4) a hybrid method based on the generalized T matrix of single objects and Foldy-Lax equations for NMM3D full-wave simulations of the realistic vegetation/forest with vector spherical, spheroidal and cylindrical wave expansoins. The main contributions and novelty of this thesis are NMM3D full-wave simulations of vegetation/forest canopy using the generalized T matrix of the single object and Foldy-Lax equations of multiple scattering among many objects. Before this work, the large-scale full-wave simulations of vegetation/forst such as many tree trunks were deemed very difficult. The NMM3D full-wave simulation results showed that the results of past models significantly overestimate attenuation in a vegetation/forest canopy. The NMM3D full-wave models predict transmissions that are several times greater than that of past models. A much greater microwave transmission means the microwave can better penetrate a vegetation/forest canopy and thus it can be used to retrieve soil moisture. The thesis starts with the DBA to compute the backscattering coefficients for various kinds of vegetation-covered surfaces such as pasture, wheat and canola fields. For the soybean fields, an improved coherent branching model is used. The novel feature of the analytic coherent model consists of conditional probability functions to eliminate the overlapping effects of branches in the former branching models. In order to make use of complex physical models for real time retrieval for satellite missions, the outputs of the physical model are provided as lookup-tables (data-cubes). By inverting the lookup-tables, time-series retrieval of soil moisture is performed. Next, the DBA is extended to calculate the bistatic scattering coefficients. Emissivities are calculated by integrating the bistatic scattering coefficients over the hemispherical solid angle. The backscattering coefficients and emissivities calculated using this approach form a consistent model for combined active and passive microwave remote sensing. In the analytical physical models mentioned above, as well as in another commonly used approach of the radiative transfer equation (RTE), the attenuation of the wave is accounted for by the attenuation rate per unit distance, which originates from the concept of an “effective medium”. Such a model is unsuitable for a vegetation canopy. Because of these issues, NMM3D full-wave simulations of vegetation are pursued. Firstly, the scattering of a vegetation canopy consisting of cylindrical scatterers is calculated. The approach for solving Maxwell’s equations is based on the Foldy-Lax multiple scattering equations (FL) combined with the body of revolution (BOR). For a layer of extended-cylinders distributed in clusters, the NMM3D simulations at C-band show very different results from DBA/RTE. The method FL-BOR is limited for rotationally symmetric objects such as cylinders and circular disks. To perform NMM3D full-wave simulations for realistic vegetation/forests, a hybrid method is used, which is a hybrid of the off-the-shelf techniques and newly developed techniques. The newly developed techniques are the three key steps of the hybrid method: (1) extracting the generalized T matrix of each single object using vector spheroidal/cylindrical waves, (2) vector wave transformations, and (3) solving FL for all the objects.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153347/1/huanght_1.pd

    Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and Wave Functional Materials

    Full text link
    The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell’s equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell’s equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5~2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green’s function, we have developed the method of broadband Green’s function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We’ve applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green’s functions including periodic scatterers.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137141/1/srtan_1.pd

    Review Article: Global Monitoring of Snow Water Equivalent Using High-Frequency Radar Remote Sensing

    Get PDF
    Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 × 106 km2 of Earth\u27s surface (31 % of the land area) each year, and is thus an important expression and driver of the Earth\u27s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (∌ −13 % per decade) as Arctic summer sea ice. More than one-sixth of the world\u27s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth\u27s cold regions\u27 ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of water stored as snow on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations are not able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high-socio-economic-value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-band synthetic aperture radar (SAR) for global monitoring of SWE. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimeter-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modeling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, density, and layering. We describe radar interactions with snow-covered landscapes, the small but rapidly growing number of field datasets used to evaluate retrieval algorithms, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and application communities on progress made in recent decades and sets the stage for a new era in SWE remote sensing from SAR measurements

    Laboratory Studies of the Electromagnetic Properties of Saline Ice: A Multi-disciplinary Research Plan Submitted to the Office of Naval Research

    Get PDF
    This plan describes laboratory and theoretical research to be carried out under the Sea Ice Electromagnetics Accelerated Research Initiative of the Office of Naval Research. The plan is built around three broad objectives: 1) to understand the mechanisms and processes that link the orphological/physical and the electromagnetic properties of sea ice; 2) to further develop and verify predictive models for the interaction of visible, infrared and microwave radiation with sea ice; 3) to develop and verify selected techniques in the mathematical theory of inverse scattering that are applicable to problems arising in the interaction of EM radiation with sea ice. The plan will be executed by over 30 investigators from 15 institutions. Research includes measuring and quantifying the physical properties of sea ice, collecting radiometric signatures of different ice types and morphologies, developing and testing forward models of scattering and emission from sea ice, and developing and testing inverse models to extract geophysical data about sea ice from remotely sensed data. Experiments will begin in January of 1993 at the Cold Regions Research and Engineering Laboratory in Hanover, New Hampshire. Work will focus around studies on the Geophysical Research Facility which is a new, concrete lined pool filled with saline water. The facility can be shielded from local fluctuations in weather by using a movable roof and refrigerated blanket. Three measurement series are planned for the winter of 1993. These will focus on collecting data on the microwave and optical properties of an undeformed ice sheet grown from the melt. Measurements to resolve the contributions of volume and surface scattering to sea ice signatures will be performed on an artificially roughened ice sheet. A snow covered ice sheet will be created to study the effects of brine wicking and scattering from snow grains on electromagnetic signatures. Data from these measurements will be used to evaluate the performance of existing forward models. The data will also be used to begin the development of inverse models.The Office of Naval Researc

    Modeling microwave emission from snow covered soil

    Get PDF
    Il ciclo idrologico rappresenta l’insieme di tutti i fenomeni legati alla circolazione e alla conservazione dell’acqua sulla Terra. Il monitoraggio su scala globale dei fattori che concorrono a produrre e modificare tale ciclo (umidità del terreno, copertura vegetale, estensione e caratteristiche del manto nevoso) risulta di estrema importanza per lo studio del clima e dei cambiamenti globali. Inoltre, l’osservazione sistematica di queste grandezze ù importante per prevedere condizioni di rischio da alluvioni, frane e valanghe come pure fare stime delle risorse idriche. In questo contesto Il telerilevamento da satellite gioca un ruolo fondamentale per le sue caratteristiche di osservazioni continuative di tutto globo terrestre. I sensori a microonde permettono poi di effettuare misure indipendentemente dall’illuminazione solare e anche in condizioni meteorologiche avverse. I processi idrologici, ed in particolare quelli della criosfera (la porzione di superficie terrestre in cui l’acqua ù presente in forma solida), sono fra quelli che meglio si possono investigare analizzando la radiazione elettromagnetica emessa o diffusa. Mediante l’utilizzo di modelli elettromagnetici che permettono di simulare l’emissione e lo scattering da superfici naturali ù possibile interpretare le misure elettromagnetiche ed effettuare l’estrazione di quelle grandezze che caratterizzano i suoli e la loro copertura. In questo lavoro di dottorato si ù affrontato il problema della modellistica a microonde dei terreni coperti da neve, sia asciutta che umida. Dopo aver preso in considerazione i modelli analitici maggiormente utilizzati per simulare diffusione ed emissione a microonde dei suoli nudi e coperti da neve si ù proceduto allo sviluppo e implementazione di due modelli di emissività. Il primo, basato sulla teoria delle fluttuazioni forti, ù atto a descrivere il comportamento di un manto nevoso umido. Il secondo, basato sull’accoppiamento del modello di scattering superficiale AIEM (Advanced Integral Equation Method) con la teoria del trasferimento radiativo nei mezzi densi, ù volto allo studio di uno strato di neve asciutta sovrastante un suolo rugoso. Tali modelli tengono conto degli effetti coerenti presenti nell’emissione del manto nevoso e non inclusi nella teoria del trasporto radiativo classico. Entrambi i codici sono stati validati con datasets numerici e sperimentali in parte derivati da archivi ed in parte ottenuti nel contesto di questo lavoro che ha previsto quindi anche una fase sperimentale. Quest’ultima ù stata condotta con misure radiometriche multifrequenza su un’area di test situata sulle Alpi orientali. Le simulazioni ottenute con questi modelli e le conseguenti analisi hanno permesso di individuare la sensibilità della temperatura di brillanza ai parametri di interesse (spessore, equivalente in acqua e umidità del manto nevoso) in funzione di diverse configurazioni osservative (frequenza, polarizzazione ed angolo di incidenza). Questo ha consentito di migliorare la comprensione dei meccanismi di emissione dalle superfici innevate e di individuare le migliori condizioni osservative per un sistema di telerilevamento terrestre

    Electromagnetic Scattering in Microwave Remote Sensing and Fluctuation Electrodynamics

    Full text link
    Application of the electromagnetic scattering theory to the physical models of microwave remote sensing of natural targets including but not limited to polar ice sheets, soil surface, vegetated area, etc. and fluctuation electrodynamics as well as microwave resonators are presented in this thesis. Advancement of the remote sensing technology led the radar and radiometry measurement to a level of accuracy that correct interpretation of the measurement outcomes and relating those to the unknown parameters under study requires the physical models that are capable of resembling the real life situation as close and accurate as possible. Along with accuracy, the model should be simple enough for the purpose of real time implementation. This is where the analytical solution of the physical problem manifest itself against pure numerical methods in terms of the fast evaluation and more importantly the insight that is not available in a numerical approach. Scattering from random rough interferences is studied throughout the first part of the thesis. Also, beyond the small perturbation method, the T-matrix method is also studied as an alternative approach that works for larger surface heights. Beside these, an alternative partially coherent approach is also introduced to significantly reduce the computational cost of the problem of layered media with random permittivity profile. The finite coherency length of the propagating wave inside the layered media is considered to divide the layered media into smaller blocks and then combine the block's responses afterward. In the second part we consider fast and broad band computation of the Green's function inside the cavity of irregular shape. Conventional way of computing the Green's function of an irregular shaped cavity is the numerical methods such as surface integral equation or finite element methods which can obtain the response at single frequency with intensive computational cost. The proposed method utilizes the imaginary wave number extraction of the Green's function from itself to develop a broad band and at the same time fast converging hybrid spatial-spectral expansion to achieve a highly accurate result for the Green's function whereas in computing the Green's function of cavity using numerical methods, a fine sweep over the frequency band is required to capture individual resonance line, the broad band solution provide the solution thousand times faster than the competitor methods. The last part of the thesis includes a classical electromagnetic treatment of the Casimir self-stress on nano tubes. Although the Casimir force on the parallel plates can be regularized by throwing away the bulk part of the full Green’s function, it is shown that such a regularization does not remove divergence of zero-point energy and the final stress is computed by applying further regularizations.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155155/1/mrsanam_1.pd

    International Colloquium on Venus

    Get PDF
    Sponsored by National Aeronautics and Space Administration, Jet Propulsion Laboratory, Lunar and Planetary Institute, Russian Academy of Sciences, International Union of Geological Sciences, International Space Year.PARTIAL CONTENTS: Erosion Vs. Construction: The Origin of Venusian Channels / D.B.J. Bussey and J.E. Ouest -- Polarization Properties and Earth-based Radar Measurements of Venus in the Post-Magellan Era / D.B. Campbell -- Bright Crater Outflows: Possible Emplacement Mechanisms / D.J. Chadwick, O.O. Schaber, R.O. Strom, and D.M. Duval -- Image Processing and Products for the Magellan Mission to Venus / J. Clark, D. Alexander, P. Andres, S. Lewicki, and M. McAuley -- The Thermosphere and Ionosphere of Venus / T.E. Cravens -- Near-Infrared Oxygen Airglow from the Venus Nightside / D. Crisp, V.S. Meadows, D.A. Allen, B. Bezard, C. DeBergh, / and J.-P. Maillard -- Global Correlation of Volcanic Centers on Venus with Uplands and with Extension: Influence of Mantle Convection and Altitude / L.S. Crumpler, J.W. Head, and J.C. Aubele

    Earth Resources. A continuing bibliography with indexes, issue 34, July 1982

    Get PDF
    This bibliography lists 567 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between April 1, and June 30, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    corecore