58 research outputs found

    Solution of the Second Order of the Linear Hyperbolic Equation Using Cubic B-Spline Collocation Numerical Method

    Get PDF
    Wave equation is one of the second order of the linear hyperbolic equation. Telegraph equation as a special case of wave equation has interesting point to investigate in the numerical point of view. In this paper, we consider the numerical methods for one dimensional telegraph equation by using cubic B-spline collocation method. Collocation method is one method to solve the partial differential equation model problem. Cubic spline interpolation is an interpolation to a third order polynomial. This polynomial interpolate four point. B-Spline is one of spline function which related to smoothness of the partition. For every spline function with given order can be written as linear combination of those B-spline. As we known that the result of the numerical technique has difference with the exact result which we called as, so that we have an error. The numerical results are compared with the interpolating scaling function method which investigated by Lakestani and Saray in 2010. This numerical methods compared to exact solution by using RMSE (root mean square error), L2 norm error and L_∞ norm error . The error of the solution showed that with the certain function, the cubic collocation of numerical method can be used as an alternative methods to find the solution of the linear hyperbolic of the PDE. The advantages of this study, we can choose the best model of the numerical method for solving the hyperbolic type of PDE. This cubic B-spline collocation method is more efficiently if the error is relatively small and closes to zero. This accuration verified by test of example 1 and example 2 which applied to the model problem

    Numerical solution of second order linear hyperbolic telegraph equation

    Get PDF
    This paper is of about a numerical solution of the second order linear hyperbolic telegraph equation. To solve numerically the second order linear hyperbolic telegraph equation, the cubic B-spline collocation method is used in space discretization and the fourth order one-step method is used in time discretization. By using the fourth order one-step method, it is aimed to obtain a numerical algorithm whose accuracy is higher than the current studies. The efficiency and accuracy of the proposed method is studied by two examples. The obtained results show that the proposed method has higher accuracy as intended.This work has been supported by the Scientific Research Council of Eskisehir Osmangazi University under project No. 2018-2090.Publisher's Versio

    High-Order Numerical Solution of Second-Order One-Dimensional Hyperbolic Telegraph Equation Using a Shifted Gegenbauer Pseudospectral Method

    Full text link
    We present a high-order shifted Gegenbauer pseudospectral method (SGPM) to solve numerically the second-order one-dimensional hyperbolic telegraph equation provided with some initial and Dirichlet boundary conditions. The framework of the numerical scheme involves the recast of the problem into its integral formulation followed by its discretization into a system of well-conditioned linear algebraic equations. The integral operators are numerically approximated using some novel shifted Gegenbauer operational matrices of integration. We derive the error formula of the associated numerical quadratures. We also present a method to optimize the constructed operational matrix of integration by minimizing the associated quadrature error in some optimality sense. We study the error bounds and convergence of the optimal shifted Gegenbauer operational matrix of integration. Moreover, we construct the relation between the operational matrices of integration of the shifted Gegenbauer polynomials and standard Gegenbauer polynomials. We derive the global collocation matrix of the SGPM, and construct an efficient computational algorithm for the solution of the collocation equations. We present a study on the computational cost of the developed computational algorithm, and a rigorous convergence and error analysis of the introduced method. Four numerical test examples have been carried out in order to verify the effectiveness, the accuracy, and the exponential convergence of the method. The SGPM is a robust technique, which can be extended to solve a wide range of problems arising in numerous applications.Comment: 36 pages, articl

    A New Unconditionally Stable Method for Telegraph Equation Based on Associated Hermite Orthogonal Functions

    Get PDF
    The present paper proposes a new unconditionally stable method to solve telegraph equation by using associated Hermite (AH) orthogonal functions. Unlike other numerical approaches, the time variables in the given equation can be handled analytically by AH basis functions. By using the Galerkin’s method, one can eliminate the time variables from calculations, which results in a series of implicit equations. And the coefficients of results for all orders can then be obtained by the expanded equations and the numerical results can be reconstructed during the computing process. The precision and stability of the proposed method are proved by some examples, which show the numerical solution acquired is acceptable when compared with some existing methods

    A novel B-spline collocation method for Hyperbolic Telegraph equation

    Get PDF
    The present study is concerned with the construction of a new high-order technique to establish approximate solutions of the Telegraph equation (TE). In this technique, a novel optimal B-spline collocation method based on quintic B-spline (QBS) basis functions is constructed to discretize the spatial domain and fourth-order implicit method is derived for time integration. Test problems are considered to verify the theoretical results and to demonstrate the applicability of the suggested technique. The error norm L L_{\infty } and the rate of spatial and temporal convergence are computed and compared with those of techniques available in the literature. The obtained results show the improvement and efficiency of the proposed scheme over the existing ones. Also, it is obviously observed that the experimental rate of convergence is almost compatible with the theoretical rate of convergence

    JDNN: Jacobi Deep Neural Network for Solving Telegraph Equation

    Full text link
    In this article, a new deep learning architecture, named JDNN, has been proposed to approximate a numerical solution to Partial Differential Equations (PDEs). The JDNN is capable of solving high-dimensional equations. Here, Jacobi Deep Neural Network (JDNN) has demonstrated various types of telegraph equations. This model utilizes the orthogonal Jacobi polynomials as the activation function to increase the accuracy and stability of the method for solving partial differential equations. The finite difference time discretization technique is used to overcome the computational complexity of the given equation. The proposed scheme utilizes a Graphics Processing Unit (GPU) to accelerate the learning process by taking advantage of the neural network platforms. Comparing the existing methods, the numerical experiments show that the proposed approach can efficiently learn the dynamics of the physical problem

    B-Splines Based Finite Difference Schemes For Fractional Partial Differential Equations

    Get PDF
    Fractional partial differential equations (FPDEs) are considered to be the extended formulation of classical partial differential equations (PDEs). Several physical models in certain fields of sciences and engineering are more appropriately formulated in the form of FPDEs. FPDEs in general, do not have exact analytical solutions. Thus, the need to develop new numerical methods for the solutions of space and time FPDEs. This research focuses on the development of new numerical methods. Two methods based on B-splines are developed to solve linear and non-linear FPDEs. The methods are extended cubic B-spline approximation (ExCuBS) and new extended cubic B-spline approximation (NExCuBS). Both methods have the same basis functions but for the NExCuBS, a new approximation is used for the second order space derivative
    corecore