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SKIM BEZA TERHINGGA BERASASKAN SPLIN-B UNTUK PERSAMAAN

PEMBEZAAN SEPARA PECAHAN

ABSTRAK

Persamaan pembezaan separa pecahan (FPDEs) dianggap formulasi lanjutan

persamaan pembezaan separa klasik (PDE). Beberapa model fizikal lebih sesuai di-

bangunkan dalam bentuk FPDE bagi bidang tertentu sains dan kejuruteraan. FPDE,

secara umum, tidak mempunyai penyelesaian analitik yang tepat. Oleh itu, terdapat ke-

perluan untuk membangunkan kaedah berangka baru untuk penyelesaian FPDE ruang

dan masa. Penyelidikan ini memberi tumpuan kepada pembangunan kaedah berang-

ka baru. Dua kaedah berdasarkan splin-B dibangunkan untuk menyelesaikan FPDE

linear dan bukan linear. Kaedah-kaedah ini adalah kaedah penghampiran splin-B di-

perluaskan (ExCuBS) dan penghampiran splin-B baru yang diperluaskan (NExCuBS).

Kedua-dua kaedah mempunyai fungsi asas yang sama tetapi untuk NExCuBS, pengi-

raan baru digunakan untuk terbitan ruang peringkat kedua. Anggaran baru ini dikira

oleh gabungan linear simpul berhampiran. Terbitan pecahan masa diungkapkan dalam

bentuk Caputo. Terbitan pecahan Caputo didiskretain oleh kaedah penbezaan terhing-

ga (FDM) yang biasa dan dimensi ruang didiskretain oleh ExCuBS dan NExCuBS

dengan kaedah tertimbang θ untuk kes linear dan bukan linear masing-masing. Meng-

gunakan syarat awal dan sempadan, satu sistem segi empat tepat persamaan linear di-

tentukan, yang boleh diselesaikan oleh Mathematica. Kaedah ExCuBS digunakan un-

tuk menyelesaikan persamaan pecahan masa resapan olakan (TFADE) dan persamaan

pecahan masa telegraf (TFTE). NExCuBS digunakan untuk menyelesaikannya persa-

maan pecahan Burger tak linear (TFBE) dan persamaan pecahan masa Klein-Gordon

(TFKGE). Kedua-dua kaedah ini didapati stabil tanpa syarat untuk θ dan menumpu

xvii



dalam arah x dan t. Eksperimen berangka yang dijalankan menjanakan keputusan pe-

ngiraan yang menyokong penemuan teoritis.
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B-SPLINES BASED FINITE DIFFERENCE SCHEMES FOR FRACTIONAL

PARTIAL DIFFERENTIAL EQUATIONS

ABSTRACT

Fractional partial differential equations (FPDEs) are considered to be the ex-

tended formulation of classical partial differential equations (PDEs). Several physical

models in certain fields of sciences and engineering are more appropriately formu-

lated in the form of FPDEs. FPDEs in general, do not have exact analytical solutions.

Thus, the need to develop new numerical methods for the solutions of space and time

FPDEs. This research focuses on the development of new numerical methods. Two

methods based on B-splines are developed to solve linear and non-linear FPDEs. The

methods are extended cubic B-spline approximation (ExCuBS) and new extended cu-

bic B-spline approximation (NExCuBS). Both methods have the same basis functions

but for the NExCuBS, a new approximation is used for the second order space deriva-

tive. This new approximation is calculated by a linear combination of neighbouring

knots. The time fractional derivative is described in Caputo sense. The Caputo frac-

tional derivative is discretized by the usual finite difference method (FDM) and the

space dimension is discretized by ExCuBS and NExCuBS with θ weighted method

for linear and non-linear cases respectively. Using the initial and boundary conditions,

a square system of linear equations, which can be solved in Mathematica, is deter-

mined. The ExCuBS method is utilized for solving linear time fractional advection

diffusion equation (TFADE) and time fractional telegraph equation (TFTE). The NEx-

CuBS is utilized for solving non-linear time fractional Burgers equation (TFBE) and

time fractional Klein-Gordon equation (TFKGE). Both methods are found to be un-

conditionally stable for θ and convergent in x and t directions. Numerical experiments

xix



conducted indicated that the computational results support the theoretical findings.

xx



CHAPTER 1

INTRODUCTION

1.1 Research Background

Partial differential equations (PDEs) are mathematical equations that associate some 

functions which contain two or more independent variables with their partial deriva-

tives (Vvedensky, 1993). Second order PDEs have been widely and successfully used 

to model many problems in Science and Engineering (Strauss, 1992).

In general, fractional partial differential equations (FPDEs) are considered to be 

the extended formulation of classical PDEs. Several physical models, such as elec-

tron transportation (Scher and Montroll, 1975), power-law memory function (Rabot-

nov, 1980), visco-elastic material (Mainardi, 2010), heat conduction (Sokolov et al., 

2002), high-frequency financial data (Mendes, 2009) are more appropriately developed 

in the form of FPDEs for certain fields of applied m athematics. FPDEs involves frac-

tional derivatives of arbitrary order. A comprehensive history of fractional calculus 

were discussed in Oldham and Spanier (1974), Miller and Ross (1993) and Podlubny 

(1999). Many scientists (Scher and Montroll, 1975; Rabotnov, 1980; Kilbas et al., 

2006) pointed out that non-integer order derivatives and integrals are more appropri-

ate for the interpretation of certain real-life phenomena. That is FPDEs models are 

more suitable and accurate for the description of certain systems. For example, these 

models have been used successfully in diffusion processes, rheology, visco-elasticity, 

astro-physics, fractal networks, signal processing, turbulent flow and fluid mechanics
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(Diethelm and Freed, 1999; Hilfer, 2000; Kilbas et al., 2006). The fractional derivative

models are also used for models based on continuous time random walks, where the

movement of a particle is dependent on past movements (Das, 2011). They also appear

in the modelling of many processes in mathematical biology, chemical processes and

a number of problems in engineering (Shlesinger et al., 1987; Zaslavsky et al., 1993;

Diethelm and Freed, 1999; Barkai et al., 2000). In the last few decades FPDEs have

generated significant interest due to their appearance in various fields. In numerical

analysis various analytical and numerical methods including their applications to new

problems have been proposed.

FPDEs in general, do not have exact analytical solutions (Chen et al., 2010). This

is the main reason for developing new numerical methods for the solutions of FPDEs

and it has become a topic of major interest. Extensive research has been carried out to

obtain numerical techniques which are numerically stable for both linear and nonlin-

ear FPDEs (Jafari et al., 2013; Siddiqi and Arshed, 2015; Esen and Tasbozan, 2015c;

Sharifi and Rashidinia, 2016; Hepson, 2018; Gholamian and Nadjafi, 2018). Improve-

ments and extensions of established methods and developing new techniques are active

areas of research. Numerical techniques based on Chebyshev tau (Saadatmandi and

Dehghan, 2010), finite difference (Zhang, 2009), finite element (Zheng et al., 2010),

finite volume (Liu et al., 2014), quadratic B-spline method (Esen and Tasbozan, 2015a)

have been employed to solve FPDEs. There are various studies on the use of splines

for FPDEs such as Zahra and Elkholy (2012), Tasbozan et al. (2013), Li et al. (2014),

Akram and Tariq (2016). The main advantage of this technique is that the obtained so-

lution will be in an approximate analytical form. At any discrete point, the numerical

solution can then be established from the approximate analytical solutions. This study
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deals with the numerical solution of second order linear and nonlinear FPDEs by the

use of B-splines.

Advection-diffusion equation can be used to describe movement and spread of a

substance or conversed quantity such as energy, heat, mass etc by a fluid due to fluid’s

bulk motion (Dehghan, 2004). The advection-diffusion equation is a parabolic equa-

tion. Telegraph equation is a hyperbolic equation that can describe the propagation of

electrical signals in an electrical transmission line and wave phenomena. Telegraph

model demonstrates that the electromagnetic waves pattern can appear along the line

and that waves can be reflected on the wire (Mohanty and Jain, 2001; Dehghan and

Shokri, 2007). Both the advection-diffusion and telegraph equation are linear PDEs.

Burgers equation has been developed as a model of turbulent fluid motion, heat con-

duction, gas dynamics etc (Burgers, 1948; Kutluay et al., 1999). The 1D Burgers

equation is a nonlinear parabolic PDE. Klein-Gordon equation is a hyperbolic equation

that can describe as a motion of rigid pendula attached a stretched wire, dislocations

in crystals, nonlinear optics etc (Mittal and Bhatia, 2014; Sarboland and Amlnatael,

2015). Klein-Gordon is second order in time and space dimensions. The advection

diffusion equation, telegraph equation, Burgers equation and Klein-Gordon equation

are parabolic and hyperbolic PDEs which describe phenomena that are related in one

way or another to transport. Hence there is a connection between them.

This thesis will focus on the fractional version of the equations discussed above.
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1.2 Motivation of the Study

Motivated by the success of B-splines in the numerical solution of integer order

differential equations (Goh, 2013; Siddiqi and Arshed, 2013; Abbas et al., 2014a), our

aim is to investigate the use of appropriate B-splines for the numerical solution of sec-

ond order linear and nonlinear FPDEs. In general, degree three B-spline can be used to

solve second order differential equations. B-spline functions are powerful tools to ob-

tain the computational outcomes due to its flexibility to approximate the solution with

high accuracy at any point in the domain and also preserve the high degree smoothness

at the knots. B-splines techniques give us better results as compared to the other nu-

merical techniques in PDEs. Many authors (Caglar et al., 2006; Abbas et al., 2014b)

have conducted studies that support this statement. There are many studies based on

B-splines for the solutions of FPDEs (Tasbozan et al., 2013; Esen et al., 2015b; Esen

and Tasbozan, 2015a; Yaseen et al., 2017a; Hepson, 2018). However, so far as we are

aware, there are no studies on the use of splines for fractional advection diffusion equa-

tion (FADE), fractional telegraph equation (FTE) and nonlinear fractional Klein Gor-

don equation (FKGE) and limited studies which deal with nonlinear fractional Burgers

equation (FBE).

However, one of the limitation according to Gang and Guo-Zhao (2008) is that the

B-spline does not preserve any free parameter for the curve modification. Therefore,

the shape of the curve can not be altered once the data points are determined. On the

other hand, spline approximation is a global approximation, any change of the data

point will require to solve all the system again. Hence, Gang and Guo-Zhao (2008)

introduced an extension of cubic B-spline which developed by Han and Liu (2003)
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and extended it to higher degree.

In this research, extended cubic B-spline (ExCuBS) is considered for the solution

of second order linear and nonlinear FPDEs due to its success in dealing with PDEs.

ExCuBS is the extension of cubic B-spline (CBS) which preserves a free parameter

to control the global shape of curve. A new cubic B-spline (NCBS) method has been

developed by Lang and Xu (2014). This method gives good results when used to ap-

proximate the solution of nonlinear ordinary differential equations. Due to the promis-

ing results obtained by NCBS in the Lang and Xu (2014), one focus of our study is to

extend this method for ExCuBS to approximate the solution of nonlinear FPDEs. The

resulting spline is called new extended cubic B-spline (NExCuBS). This new method

is an improvement over the NCBS method. The analytical solutions and any order

derivatives can be well approximated with 4th order accuracy. It is of interest to cal-

culate the accuracy of the methods. The stability and convergence of the method also

need to be investigated. Stability means round off errors are bounded and convergence

means smaller grid size ensure more accurate solution.

1.3 Objectives of the Study

The objectives of the study are

• To develop a numerical technique for solving time fractional advection diffusion

equation (TFADE) by ExCuBS and to investigate the stability, convergence and

accuracy of the technique.

• To develop a numerical technique for solving time fractional telegraph equation

5



(TFTE) by ExCuBS and to investigate the stability, convergence and accuracy of

the technique.

• To formulate a NExCuBS approximation for second order FPDEs.

• To develop a numerical technique for solving nonlinear time fractional Burgers

equation (TFBE) by NExCuBS and to investigate the stability, convergence and

accuracy of the technique.

• To develop a numerical technique for solving nonlinear time fractional Klein-

Gordon equation (TFKGE) by NExCuBS and to investigate the stability, conver-

gence and accuracy of the technique.

• To calculate the order of convergence of ExCuBS and NExCuBS techniques.

1.4 Methodology

The methodology that will be used in this study is as follows:

1. a) ExCuBS which is a extension of CBS with a free parameter λ , with −8 ≤

λ ≤ 1 will be used in basis functions.

b) Time fractional derivatives are evaluated by the Caputo approach. Finite dif-

ference method (FDM) will be used in the discretization of Caputo opera-

tor.

c) A combination of Caputo fractional derivative and ExCuBS together with

θ -weighted scheme is utilized.

d) We assume that the ExCuBS is the solution of TFADE and TFTE with inter-

polating conditions.

6



e) A system of linear equations is obtained with the incorporation of initial and

boundary conditions. Therefore, values of unknowns can be calculated by

solving the system.

f) The stability analysis is investigated using Von Neumann method and conver-

gence analysis is also conducted.

2. The TFADE and TFTE are linear but TFBE and TFKGE are nonlinear. For

solving these equations first the nonlinear term will be linearized on the usual

Taylor series approach. Then the above methodology is repeated for TFBE and

TFKGE. Previous studies have indicated that there is only a marginal loss in

accuracy when such a linearization approach is adopted.

3. Mathematica 11 and Matlab R2017a are used to achieve the stated objectives.

1.5 Organization of the Thesis

This thesis is organised into eight chapters. A description of each chapter is as

follows:

• Chapter 2 provides a review of numerical methods to solve PDEs and FPDEs,

especially those based on B-splines. A comprehensive history of B-spline for

the solutions of fractional advection, fractional telegraph, nonlinear fractional

Burgers and nonlinear fractional Klein-Gordon equations is discussed.

• Chapter 3 covers the basic concept of fractional calculus and special functions

which are used in the solutions of FPDEs. This chapter also discusses the recur-

sive formula of B-spline, some relevant properties and ExCuBS.
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• Chapters 4 and 5 discuss a combined method based on Caputo’s fractional deriva-

tives and ExCuBS approach with the incorporation of θ weighted scheme for the

solutions of TFADE and TFTE. The stability analysis and convergence analysis

of ExCuBS will also be carried out in Chapters 4 and 5.

• Numerical technique based on NExCuBS is formulated in Chapter 6. Chapters

6 and 7 present a combination of Caputo’s fractional derivatives and NExCuBS

with the θ weighted scheme for the solutions of TFBE and TFKGE. The stabil-

ity analysis and convergence analysis of NExCuBS approximation will also be

discussed in Chapters 6 and 7.

• Finally, Chapter 8 presents the conclusions and discussions on the possibilities

of future research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the past few years, the use of splines have generated significant interest in the 

field of numerical a nalysis. Schoenberg (1946) introduced the concept of splines and 

Boor (1972), Ahlberg and Ito (1975), de Boor (1978) were inspired by his work. B-

spline or basis spline is formed from a linear combination of its recursive function, 

called B-spline basis functions. (Boor, 1972) established the recursive formula of B-

splines. B-spline has been noticeably utilized to solve the solutions of ordinary differ-

ential equations (ODEs) and PDEs due to their accuracy of solutions. Recently, many 

researchers have been attracted towards the applications of B-spline to solve FPDEs 

(Tasbozan et al., 2013; Esen et al., 2015b; Sayevand et al., 2016; Yaseen and Abbas, 

2019).

This literature chapter is classified into five se ctions. In the first section, the liter-

ature review on the applications of B-splines in solving differential equations is pre-

sented. The remaining four sections are based on the FPDEs type. First, the litera-

ture regarding fractional advection-diffusion equation (FADE) will be presented. Sec-

ondly, a brief history of methods regarding fractional telegraph equation (FTE) will be 

provided followed by the nonlinear fractional Burgers equation (FBE) and fractional 

Klein-Gordon equation (FKGE). It is hoped to present adequate information related to 

methods in solving the FPDEs and establish the novelty of this study.
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2.2 B-spline Method

(Ahlberg and Ito, 1975) started the applications of B-splines to solve ODEs. Due to

the simplicity of the B-spline method, several researchers started the use of B-splines to

solve the linear and nonlinear PDEs. Kadalbajoo and Arora (2009) developed B-spline

collocation method for singular perturbation problem using artificial viscosity. The

method have been shown second order convergence. Zhu and Wang (2009), Zhu and

Kang (2010) presented the numerical solution of Burgers and Burgers-Fisher equations

using Cubic B-spline (CBS) quasi-interpolation method. The analysis of the stability

of the proposed methods were also carried out. Goh et al. (2011) studied CBS method

for the numerical solutions of heat and wave equations. A finite difference method

(FDM) and CBS approach were used in time dimension and space dimension respec-

tively. CBS collocation method has been used to solve nonlinear parabolic PDE with

Neumann boundary conditions by Mittal and Jain (2012). CBS basis was applied to

discretize space dimension. Goh et al. (2012) proposed CBS collocation method in

solving 1D heat and advection-diffusion equations. In this paper, stability analysis

was examined by the Von Neumann method and the efficiency of the proposed method

was checked by some numerical examples. Quintic B-spline collocation method was

used to solve fourth-order parabolic PDE by Siddiqi and Arshed (2013). The authors

used FDM to discretize time dimension and quintic B-spline in space dimension. Ab-

bas et al. (2014b) solved a strongly coupled reaction-diffusion system by using CBS

method. They used FDM and CBS approaches for time and space dimensions re-

spectively. A 1D hyperbolic telegraph equation with Neumann boundary conditions

has been solved by Mittal and Bhatia (2014) using CBS basis functions. The stabil-

ity was examined by matrix stability method. Jiwari (2015) solved hyperbolic PDEs
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with Dirichlet and Neumann boundary conditions using Lagrange interpolation and

modified CBS differential quadrature method (DQM). Korkmaz and Dag (2016) used

quartic and quintic B-spline basis functions in solving advection-diffusion equation.

The stability was also examined by using matrix stability method. Sharifi and Rashi-

dinia (2016) presented the numerical solution of hyperbolic telegraph equation using

a collocation method based on redefine ExCuBS basis. The stability and convergence

of the proposed method were also discussed. Alshomrani et al. (2017) proposed a

numerical algorithm based on a modified CBS basis in solving hyperbolic type wave

equations with Dirichlet boundary conditions.

Jafari et al. (2013) considered the B-spline collocation method for solving linear

FDE which involves Caputo fractional derivative. Numerical examples were also dis-

cussed to check the efficiency of the method. Tasbozan et al. (2013) proposed a nu-

merical solution of fractional diffusion equation using the CBS collocation method.

They developed approximation based on FEM by CBS functions with Riemann Li-

ouville (RL) operator. Numerical examples were provided to show the accuracy of

the method. Esen et al. (2015b) solved fractional diffusion and fractional diffusion

wave equations using CBS collocation method. Time fractional derivatives were dis-

cretized by the Caputo formulation. The authors also examined the stability of the

method. A numerical technique based on quintic B-spline was employed by Siddiqi

and Arshed (2015) in solving time fractional fourth-order PDEs. The time dimension

was discretized in Caputo’s sense and space dimension was discretized by the quintic

B-spline approach. Stability and convergence properties were also discussed. A CBS

collocation method was developed by Esen and Tasbozan (2015c) and used to solve

time-fractional gas dynamics equation while the Caputo’s derivative was carried out
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for time dimension. Error norms were also calculated in this paper. Sayevand et al.

(2016) solved second and fourth order time-fractional diffusion equations by using

CBS approach. The time and space dimensions of diffusion equations were discretized

by Caputo’s derivatives and CBS method respectively. They showed that the proposed

technique was unconditionally stable and convergent. Yaseen et al. (2017a) suggested

a numerical technique based on cubic trigonometric B-spline (CTB) basis functions

in solving time-fractional sub-diffusion equation. Time dimension was discretized by

usual FDM and space derivative was discretized by CTB basis functions with the help

of GrÃijnwald discretization of RL derivative. The stability was also shown to be un-

conditionally stable by Fourier series method. Zhu et al. (2017a) proposed a method

based on exponential B-spline approach in solving fractional sub-diffusion equation.

The unconditional stability was also proved. A series of numerical examples were also

carried out to check the accuracy of the method. A FDM based on cubic trigonomet-

ric B-splines in solving time fractional wave equation has been presented by Yaseen

et al. (2017b). They used FDM to discretize Caputo derivative in time dimension and

space dimension was discretize using CTB basis. The stability, convergence and nu-

merical examples were also discussed. Quintic B-spline approach was employed for

the class of fourth-order FPDEs by Arshed (2017a). Central FDM and quintic B-spline

basis were used to discretize time and space dimensions respectively. The developed

technique was shown to be stable and convergent in the time dimension. A numerical

method has been developed for solving time fractional hyperbolic PDEs by Arshed

(2017b). The author used CBS collocation approach to discretize space dimension

and Caputo’s time-fractional derivative was discretized with the help of central FDM.

The stability and convergence were also discussed. A numerical technique based on
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quadratic B-spline FEM has been suggested by Esen and Tasbozan (2017) to solve time

fractional Schrödinger equation. In this research paper, the authors also conducted nu-

merical experiments to check the accuracy of the B-spline FEM. Hepson (2018) solved

generalized Burgers- Fisher equation using FEM based on ExCuBS. FEM was estab-

lished by ExCuBS basis functions and discretization was based on Crank-Nicolson

and FDM. The author presented two numerical examples to check the validity of the

numerical method. Pitolli (2018) developed a numerical method based on fractional

B-spline technique to solve predator-prey model and fractional Lotka-Volterra model.

Numerical tests showed the accuracy of the proposed method. Gholamian and Nadjafi

(2018) presented the CBS collocation method for a class of partial integro-differential

equation. CBS was utilized for space discretization while the backward Euler formula

was utilized for time discretization. Convergence and the stability of the method were

also proved.

2.3 Numerical Methods for Solving Fractional Advection Diffusion Equation (FADE)

The FEM was implemented to solve space fractional advection-diffusion equation

with nonhomogeneous initial and boundary conditions by Zheng et al. (2010). A pri-

ori error estimate was also derived. Wang and Wang (2011) developed a FDM for

FADE. The authors claimed that the proposed method presented more accurate re-

sults than the standard implicit methods even if larger space and times step sizes used.

Shen et al. (2011) considered an implicit and explicit FDM to solve space-time Riesz-

Caputo FADE with initial and boundary conditions in a finite domain. Both methods

were convergent but the explicit approximation was conditionally stable while an im-

plicit was unconditionally stable. Liu et al. (2014) proposed a technique based on the
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finite volume method (FVM) for solving FADE. The spatial dimension was estimated

by shifted GrÃijnwald formula to discretize RL fractional derivatives. Numerical re-

sults for Crank-Nicolson FVM were given to show that the consistency, stability and

convergence of the technique. Bu et al. (2014) solved a class of multi-term TFADE us-

ing FDM in time direction and FEM in space direction. The stability and convergence

of the method were also investigated. Parvizi et al. (2015) employed the Jacobi collo-

cation method in solving a special kind of FADE with a nonlinear source term. The

spatial derivatives were replaced by the RL derivatives, the stability and convergence

of the method were also presented. Jannelli et al. (2018) analyzed TFADE involv-

ing RL derivative with nonlinear forcing term. A numerical solution was obtained by

FDM for non-linear equation. The results were compared with the exact solutions and

errors were shown the convergence of this method. FDM for time-space FADE with

Riesz derivative has been formulated by Arshad et al. (2018). The Caputo derivative

and Riesz derivative were considered in time and space directions respectively. Riesz

space derivative was calculated using second-order fractional weighted and shifted

Grünwald-Letnikov approximation. Further, the stability and convergence analysis

were also discussed. Zhang et al. (2019) considered an implicit and explicit difference

techniques for solving time-space FADE. It was shown that the implicit technique was

convergent and unconditionally stable while the explicit technique was convergent and

conditionally stable. The order of convergence of the both techniques was O(τ +h).

Zhu et al. (2017b) proposed a numerical technique based on an efficient differential

quadrature method (DQM) for FADE. CTB was used for DQM in solving 1D TFADE.

This method was evaluated by some numerical experiments. Finally, the results were

compared with other numerical methods discussed in the literature. Badr et al. (2018)
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suggested a numerical method for solving 1D TFADE using B-spline finite volume

element method. The time-fractional derivative was calculated with the help of Ca-

puto discretization. The analysis of the stability of this method and some numerical

examples were also presented.

2.4 Numerical Methods for Solving Fractional Telegraph Equation (FTE)

Li and Cao (2012) presented a technique based on FDM for a kind of linear FTE.

They derived FTE from the classical telegraph equation by replacing the second-order

time derivative with the fractional derivative of order 1 < γ < 2. The analysis of sta-

bility and convergence have been proven by the energy method. Wang et al. (2014)

discussed and analyzed Galerkin mixed FEM for the numerical solution of TFTE. The

time dimension was discretized by the Caputo fractional derivative and space dimen-

sion is discretized by FDM. They presented optimal order of convergence in space-time

dimensions and also derived the stability of Galerkin mixed finite element technique.

Saadatmandi and Mohabbati (2015) developed a computational technique for solving

TFTE using Tau method and Legendre polynomials. The Caputo operator has been

used to describe the fractional-order derivatives. Few examples were tested to check

the validity and applicability of this method. Asgari et al. (2016) obtained the solution

of TFTE via Bernstein polynomials’ operational matrices. The operational matrices

of fractional differential and collocation methods are used to reduce TFTE to a linear

system of equations. Convergence of the proposed technique has also been proven.

They used Mathematica 9 to obtain the computational results. Hashemi and Baleanu

(2016) proposed a numerical method for the solution of TFTE using the Caputo frac-

tional derivative in temporal direction, a combination of group preserving scheme and
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method of line for spatial direction. Some numerical experiments have been conducted

to check the accuracy of this method. The reproducing kernels has been presented for

the solution of TFTE with initial boundary conditions using piecewise technique by

Wang et al. (2017). They claimed that the method is more accurate than the traditional

reproducing kernel technique. Three numerical examples have been presented to check

the effectiveness of this technique. Wang and Mei (2017) proposed a method for solv-

ing TFTE via Legendre spectral Galerkin method and generalized FDM. The general-

ized FDM was used to discretize the time dimension and Legendre spectral Galerkin

method was used in space dimension. The stability and convergence analysis have

also been discussed. Liu (2018) discussed the Caputo fractional difference method

and Grünwald formula for the solution of TFTE with Dirichlet boundary conditions.

The stability and convergence of difference methods have also been discussed. Kamran

and Ali (2018) constructed the solution of TFTE using localized kernel-based method.

The Laplace transform and local radial basis functions method have been used to solve

TFTE. The resulting integral form representation was solved by quadrature rule. Ku-

mar et al. (2019) suggested FDM for a TFTE with generalized derivative terms. The

scale and weighted functions have been used for generalized fractional derivatives.

These derivatives have been reduced in terms of the Caputo and RL derivatives. The

stability, convergence and numerical examples have also been presented.

The quadratic B-spline Galerkin method has been employed in solving TFTE by

Tasbozan and Esen (2017). The fractional time derivatives were discretized in Caputo’s

sense. Three numerical examples were presented to check the accuracy of this method.

Yaseen and Abbas (2018) proposed CTB method for solving TFTE. FDM was used

to discretized the Caputo sense time-fractional derivatives while the CTB was used
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to in space dimension. The stability analysis and computational examples were also

presented.

2.5 Numerical Methods for Solving Fractional Burgers Equation (FBE)

Song and Zhang (2007) derived the homotopy analysis method, an explicit and

numerical solutions of FBE for the first time. They used the Caputo operator for frac-

tional derivative. Numerical solution of space and time FBE have been proposed by

Inc (2008) using the VRM. The exact and numerical solutions have been compared

with results obtained by the Adomian decomposition method. The author claimed that

VRM method is more efficient and stable than the Adomian decomposition method.

Liu and Hou (2011) presented numerical solutions of time and space FBE using gen-

eralized differential transform method. This numerical method was based on general-

ized Taylor series formula and the Caputo formula. Numerical experiments have been

demonstrated that the effectiveness of this method. Khan and Ara (2012) proposed a

generalized differential transform method and homotopy perturbation method for solv-

ing TFBE. Fractional derivatives have been described in the Caputo sense. El-Danaf

and Hadhoud (2012) developed a numerical method for the solution of TFBE using

cubic parametric splines. Time fractional derivative has been discretized by the Ca-

puto formula and the Von Neumann method was applied to check the stability of this

method. The truncation error of the proposed method has also been analyzed. Gupta

and Ray (2014) used numerical technique based on two dimensional Legendre wavelet

method in solving fractional Burgers type equation. They described time Fractional

derivative in the Caputo sense. Yokus and Kaya (2017) solved TFBE for numerical so-

lutions using Cole-Hopf transformation and expansion method. FDM has been used to
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discretize the Caputo sense derivative. TFBE has been linearized by using Cole-Hopf

method and the stability has been investigated by the Von Neumann Fourier method.

Asgari and Hosseini (2018) established two semi-implicit pseudospectral methods in

solving generalized TFBE. The Caputo operator has been utilized for the fractional-

order derivative. They presented the stability, consistency and convergence of the

methods. The results of the proposed methods have also been compared with the exact

analytical solution. Oruç et al. (2019) described a unified finite difference Chebyshev

wavelet method for solving TFBE numerically. Chebyshev wavelet method and Ca-

puto formula have used for the discretization of space and time directions respectively.

Senol et al. (2019) introduced the residual power series method in solving TFBE using

conformable fractional derivative.

Esen and Tasbozan (2015a) developed a numerical method for the solution of

TFBE using quadratic B-spline Galerkin method. FDM has been used to discretized

the Caputo operator. Three numerical examples have also been presented to check the

efficiency of this method. Esen and Tasbozan (2016) solved TFBE numerically us-

ing CBS finite elements. FEM based CBS basis functions have been used for space

direction and the Caputo derivative has been utilized for time direction. This study

demonstrated that the method preserves the ability to obtain good numerical results.

Yaseen and Abbas (2019) presented a numerical method based on CTB for the solu-

tion of TFBE. The Caputo fractional derivative has been used in time direction while

the CTB has been utilized in space direction. They also presented the stability and

convergence of this method.
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2.6 Numerical Methods for Solving Fractional Klein-Gordon Equation (FKGE)

Golmankhaneh et al. (2011) has been applied homotopy perturbation method for

the analytical solution of FKGE. The authors claimed that this algorithm provides good

numerical solutions without discretization. Three examples have been given to show

that the applicability of this method. A high order compact difference scheme for

nonlinear FKGE with Neumann boundary conditions has been proposed by Vong and

Wang (2014). The stability and convergence of FDM have been analyzed by matrix

form. Alqahtani (2015) applied the spectral collocation method using Legendre poly-

nomial for the solution of non-linear TFKGE. Fractional derivative has been described

in the Caputo sense. The results of this method have been shown a good agreement

with the exact solution. Merdan and Oral (2016) provided an application of the lo-

cal fractional decomposition method for the approximate solution of nonlinear FKGE.

This study demonstrated that the computational results of FKGE with RL derivative

obtained by the local fractional decomposition method are very efficient and useful.

Abuteen et al. (2016) presented a numerical algorithm based on fractional reduced

differential transform technique for finding the solution of non-linear FKGE. These

findings have been provided a comparative study between implicit Runge-Kutta tech-

nique and fractional reduced differential technique. Chen et al. (2017) established a

numerical technique for the solution of TFKGE in a bounded domain. Time fractional

derivative has been described in the Caputo operator form. This technique has been

presented on the basis of FDM discretization in time dimension and Legendre spectral

method in space dimension. Nagy (2017) solved non-linear TFKGE numerically using

Sinc-Chebyshev method. The Caputo operator has been utilized for fractional deriva-

tive. The Sinc functions and the shifted Chebyshev polynomials have been utilized
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in space and time directions respectively. Lyu and Vong (2018) proposed a new grid

function FDM for solving TFKGE. Some numerical examples have been provided to

justify the theoretical results. Kanwal et al. (2018) implemented Genocchi polynomial

and Ritz-Galerkin method on FKGE and fractional diffusion wave equation. A linear

system of equations was obtained using Genocchi polynomial and Ritz-Galerkin meth-

ods. Singh et al. (2019) discussed a numerical technique for the solution of FKGE. This

numerical technique is based on the Legendre scaling functions and Caputo fractional

operator.

A numerical technique based on B-spline collocation FEM has been developed for

the numerical solution of FKGE by Karaagac et al. (2019). The CBS basis functions

and the Caputo fractional derivative incorporation with FEM and FDM have been em-

ployed to discretized space and time dimensions. They also showed the numerical

error norms L∞ and L2 to check the efficiency of this technique.

B-spline is very useful technique for the solutions of differential equations but there

are some limitations that associate with the use of B-spline method for solving numer-

ical problems. For the curve modification, it does not possess any free parameter. The

shape of curve can not be changed once the data points are determined. Moreover, any

change of data point will require solving the system again which is computationally

very expensive. Identifying the weaknesses of the B-spline approximation Han and

Liu (2003) introduced the blending function of degree four which is the extension of

cubic B-spline function. Later, Gang and Guo-Zhao (2008) modified the extension

cubic B-spline blending function to degree five and six. The extended cubic B-spline

provides a free parameter for controlling the shape of curve.
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2.7 Conclusion

A brief history of B-spline methods to solve the PDEs and FPDEs have been dis-

cussed in this chapter. In particular, numerical methods to solve FADE, FTE, FBE and

FKGE have been reviewed. There are a large number of numerical techniques already

established for solving FPDEs. However, as far as we are aware there are no such

studies on the use of B-splines in solving linear TFADE, TFTE and non-linear TFBE

and TFKGE. Thus, this is a gap we seek to fill. Therefore it would be of great interest

to solve 1D FPDEs by using ExCuBS and NExCuBS. The addition of more methods

to the pool of numerical methods for TFADE, TFTE, TFBE and TFKGE will benefit

researchers investigating phenomena modeled by TFADE, TFTE, TFBE, TFKGE.
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CHAPTER 3

BASIC CONCEPT, TECHNIQUE AND THEORY

3.1 Introduction

Fractional calculus have generated significant interest in past d ecades. An exten-

sive study on this topic is discussed in Oldham and Spanier (1974), Ross (1977) and 

Podlubny (1999). This chapter covers the basic knowledge of the special functions, 

fractional calculus, B-spline, particularly extended cubic B-spline which is required 

for the next chapters. A recursive formula of B-spline and its properties will also be 

reviewed. These extended cubic B-spline functions will be utilized for the solution of 

linear and nonlinear fractional partial differential equations.

3.2 Special Functions

Some useful special functions are defined in this s ection. These functions are im-

portant in fractional calculus. The Euler Gamma function and Mittag-Leffler function 

are the two basic functions of fractional calculus. These functions play a major role in 

the theory of FDEs.

3.2.1 Euler Gamma Function

This function is a generalization of the factorial α! for α ∈ N and is denoted by 

Γ(.). For complex number m with Re(m) > 0, Euler Gamma function Γ(m) is defined

22



as (Podlubny, 1999; Gradshteyn and Ryzhik, 1980):

Γ(m) =
∫

∞

0
tm−1e−tdt.

Some useful properties of Euler Gamma function are defined below:

i: Γ(1+m) = mΓ(m), m ∈ C, Re(m)> 0

ii: Γ(α) = (α−1)!, α ∈ N

iii: Γ(1−m) =−mΓ(−m), m ∈ C, Re(m)> 0.

3.2.2 Mittag-Leffler Function

This function was first introduced by Mittag-Leffler (1903). For m ∈ C Mittag-

Leffler function Eγ in one parameter form is defined as (Podlubny, 1999):

Eγ(m) =
∞

∑
k=0

mk

Γ(γk+1)
, γ > 0.

The generalized function in two parameters form is defined as:

Eγ,δ (m) =
∞

∑
k=0

mk

Γ(γk+δ )
, γ > 0,δ > 0.

Mittag-Leffler function converges for m ∈ C.

3.3 Fractional Calculus

Fractional calculus appeared with some simple questions which were associated

to the derivative concept: i.e., first order derivative shows the slope of a function but
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what is a 1
2 order derivative represent? As a result, many mathematicians managed to

open a new window of opportunity to mathematical and real world, which has arisen

many new and fascinating results. Simply, we can say fractional calculus is a theory of

differentiation and integration of arbitrary order (Podlubny, 1999).

3.3.1 Fractional Integrals

Fractional integral is the name of the integral of an arbitrary order (Podlubny,

1999). For γ > 0, fractional integral operator of γ order is denoted by

cIγ

t g(t) or cD−γ

t g(t),

where g(t) is any dependent function, c and t are the limits of fractional integral oper-

ators and usually these limits called as terminals (Ross, 1977; Podlubny, 1999). The

RL integral can be defined as follows:

cIγ

t g(t) =c D−γ

t g(t) =
1

Γ(γ)

∫ t

c

g(τ)
(t− τ)1−γ

dτ, Re(γ)> 0. (3.1)

Another approach is to describe the notion of (3.1) by considering the n-fold integral

of a function g(t) in the following way

cD−n
t g(t) =

∫ t

c
dτ1

∫
τ1

c
dτ2...

∫
τn−1

c
g(τn)dτn. τi, i = 1,2, ...n.

Repeated integrals can be written as a single integral in the form of Cauchy’s formula

as

cIn
τ =

1
(n−1)!

∫ t

c

g(τ)
(t− τ)1−n dτ. (3.2)
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