29,005 research outputs found

    Nonlinear effects in resonant layers in solar and space plasmas

    Full text link
    The present paper reviews recent advances in the theory of nonlinear driven magnetohydrodynamic (MHD) waves in slow and Alfven resonant layers. Simple estimations show that in the vicinity of resonant positions the amplitude of variables can grow over the threshold where linear descriptions are valid. Using the method of matched asymptotic expansions, governing equations of dynamics inside the dissipative layer and jump conditions across the dissipative layers are derived. These relations are essential when studying the efficiency of resonant absorption. Nonlinearity in dissipative layers can generate new effects, such as mean flows, which can have serious implications on the stability and efficiency of the resonance

    Fluid Models for Kinetic Effects on Coherent Nonlinear Alfven Waves. II. Numerical Solutions

    Get PDF
    The influence of various kinetic effects (e.g. Landau damping, diffusive and collisional dissipation, and finite Larmor radius terms) on the nonlinear evolution of finite amplitude Alfvenic wave trains in a finite-beta environment is systematically investigated using a novel, kinetic nonlinear Schrodinger (KNLS) equation. The dynamics of Alfven waves is sensitive to the sense of polarization as well as the angle of propagation with respect to the ambient magnetic field. Numerical solution for the case with Landau damping reveals the formation of dissipative structures, which are quasi-stationary, S-polarized directional (and rotational) discontinuities which self-organize from parallel propagating, linearly polarized waves. Parallel propagating circularly polarized packets evolve to a few circularly polarized Alfven harmonics on large scales. Stationary arc-polarized rotational discontinuities form from obliquely propagating waves. Collisional dissipation, even if weak, introduces enhanced wave damping when beta is very close to unity. Cyclotron motion effects on resonant particle interactions introduce cyclotron resonance into the nonlinear Alfven wave dynamics.Comment: 38 pages (including 23 figures and 1 table

    On Dispersive and Classical Shock Waves in Bose-Einstein Condensates and Gas Dynamics

    Get PDF
    A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, eg. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with the three dimensional experiment show that three and two dimensional approximations are in excellent agreement and one dimensional approximations are in good qualitative agreement. Using one dimensional DSW theory it is argued that the experimentally observed blast waves may be viewed as dispersive shock waves.Comment: 24 pages, 28 figures, submitted to Phys Rev

    Hydrodynamics of cold atomic gases in the limit of weak nonlinearity, dispersion and dissipation

    Full text link
    Dynamics of interacting cold atomic gases have recently become a focus of both experimental and theoretical studies. Often cold atom systems show hydrodynamic behavior and support the propagation of nonlinear dispersive waves. Although this propagation depends on many details of the system, a great insight can be obtained in the rather universal limit of weak nonlinearity, dispersion and dissipation (WNDD). In this limit, using a reductive perturbation method we map some of the hydrodynamic models relevant to cold atoms to well known chiral one-dimensional equations such as KdV, Burgers, KdV-Burgers, and Benjamin-Ono equations. These equations have been thoroughly studied in literature. The mapping gives us a simple way to make estimates for original hydrodynamic equations and to study the interplay between nonlinearity, dissipation and dispersion which are the hallmarks of nonlinear hydrodynamics.Comment: 18 pages, 3 figures, 1 tabl

    Finite volume methods for unidirectional dispersive wave models

    Get PDF
    We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in one space dimension. In particular we consider a KdV-BBM type equation. Explicit and IMEX Runge-Kutta type methods are used for time discretizations. The fully discrete schemes are validated by direct comparisons to analytic solutions. Invariants conservation properties are also studied. Main applications include important nonlinear phenomena such as dispersive shock wave formation, solitary waves and their various interactions.Comment: 25 pages, 12 figures, 51 references. Other authors papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    The role of dissipation in flexural wave turbulence: from experimental spectrum to Kolmogorov-Zakharov spectrum

    Full text link
    The Weak Turbulence Theory has been applied to waves in thin elastic plates obeying the F\"oppl-Von K\'arm\'an dynamical equations. Subsequent experiments have shown a strong discrepancy between the theoretical predictions and the measurements. Both the dynamical equations and the Weak Turbulence Theory treatment require some restrictive hypotheses. Here a direct numerical simulation of the F\"oppl-Von K\'arm\'an equations is performed and reproduces qualitatively and quantitatively the experimental results when the experimentally measured damping rate of waves γk=a+bk2\gamma_\mathbf{k}= a + bk^2 is used. This confirms that the F\"oppl-Von K\'arm\'an equations are a valid theoretical framework to describe our experiments. When we progressively tune the dissipation so that to localize it at the smallest scales, we observe a gradual transition between the experimental spectrum and the Kolmogorov-Zakharov prediction. Thus it is shown dissipation has a major influence on the scaling properties stationary solutions of weakly non linear wave turbulence.Comment: 10 pages, 11 figure

    On the inadmissibility of non-evolutionary shocks

    Get PDF
    In recent years, numerical solutions of the equations of compressible magnetohydrodynamic (MHD) flows have been found to contain intermediate shocks for certain kinds of problems. Since these results would seem to be in conflict with the classical theory of MHD shocks, they have stimulated attempts to reexamine various aspects of this theory, in particular the role of dissipation. In this paper, we study the general relationship between the evolutionary conditions for discontinuous solutions of the dissipation-free system and the existence and uniqueness of steady dissipative shock structures for systems of quasilinear conservation laws with a concave entropy function. Our results confirm the classical theory. We also show that the appearance of intermediate shocks in numerical simulations can be understood in terms of the properties of the equations of planar MHD, for which some of these shocks turn out to be evolutionary. Finally, we discuss ways in which numerical schemes can be modified in order to avoid the appearance of intermediate shocks in simulations with such symmetry
    corecore