24 research outputs found

    A perturbed elliptic problem involving the p(x)-Kirchhoff type triharmonic operator

    Get PDF
    This paper examines the existence of weak solutions for a nonlinear boundary value problem of p(x)-Kirchhoff type involving the p(x)-Kirchhoff type triharmonic operator and perturbed external source terms. We establish our results by using a Fredholm-type result for a couple of nonlinear operators, in the framework of variable exponent Sobolev spaces

    High order difference schemes using the Local Anisotropic Basis Function Method

    Get PDF
    Mesh-free methods have significant potential for simulations in complex geometries, as the time consuming process of mesh-generation is avoided. Smoothed Particle Hydrodynamics (SPH) is the most widely used mesh-free method, but suffers from a lack of consistency. High order, consistent, and local (using compact computational stencils) mesh-free methods are particularly desirable. Here we present a novel framework for generating local high order difference operators for arbitrary node distributions, referred to as the Local Anisotropic Basis Function Method (LABFM). Weights are constructed from linear sums of anisotropic basis functions (ABFs), chosen to ensure exact reproduction of polynomial fields up to a given order. The ABFs are based on a fundamental Radial Basis Function (RBF), and the choice of fundamental RBF has small effect on accuracy, but influences stability. LABFM is able to generate high order difference operators with compact computational stencils (4th order with 25 nodes, 8th order with 60 nodes in two dimensions). At domain boundaries (with incomplete support) LABFM automatically provides one-sided differences of the same order as the internal scheme, up to 4th order. We use the method to solve elliptic, parabolic and mixed hyperbolic-parabolic PDEs, showing up to 8th order convergence. The inclusion of hyperviscosity is straightforward, and can effectively provide stability when solving hyperbolic problems. LABFM is a promising new mesh-free method for the numerical solution of PDEs in complex geometries. The method is highly scalable, and for Eulerian schemes, the computational efficiency is competitive with RBF-FD for a given accuracy. A particularly attractive feature is that in the low order limit, LABFM collapses to SPH, and there is potential for Arbitrary Lagrangian-Eulerian schemes with natural adaptivity of resolution and accuracy.Comment: Accepted manuscript: 28 pages, 23 figures. Accepted in J. Comput. Phys. 10th May 202

    Image compression with anisotropic diffusion

    Get PDF
    Compression is an important field of digital image processing where well-engineered methods with high performance exist. Partial differential equations (PDEs), however, have not much been explored in this context so far. In our paper we introduce a novel framework for image compression that makes use of the interpolation qualities of edge-enhancing diffusion. Although this anisotropic diffusion equation with a diffusion tensor was originally proposed for image denoising, we show that it outperforms many other PDEs when sparse scattered data must be interpolated. To exploit this property for image compression, we consider an adaptive triangulation method for removing less significant pixels from the image. The remaining points serve as scattered interpolation data for the diffusion process. They can be coded in a compact way that reflects the B-tree structure of the triangulation. We supplement the coding step with a number of amendments such as error threshold adaptation, diffusion-based point selection, and specific quantisation strategies. Our experiments illustrate the usefulness of each of these modifications. They demonstrate that for high compression rates, our PDE-based approach does not only give far better results than the widely-used JPEG standard, but can even come close to the quality of the highly optimised JPEG2000 codec

    Isogeometric Analysis for High Order Geometric Partial Differential Equations with Applications

    Get PDF
    In this thesis, we consider the numerical approximation of high order geometric Partial Differential Equations (PDEs). We first consider high order PDEs defined on surfaces in the 3D space that are represented by single-patch tensor product NURBS. Then, we spatially discretize the PDEs by means of NURBS-based Isogeometric Analysis (IGA) in the framework of the Galerkin method. With this aim, we consider the construction of periodic NURBS function spaces with high degree of global continuity, even on closed surfaces. As benchmark problems for the proposed discretization, we propose Laplace-Beltrami problems of the fourth and sixth orders, as well as the corresponding eigenvalue problems, and we analyze the impact of the continuity of the basis functions on the accuracy as well as on computational costs. The numerical solution of two high order phase field problems on both open and closed surfaces is also considered: the fourth order Cahn-Hilliard equation and the sixth order crystal equation, both discretized in time with the generalized-alpha method. We then consider the numerical approximation of geometric PDEs, derived, in particular, from the minimization of shape energy functionals by L^2-gradient flows. We analyze the mean curvature and the Willmore gradient flows, leading to second and fourth order PDEs, respectively. These nonlinear geometric PDEs are discretized in time with Backward Differentiation Formulas (BDF), with a semi-implicit formulation based on an extrapolation of the geometry, leading to a linear problem to be solved at each time step. Results about the numerical approximation of the two geometric flows on several geometries are analyzed. Then, we study how the proposed mathematical framework can be employed to numerically approximate the equilibrium shapes of lipid bilayer biomembranes, or vesicles, governed by the Canham-Helfrich curvature model. We propose two numerical schemes for enforcing the conservation of the area and volume of the vesicles, and report results on benchmark problems. Then, the approximation of the equilibrium shapes of biomembranes with different values of reduced volume is presented. Finally, we consider the dynamics of a vesicle, e.g. a red blood cell, immersed in a fluid, e.g. the plasma. In particular, we couple the curvature-driven model for the lipid membrane with the incompressible Navier-Stokes equations governing the fluid. We consider a segregated approach, with a formulation based on the Resistive Immersed Surface method applied to NURBS geometries. After analyzing benchmark fluid simulations with immersed NURBS objects, we report numerical results for the investigation of the dynamics of a vesicle under different flow conditions

    Optimising Spatial and Tonal Data for PDE-based Inpainting

    Full text link
    Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. We also give an extensive literature survey on PDE-based image compression methods

    The conforming virtual element method for polyharmonic and elastodynamics problems: a review

    Full text link
    In this paper, we review recent results on the conforming virtual element approximation of polyharmonic and elastodynamics problems. The structure and the content of this review is motivated by three paradigmatic examples of applications: classical and anisotropic Cahn-Hilliard equation and phase field models for brittle fracture, that are briefly discussed in the first part of the paper. We present and discuss the mathematical details of the conforming virtual element approximation of linear polyharmonic problems, the classical Cahn-Hilliard equation and linear elastodynamics problems.Comment: 30 pages, 7 figures. arXiv admin note: text overlap with arXiv:1912.0712
    corecore