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Abstract
In this thesis, we consider the numerical approximation of high order geometric Partial

Differential Equations (PDEs). We first consider high order PDEs defined on surfaces in the

3D space that are represented by single-patch tensor product NURBS. Then, we spatially

discretize the PDEs by means of NURBS-based Isogeometric Analysis (IGA) in the framework

of the Galerkin method. With this aim, we consider the construction of periodic NURBS

function spaces with high degree of global continuity, even on closed surfaces. As benchmark

problems for the proposed discretization, we propose Laplace–Beltrami problems of the

fourth and sixth orders, as well as the corresponding eigenvalue problems, and we analyze the

impact of the continuity of the basis functions on the accuracy as well as on computational

costs. The numerical solution of two high order phase field problems on both open and

closed surfaces is also considered: the fourth order Cahn–Hilliard equation and the sixth

order crystal equation, both discretized in time with the generalized-α method. We then

consider the numerical approximation of geometric PDEs, derived, in particular, from the

minimization of shape energy functionals by L2-gradient flows. We analyze the mean curvature

and the Willmore gradient flows, leading to second and fourth order PDEs, respectively. These

nonlinear geometric PDEs are discretized in time with Backward Differentiation Formulas

(BDF), with a semi-implicit formulation based on an extrapolation of the geometry, leading to

a linear problem to be solved at each time step. Results about the numerical approximation of

the two geometric flows on several geometries are analyzed. Then, we study how the proposed

mathematical framework can be employed to numerically approximate the equilibrium shapes

of lipid bilayer biomembranes, or vesicles, governed by the Canham–Helfrich curvature model.

We propose two numerical schemes for enforcing the conservation of the area and volume

of the vesicles, and report results on benchmark problems. Then, the approximation of the

equilibrium shapes of biomembranes with different values of reduced volume is presented.

Finally, we consider the dynamics of a vesicle, e.g. a red blood cell, immersed in a fluid, e.g. the

plasma. In particular, we couple the curvature-driven model for the lipid membrane with

the incompressible Navier–Stokes equations governing the fluid. We consider a segregated

approach, with a formulation based on the Resistive Immersed Surface method applied to

NURBS geometries. After analyzing benchmark fluid simulations with immersed NURBS

objects, we report numerical results for the investigation of the dynamics of a vesicle under

different flow conditions.

Key words: High order Partial Differential Equation, Geometric Partial Differential Equation,

Surface, NURBS, Isogeometric Analysis, Biomembrane





Résumé
Dans cette thèse, nous considérons l’approximation numérique d’Équations aux Dérivées

Partielles (EDPs) d’ordre élevé. Nous considérons tout d’abord des EDPs d’ordre élevé, définies

sur des surfaces dans l’espace 3D, représentées par single-patch NURBS. Ensuite, les EDPs sont

discrétisées dans l’espace grâce à l’Analyse Isogéométrique (IGA) basée sur les NURBS dans le

cadre de la méthode de Galerkin. Dans ce but, nous considérons la construction d’espaces

de fonctions NURBS périodiques avec un degré élevé de continuité globale, même sur des

surfaces fermées. Comme benchmarks pour la discrétisation proposée, nous proposons les

problèmes de Laplace–Beltrami d’ordre quatre et six, ainsi que les problèmes de valeurs

propres correspondants, et nous analysons l’impact de la continuité des fonctions de bases sur

la précision ainsi que sur les coûts computationels. La solution numérique de deux problèmes

de phase field sur des surfaces à la fois ouvertes et fermées est aussi considérée : l’équation de

Cahn–Hilliard, d’ordre quatre, et l’équation du chrystal, d’ordre six, discrétisées par rapport au

temps avec la α-méthode généralisée. Nous considérons ensuite l’approximation numérique

d’EDPs géométriques, obtenues, en particulier, à partir de la minimisation des fonctionnelles

d’énergie par le flux de gradient L2. Nous analysons les flux de la courbure moyenne et de

Willmore, menant à des EDPs de second et de quatrième ordre, respectivement. Ces EDPs

géométriques non linéaires sont discrétisées par rapport au temps avec des Formules de

Différentiation Rétrograde (BDF), grâce à une formulation semi-implicite basée sur une

extrapolation de la géométrie, menant à un problème linéaire à résoudre à chaque pas de

temps. Des résultats sur l’approximation numérique de deux flux géométriques sur différentes

géométries sont analysés. Ensuite, nous regardons comment le cadre mathématique proposé

peut être employé pour approximer numériquement les formes d’équilibre de biomembranes

lipidiques, ou vésicules, gouvernées par le modèle de Canham–Helfrich. Nous proposons deux

schémas numériques pour imposer la conservation de l’aire et du volume des vésicules, et

nous rapportons les résultats sur des problèmes benchmark. Par la suite, l’approximation

de la forme d’équilibre de biomembranes avec différentes de valeurs de volume réduit est

présentée. Finalement, nous considérons la dynamique d’un vésicule immergé dans un fluide.

En particulier, nous couplons le modèle guidé par la courbure pour la membrane lipidique

avec les équations de Navier–Stokes incompressibles gouvernant le fluide. Nous considérons

une approche ségréguée, avec une formulation basée sur la méthode des Surfaces Immergées

Résistives appliqué sur des géométries NURBS. Après avoir analysé des simulations benchmark

de fluides avec des objets NURBS immergés, nous reportons les résultats numériques pour

l’investigation des dynamiques d’un vésicule soumis à différentes conditions de flux.
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Introduction

The focus of this thesis is the numerical approximation of Partial Differential Equations (PDEs)

defined on surfaces and of geometric PDEs, which involve high order differential operators.

In several fields, mathematical models often involve PDEs defined on manifolds of lower

dimensionality with respect to the physical space in which they are hosted. This is the case,

for instance, of PDEs defined on curves embedded in the two-dimensional space, or defined

on surfaces and curves in the three-dimensional space [1]. Examples of surface PDEs are

in structural mechanics, where thin structures are often modeled by employing plates and

shells [2]; in fluid dynamics, where shallow water models are often formulated on surfaces [3],

as in the context of atmospheric simulations [4, 5]; in biology, where electrophysiology models

can be formulated as surface PDEs to simulate the propagation of the cardiac electric signal on

the atria, that can be regarded as 2D surfaces due to the small thickness of the atrial walls [6,7];

in image processing and computer graphics, where problems defined on surfaces arise, for

example, in the segmentation of medical images or the generation of procedural textures [8, 9].

Another family of problems, usually formulated on manifolds, is that of geometric PDEs.

With this term we indicate those problems whose main unknown drives also the geometrical

evolution of the domain where the equations are defined [10]. Geometric PDEs are usually

formulated on curves or surfaces which evolve, in time or pseudo-time, towards the minimiza-

tion of a shape energy functional, driven by a gradient flow process. Formulations of this kind

arise in many applications, for instance when modeling the structure and properties of mate-

rials [11, 12, 13], in image processing and segmentation [14, 15, 16], or shape reconstruction

and surface modeling [17, 18, 19, 20, 21].

Over the years, several techniques for the numerical approximation of surface and geometric

PDEs have been developed. Among the others, approaches based on the Finite Element

Method (FEM) have been considered for instance in [22, 23, 24], or based on the Adaptive

FEM in [25] for approximating elliptic surface PDEs, and in [26, 27, 28] in the context of

geometric PDEs and shape optimization. Surfaces can also be treated implicitly, for example

by means of level set methods [29, 30] or through diffuse interfaces [31, 32]. In general, FEM-

based approaches are not error free when considering the geometrical representation of the

computational domain and for the evaluation of the geometric quantities. Surface PDEs,

and in particular geometric PDEs, require an accurate representation of the geometry, since

1
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geometric quantities, as the normal and the curvatures, as well as tangential differential

operators, are usually involved. Therefore, particular care must be devoted to the choice of a

suitable geometrical representation and space discretization method, as the error introduced

by an approximation of the geometry can affect the accuracy of the numerical solutions [33];

this could also potentially lead to the adoption of inefficient computational meshes, requiring

large amounts of Degrees Of Freedom (DOFs), in order to control the geometrical error.

As the focus of this thesis consists in the numerical approximation of high order surface and

geometric PDEs, we choose to represent the geometries by NURBS and to spatially discretize

the PDEs by means of Isogeometric Analysis (IGA). Based on the seminal work [34], IGA builds

upon the isogeometric concept for which the same basis functions used for representing the

geometry of the computational domain are also employed for building the approximation

spaces of the PDEs [35]. IGA is generally aimed at filling the gap between the modeling of ge-

ometries in industrial contexts, usually performed by means of Computer Aided Design (CAD)

software, and the use of such geometries directly for analysis purposes, e.g. the numerical

approximation of PDEs of interest. Ideally, the costly process of building an approximation of

the geometry to be used as computational mesh suited for the numerical analysis would thus

be avoided. In this thesis, we consider geometries represented by single-patch NURBS [36, 37].

By using NURBS mappings, a small amount of DOFs is required for the exact representa-

tion of several geometries of interest, e.g. conic sections. Moreover, geometrical features,

such as curvatures and normal vectors, are evaluated exactly. This plays a fundamental role

when dealing with mathematical models which rely on these quantities. While IGA-based

discretizations provide several advantages over the standard FEM [35], this exactness of the

geometrical representation provided by NURBS-based IGA is one of the major features with

regard to the problems considered in this thesis. Moreover, we benefit also from the properties

of the NURBS function spaces used for approximating the solution: by using NURBS basis

functions, it is possible to control and tune the degree of continuity of the functions used for

approximating the solution [35, 37]. With respect to the standard FEM, this allows to achieve

approximations of particular accuracy with a low amount of DOFs [38, 39, 40, 41], as well as

to discretize high order PDEs in the framework of the Galerkin method, without reverting to

mixed formulations required by the standard Lagrangian isoparametric FEM [42].

While the approximation of second order surface PDEs by NURBS-based IGA has been exten-

sively analyzed in [43], in this thesis we focus instead on higher order PDEs defined on surfaces.

As computational domains, both open and closed surfaces are considered, all represented by

single-patch NURBS mappings. Specific care is taken in the construction of periodic NURBS

function spaces [44]: this allows the usage of basis functions meeting the wanted degree of

continuity almost everywhere, even on closed surfaces. We consider the approximation of

elliptic PDEs involving high order Laplace–Beltrami operators, specifically of the fourth and

sixth order. We show the convergence rate of the errors, both on open and closed surfaces, and

we study the corresponding eigenvalue problems. With the described approach, geometrical

mappings presenting pointwise singularities, e.g. the poles when considering the sphere,

does not affect the convergence of the solution, provided that the quadrature points used

2
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to evaluate the integrals are chosen not to lie in singular points. As further applications, we

consider the numerical approximation of two high order phase field problems defined on

surfaces: the Cahn–Hilliard equation [44, 45], of the fourth order, and the phase field crystal

equation [46, 47], of the sixth order, both being nonlinear, time dependent PDEs.

The approaches employed for handling high order surface PDEs are then extended for dealing

with the geometric PDEs, for which we propose their numerical approximation by means

of NURBS-based IGA. In this context, the exactness of the geometrical representation is

crucial. Conversely, when using FEM-based discretizations on approximated geometries,

these quantities need to be approximated as well, reconstructed, or treated weakly [48, 49].

In particular, we consider the numerical approximation of two geometric PDEs: the mean

curvature flow, derived from the minimization of the area, and the Willmore flow, for which

the Willmore energy, i.e. the integral of the total mean curvature squared, is minimized. Being

the geometry itself the unknown, these problems are highly nonlinear. In this regard, we

propose a time discretization of the geometric PDEs based on the Backward Differentiation

Formulas (BDF) [50, 51]. In our formulations the nonlinearities are treated semi-implicitly

through extrapolation in time of the geometric terms, compatibly with the considered BDF

scheme. This leads to a linear system to be solved at each time step.

One of the applications where geometric PDEs are extensively used is the modeling of lipid

vesicles [49, 52, 53, 54]. A vesicle consists in a lipid membrane which is spontaneously formed

when lipid molecules, consisting in a hydrophilic head group and hydrophobic hydrocarbon

tails, are immersed in aqueous environment with certain levels of concentration and tem-

perature [55]. Lipid biomembranes are ubiquitous in biology [56]. A noticeable example is

represented by the red blood cell, a biomembrane consisting in a lipid double layer, with

a cytoskeleton of spectrin proteins (which determines the elasticity properties of the cell)

linked by filaments of actin, and filled with a suspension of hemoglobin [57]. Red blood

cells are generally considered to be elastic or nearly visco-elastic and area-preserving mem-

branes [57, 58, 59, 60, 61], whose default configuration resembles a biconcave disc. In humans,

the thickness of the layers combined is less than 100 nm, while the diameter of the red blood

cell is approximatively 6.2–8.2μm [62]. This justifies the common assumption of treating red

blood cells, and biomembranes in general, as surfaces embedded in the 3D space. Since the

study of lipid bilayers is of particular interest in biology, several mathematical models have

been proposed over the years. These models can be divided into two major classes: micro-

scopic discrete molecular-based models and macroscopic continuum models. Within the first

class are, for example, models based on spring networks [63, 64, 65], molecular dynamics [66],

or multiscale techniques [67, 68, 69, 70]. A different approach, purely continuous in modeling

the equilibrium shape of vesicles, consists in minimizing the bending or curvature energy, sub-

ject to appropriate volume and area constraints [58,60], an approach supported also by [57,71],

where the problem is studied from a continuum mechanics prospective. Within this approach,

the problem is formulated as a geometric PDE, with the addition of geometric constraints.

Several methods for its numerical approximation have been proposed, for example based on

Adaptive FEM [26, 49, 52], parameric FEM [54], FEM with suitable remeshing strategy [53],

3
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level sets [72, 73], or phase field approaches [74, 75, 76].

In this thesis, we propose the numerical study of the equilibrium shapes of vesicles by means

of NURBS-based IGA. In particular, we consider the spontaneous curvature model [55, 60].

We follow the approach considered for the approximation of the Willmore flow problem and

we extend the formulation by introducing the constraints on total area and volume, treated

by means of Lagrange multipliers. As in the mean curvature and Willmore flow problems,

we represent the vesicle as a NURBS surface and discretize the geometric PDE in space with

IGA and in time with BDF schemes, in a semi-implicit formulation with extrapolation of

the geometric quantities. We propose two methods for the enforcement of the geometric

constraints. Firstly, we consider an iterative scheme in the outline of the one proposed

in [28, 52] and adapted to our discretization method. With this scheme, the area and volume

are conserved up to a chosen tolerance. As an alternative, we propose to fulfill the constraints

directly on the extrapolated geometry. This approach relies on the accurate representation of

the geometry due to the IGA discretization with NURBS and is computationally less demanding

than the first method.

While the equilibrium shapes of vesicles can be modeled by using curvature-based formula-

tions, in order to study the dynamics of vesicles in situations of interest it is necessary to take

into account the interaction of the membrane with both the outer [55] and the inner fluids [52].

Modeling the fluid-membrane interaction at cellular level is useful for understanding the rhe-

ology of dense suspensions of cells. Considering for example the blood, which is a suspension

of red blood cells and other particles in the plasma, its rheology is significantly influenced by

the biophysical characteristics of the biomembranes and changes with the vessel diameter;

while in vessels larger than 200μm blood can be modeled as a homogeneous fluid governed by

the incompressible Navier–Stokes equations, in vessels with smaller diameter, especially when

their size is comparable to that of the suspended cells (around 8μm), it is essential to model

the blood at cell-scale level [55]. As an example, when the vessels are very small, the cellular

constitution of the blood is responsible for a significant drop of flow viscosity; this is known as

the Fåhræus–Lindqvist effect [77] and is due to the tendency of red blood cells of flowing along

the centerline of the capillary, leaving a thin layer of plasma near the walls free of cells, and

thus lowering the effective viscosity of the blood when the thickness of the layer is significant

with respect to the diameter of the capillary [78]. Moreover, several pathologies and diseases,

as malaria or sickle-cell disease, are able to modify the shape of red blood cells, affecting their

mechanics, and thus the overall flow behavior [70]. Over the years, a wide variety of numerical

approaches have been employed for the numerical study of the biomembrane-fluid interac-

tion; see e.g. [52, 70, 79, 80, 81, 82]. In particular, the choices of geometrical representation and

the discretization of the computational domains are important, as the biomembranes may be

subject to large deformations and rigid movements. As examples, in [83, 84, 85] approaches

based on the immersed boundary methods are considered; a phase field approach is used

in [86]; level-set based geometrical descriptions of the vesicles are considered in [73, 87, 88]; a

parametric mesh, following the vesicle and updated with the fluid velocity field, is employed

in [79, 89]; solid capsules, as representations for red blood and nucleated cells, are considered
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instead in [82].

In this respect, we extend in this thesis the numerical approach considered for studying the

shapes of vesicles at equilibrium to model also the dynamical behavior of a biomembrane

stemming from the coupling with the fluid. An incompressible Newtonian fluid, governed

by the Navier–Stokes equations, is considered. The vesicle is subject both to an internal

force, driven by the bending energy as in the static case, as well as to the forces exerted by

the fluid. The fluid takes into account the presence of the biomembrane by means of an

additional penalization term for the velocity in the Navier–Stokes momentum equation, based

on the resistive method [90, 91, 92]. Both the fluid domain and the vesicle are represented by

NURBS mappings. In this respect, we propose the construction of the signed distance field

generated by a NURBS geometry, to obtain an implicit description of the immersed vesicle for

applying the resistive method. The fluid and membrane equations are discretized in space

with NURBS-based IGA and in time with BDF schemes; the fluid equations are stabilized

by means of the SUPG stabilization [93, 94, 95]. The interaction between the fluid and the

membrane equations is performed by considering a partitioned approach, based on a strongly

coupled Dirichlet–Neumann scheme [96, 97], with under-relaxation of the displacements of

the vesicle [98]. We then apply the described approach for the numerical study of a vesicle

immersed in a fluid at different regimes.

isoGlib

All the numerical simulations and results presented in this thesis have been obtained by using

a research code developed in collaboration with Luca Dedè. isoGlib is a C++ framework provid-

ing the tools for the numerical approximation, by means of NURBS-based IGA, of PDEs defined

on curves, surfaces, and volumes, potentially involving high order differential operators. The

modularity and object-oriented nature of the library allows the application of isoGlib to a

variety of problems, ranging from cardiac electrophysiology [7], blood flow dynamics [95], and

phase-field models [99], to fluid dynamics and fluid-structure interaction [100, 101], including

the applications presented in this thesis. The generation of the geometries and preprocessing

of the meshes are performed in Matlab, with the support of the NURBS toolbox [102]. MPI

communications, as well as assembling and solution of the linear systems, including the

application of preconditioners, are performed with the aid of Trilinos [103]. Post-processing

of the results, including the ones presented in this thesis, is performed with Paraview [104].

Outline of the thesis

In Chapter 1 we introduce the basic concepts and notation regarding parametric surfaces

and the surface differential operators; then, we introduce an abstract formulation for high

order scalar elliptic PDEs, describing also the benchmark Laplace–Beltrami biharmonic,

triharmonic, and eigenvalue problems. Two high order phase field models are then introduced,

namely the Cahn–Hilliard and the phase field crystal equations.
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In Chapter 2, after having introduced the notation required for dealing with evolving surfaces

and shape differentials, we introduce the abstract formulation for geometric PDEs based

on the gradient of shape energy functionals, with details about the mean curvature and the

Willmore flow problems.

NURBS geometrical mappings, function spaces, and NURBS-based IGA are described in

Chapter 3. The construction of periodic NURBS function spaces, for dealing with closed

geometries, is also explained.

Chapter 4 deals with the numerical approximation of high order surface PDEs by means of

NURBS-based IGA in the framework of the Galerkin method. We provide convergence results

for different discretizations under h-refinement regarding the approximation of the high

order Laplace–Beltrami problems introduced in Chapter 1, on open surfaces as well as closed

surfaces, employing periodic NURBS function spaces; a comparison against a discretization

based on the standard isoparametric FEM is also provided. We conclude the chapter with the

numerical approximation of the Canh–Hilliard and phase field equations, providing results

both on open and closed surfaces. The majority of the presented results have already been

reported in our paper [105].

In Chapter 5, we numerically approximate the geometric PDEs introduced in Chapter 2. In

particular, we propose weak formulations for the mean curvature and Willmore flows and we

discretize the equations by means of NURBS-based IGA and BDF schemes in semi-implicit

formulation, with extrapolation of the geometric quantities. We show results on several

geometries, performing an analysis of the errors obtained, as well as the condition numbers.

These results are also published in our work [106].

Chapter 6 is devoted to the numerical approximation of the equilibrium shapes of lipid

vesicles. After an introduction to the spontaneous curvature model for lipid biomembranes,

we provide a weak formulation for the problem and we discretize it with NURBS-based IGA

and BDF schemes; we then describe the two proposed schemes for the enforcement of the

geometric constraints. Results of the approximated geometric flow on different initial shapes

are provided, the majority of which have been submitted in the paper [107].

In Chapter 7 we deal with the fluid-membrane interaction problem and vesicle dynamics. First,

the Navier–Stokes equations are recalled, together with the resistive method employed to deal

with immersed obstacles; the NURBS-based IGA discretization of the Navier–Stokes equations,

with SUPG stabilization, is then described and results concerning the approximation of the

fluid equations in two benchmark cases are reported. Then, we deal with the construction

of a signed distance field associated with a NURBS curve or surface, providing a numerical

example of fluid flow past a NURBS obstacle. Finally, we introduce the coupling between the

fluid and the membrane and we present numerical results concerning a vesicle in parabolic

and shear flows.

Finally, conclusions and possible future developments follow.
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1 High order surface PDEs

Several mathematical models are formulated through Partial Differential Equations (PDEs)

defined on lower dimensional manifolds [1]. Examples of three dimensional problems repre-

sented on surfaces can be found in Fluid Dynamics, Mechanics, Biology, Electromagnetism,

and image processing [30, 31, 33, 52]: this is the case, for instance, for thin geometries, which

are often modeled as membranes, plates, or shells [2], depending on the structure of the

original domain. This leads to define surface PDEs, which often involve high order differential

operators to account for the dimensionality reduction [108].

The main focus of this thesis is the numerical approximation of models yielding PDEs defined

on bidimensional manifolds immersed in the three dimensional space, described through a

geometrical mapping from a parametric domain to the physical domain. These manifolds

are usually called parametric surfaces [109]. In this chapter, the notation for defining the

geometrical mapping characterizing the parametric surfaces adopted throughout this thesis is

introduced, together with the associated geometrical quantities and the differential operators

on surfaces. Then, high order elliptic surface PDEs are introduced. In this regard, benchmark

problems of fourth and sixth order are considered: in particular, the fourth order (biharmonic)

Laplace–Beltrami problem, the sixth order (triharmonic) Laplace–Beltrami problem, known

as the triharmonic problem, and the general high order Laplace–Beltrami eigenvalue problem,

which can be defined with both the biharmonic or the triharmonic operators. Finally, exten-

sion to unsteady nonlinear problems is considered. In particular, two high order phase field

models are introduced: the fourth order Cahn–Hilliard equation and the sixth order phase

field crystal equation. These high order Laplace–Beltrami and phase field problems constitute

a reference for the treatment of steady and unsteady high order surface PDEs; this framework

is then used as a base for studying the geometric PDEs, which will be discussed in Chapter 2.
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Chapter 1. High order surface PDEs

1.1 Geometrical representation of surfaces

Let the subset Ω⊂R3 be a C 2-hypersurface, i.e. for each point p̃ ∈Ω there exists an open set

U ∈R3, such that p̃ ∈U , and a function u ∈C 2(U ) such that [10]:

U ∩Ω= {p ∈U | u(p) = 0
}

, and ∇u(p) �= 0 ∀p ∈U ∩Ω. (1.1.1)

The tangent space of Ω in p ∈Ω, denoted with TpΩ, is the three-dimensional linear subspace

of R3 orthogonal to ∇U (p). Then, the C 2-hypersurface Ω is orientable if there exists a vector

field ν ∈C 1(Ω,R3) (i.e. differentiable in an open neighborhood of Ω), such that ν⊥ TpΩ and

|ν| = 1, for all p ∈Ω [10].

Now, let Ω̂ ⊂ R2 be the parametric domain. The parametric coordinate is a vector-valued

independent variable ξ= (ξ1,ξ2) ∈ R2, used to refer to the points in the parametric domain

Ω̂. Let Ω ⊂ R3 be a compact, oriented C 2-hypersurface defined by means of a geometrical

mapping X as:

X : Ω̂→Ω⊂R3, ξ→ X (ξ) = p. (1.1.2)

The manifold Ω, defined through X, represents a parametric surface in R3, which can be

defined with or without boundary ∂Ω. Indeed, if ∂Ω ≡ �, then Ω is a closed surface; in the

opposite case, for which |∂Ω| > 0, Ω is an open surface.

The geometrical mapping (1.1.2) is assumed to be sufficiently smooth, e.g. at least C 1(Ω̂), and

invertible almost everywhere (a.e.) in Ω̂. The inverse mapping X−1 is denoted as:

X−1 : Ω→ Ω̂⊂R2, p → X−1(p) = ξ ∀p ∈Ω. (1.1.3)

The geometrical mapping and its inverse permit to recast the quantities and functions defined

on the parametric domain onto the manifold and viceversa. Indeed, any sufficiently regular

function ψ : Ω→R defined on the surface Ω, e.g. ψ ∈C 0(Ω), can be expressed in the parametric

domain Ω̂ by the corresponding function ψ̂ : Ω̂→R defined as:

ψ̂(ξ) :=ψ(X(ξ)) ∀ξ ∈ Ω̂. (1.1.4)

The operation performed in Eq. (1.1.4) is usually called pull-back of ψ from Ω to Ω̂. Similarly,

for any function ψ̂ : Ω̂→R defined on the parametric domain Ω̂, the corresponding function

ψ : Ω→R on the manifold is written by means of the push-forward operation as:

ψ(p) := ψ̂(X−1(p)) ∀p ∈Ω. (1.1.5)

In this thesis, because of the kind of surfaces considered (in particular parametric surfaces

represented by NURBS geometrical mappings, described in Chapter 3), the pull-back and

push-forward operations allow the description of the same quantities and functions both

on the physical and the parametric domain, and the easy exchange between the two. The
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1.1. Geometrical representation of surfaces

Ω

Ω̂

X

X−1

Figure 1.1 – Sketch of the physical domain Ω and the parametric domain Ω̂, together with the
geometrical mapping X and its inverse X−1.

parametric domain Ω̂ and the domain Ω, together with the geometric mapping X and its

inverse X−1, are sketched in Figure 1.1.

The Jacobian of the mapping F̂ : Ω̂→R3×2 is defined as:

F̂i ,α(ξ) := ∂Xi

∂ξα
(ξ) ∀ξ ∈ Ω̂, for i = 1,2,3 and α= 1,2, (1.1.6)

with α= 1,2 indicating the parametric direction. The tangent directions t̂Ω,α(ξ), for α= 1,2,

represent the unit vectors tangent to the surface Ω in p = X(ξ):

t̂Ω,α(ξ) := ∂X

∂ξα
(ξ) ∀ξ ∈ Ω̂, for α= 1,2; (1.1.7)

then, tΩ,α is obtained as the push-forward of t̂Ω,α from Ω̂ onto Ω, for α= 1,2. The unit vector

nΩ(p) normal to the surface in p ∈ Ω is the push-forward of the normal in the parametric

domain n̂Ω(ξ), with ξ= X−1(p), which is defined as:

n̂Ω(ξ) := t̂Ω,1(ξ)× t̂Ω,2(ξ)

|t̂Ω,1(ξ)× t̂Ω,2(ξ)| ; (1.1.8)

note that nΩ represents the normal to the surface Ω and not its boundary ∂Ω. Together, tΩ,1(p),

tΩ,2(p), and nΩ(p) form a covariant basis at the surface point p ∈Ω.

The first fundamental form, or metric tensor, is the symmetric and positive definite second

order tensor Ĝ : Ω̂→R2×2, ξ→ Ĝ(ξ), defined as:

Ĝ(ξ) := (F̂ (ξ)
)T

F̂ (ξ) ∀ξ ∈ Ω̂. (1.1.9)

The determinant of the mapping ĝ : Ω̂→R, ξ→ ĝ (ξ), corresponds to the area of the parallelo-
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Chapter 1. High order surface PDEs

gram lying on the tangent plane defined by t̂Ω,1 and t̂Ω,2:

ĝ (ξ) := |t̂Ω,1 × t̂Ω,2| ∀ξ ∈ Ω̂ (1.1.10)

and it is such that

ĝ (ξ) =
√

det
(
Ĝ(ξ)

) ∀ξ ∈ Ω̂. (1.1.11)

Assuming the invertibility of the geometrical mapping a.e. in Ω̂ means that the determinant

ĝ is allowed to be zero only in subsets of Ω̂ with zero measure in the topology of R2, thus

requiring ĝ to be positive elsewhere. The determinant ĝ permits also the definition of the

notion of integration over the surface Ω: considering a function ψ : Ω→R, with corresponding

pull-back function ψ̂ : Ω̂→R defined through Eq. (1.1.4), the integral of ψ over Ω is written as:∫
Ω
ψdΩ :=

∫
Ω̂
ψ̂ ĝ dΩ̂. (1.1.12)

Finally, by exploiting the invertibility of the geometrical mapping, the geometric quantities F̂ ,

Ĝ and ĝ can be pushed-forward and expressed directly on the manifold Ω as:

F : Ω→R3×2, F (p) := (F̂ ◦X−1) (p) ∀p ∈Ω,

G : Ω→R2×2, G(p) := (Ĝ ◦X−1) (p) ∀p ∈Ω,

g : Ω→R, g (p) := (ĝ ◦X−1) (p) ∀p ∈Ω.

(1.1.13)

1.1.1 Surface differential operators

In order to define PDEs on the surface Ω it is necessary to define a set of differential operators

on the manifold. Thanks to the invertibility of the geometrical mapping (1.1.2), surface differ-

ential operators can be defined as projection onto the surface of the corresponding differential

operators defined in the physical space [1,28,43,110]. Let now φ ∈C 1(Ω) be a generic function,

together with its smooth prolongation φ̃(x) from Ω into a “tubular” neighborhood Ω̃ ⊂ R3,

which is such that Ω⊂ Ω̃. It is possible to define the projection tensor P(p) ∈R3×3 as:

P(p) := I−nΩ(p)⊗nΩ(p) ∀p ∈Ω, (1.1.14)

where I is the identity tensor in R3×3. Then, the surface gradient ∇Ω is defined as the projection

of the standard gradient onto the manifold, reading:

∇Ωφ(p) := P
[∇φ̃(p)

]=∇φ̃(p)− [∇φ̃(p) ·nΩ(p)
]

nΩ(p) ∀p ∈Ω; (1.1.15)

indeed, ∇Ωψ(p) is the orthogonal projection of ∇ψ onto TpΩ. The surface gradient defined in

Eq. (1.1.15) is equivalently expressed using the geometrical mapping (1.1.2) and Eqs. (1.1.6)
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1.1. Geometrical representation of surfaces

and (1.1.9) as:

∇Ωφ(p) = [F̂ (ξ)Ĝ−1(ξ)∇̂φ̂(ξ)
]◦X−1(ξ) ∀p ∈Ω, (1.1.16)

where ∇̂φ̂(ξ) : Ω̂→R2 is the gradient operator in the parameter domain. Similarly, by consider-

ing a vector field ϕ ∈ [C 1(Ω)
]3

, the surface divergence of ϕ is defined as:

∇Ω ·ϕ(p) := trace
[∇Ωϕ(p)

] ∀p ∈Ω, (1.1.17)

which is rewritten using Eqs. (1.1.6), (1.1.9), and (1.1.10) as:

∇Ω ·ϕ(p) =
[

1

ĝ (ξ)
∇̂ · (ĝ (ξ)Ĝ−1(ξ) F̂ T (ξ)ϕ̂(ξ)

)]◦X−1(ξ) ∀p ∈Ω, (1.1.18)

where ϕ̂(ξ) :=ϕ(X(ξ)), ∀ξ ∈ Ω̂. By considering a function φ ∈C 2(Ω), the Laplace–Beltrami op-

erator on the manifold Ω can be defined by composing the surface divergence operator (1.1.17)

with the surface gradient operator (1.1.15) as [1]:

ΔΩφ(p) :=∇Ω · (∇Ωφ(p)
) ∀p ∈Ω, (1.1.19)

which, by using Eqs. (1.1.16) and (1.1.18), reads:

ΔΩφ(p) =
[

1

ĝ (ξ)
∇̂ · (ĝ (ξ)Ĝ−1(ξ)∇̂φ̂(ξ)

)]◦X−1(ξ) ∀p ∈Ω. (1.1.20)

Finally, by considering a general function φ ∈ C 3(Ω), the gradient of the Laplace–Beltrami

operator ∇ΩΔΩφ, expressed by using Eqs. (1.1.16) and (1.1.20), reads:

∇ΩΔΩφ(p) =
[

F̂ (ξ)Ĝ−1(ξ)∇̂
(

1

ĝ (ξ)
∇̂ · [ĝ (ξ)Ĝ−1(ξ)∇̂φ̂(ξ)

])]◦X−1(ξ) ∀p ∈Ω. (1.1.21)

1.1.2 Identity function and surface curvatures

Geometric PDEs formulations, which will be introduced in Chapter 2, make extensively use of

the definition of curvatures of the surface. With this aim, the second fundamental form H

associated to the geometric mapping (1.1.2) is introduced as:

H (p) :=∇ΩnΩ(p) ∀p ∈Ω, (1.1.22)

which is also called shape operator [110]. Since Ω is a surface in R3, the shape operator H is a

second order tensor which possesses a null eigenvalue associated to the eigenvector along the

normal to the surface nΩ and two other non zero eigenvalues. In each p ∈Ω, the two non zero

eigenvalues of H (p) are called principal curvatures and are denoted in this thesis with κα(p),

for α= 1,2. The total mean curvature H is then defined as the sum of the principal curvatures:

H(p) :=κ1(p)+κ2(p) ∀p ∈Ω, (1.1.23)
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Chapter 1. High order surface PDEs

while the Gauss curvature K is their product:

K (p) := κ1(p)κ2(p) ∀p ∈Ω. (1.1.24)

In this work, the normal nΩ introduced in Eq. (1.1.8) is considered to be oriented such that H

is positive for spherical surfaces with the normal directed outward with respect to the origin.

Furthermore, the total mean curvature vector H is defined as:

H(p) := H(p)nΩ(p) ∀p ∈Ω. (1.1.25)

It is important to highlight that the definition of the mean curvature in Eq. (1.1.23) which is

used in this work differs from other common definitions in the literature. Sometimes with

mean curvature one means the average of k1 and k2, i.e. (k1 +k2)/2, which differs from the

definition (1.1.23) by the factor 1/2; this is, however, just a change of notation. Moreover, from

Eqs. (1.1.22), (1.1.23), and (1.1.24), the following relation holds:

|H (p)|2 = κ2
1(p)+κ2

2(p) = H 2(p)−2K (p) ∀p ∈Ω. (1.1.26)

Let x : Ω→R3 be the identity function on Ω, reading:

x(X(ξ)) = X(ξ) ∀ξ ∈ Ω̂. (1.1.27)

This map is convenient from the point of view of the notation when formulating equations

defined directly on the physical surface. In the rest of this work, the surface Ω is considered

to be equivalently identified either by its geometrical mapping X or by the identity function

x. A useful relation which links the surface Laplace–Beltrami operator applied to the identity

function x on Ω to the total mean curvature vector H is the following [110]:

(−ΔΩx)(p) = H(p) ∀p ∈Ω, (1.1.28)

which will be used extensively in this work.

When integrating on the surface Ω, there is a set of integration by parts formulae that we

summarize in the following theorems [1, 10].

Theorem 1. Consider a C 1 scalar function ψ : Ω→R; then:∫
Ω
∇ΩψdΩ=

∫
Ω
ψ (∇Ω ·nΩ)nΩ dΩ+

∫
∂Ω

ψ(τΩ×nΩ)dΩ, (1.1.29)

where the unit tangent τΩ on ∂Ω is such that τΩ×nΩ points outside of Ω.

Theorem 2. Consider a C 1 vector-valued function ϕ : Ω→R3; the following divergence theorem

holds:∫
Ω
∇Ω ·ϕdΩ=

∫
Ω

H ϕ ·nΩ dΩ+
∫
∂Ω

ϕ · (τΩ×nΩ)dΩ. (1.1.30)
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1.1. Geometrical representation of surfaces

Theorem 3. Consider a C 1 scalar function ψ : Ω→ R and the C 1 vector-valued function ϕ :

Ω→R3; then:∫
Ω
∇Ωψ ·ϕdΩ=−

∫
Ω
ψ∇Ω ·ϕdΩ+

∫
Ω

H ψϕ ·nΩ dΩ+
∫
∂Ω

ψϕ · (τΩ×nΩ)dΩ. (1.1.31)

Proofs of Theorems 1, 2 and 3 are reported in [1]. Finally, as an example of useful application of

Theorem 3 for integration by parts, let ψ1,ψ2 : Ω→R be C 2 scalar or vector-valued functions;

then:

−
∫
Ω
ΔΩψ1ψ2 dΩ=

∫
Ω
∇Ωψ1 ·∇Ωψ2 dΩ−

∫
∂Ω

ψ2∇Ωψ1 · (τΩ×nΩ)dΩ, (1.1.32)

which is the usual rule used for integrating by part in the weak formulation of the Laplace–

Beltrami operator. Furthermore, by applying Eq. (1.1.32) to the Laplace–Beltrami of the identity

map x and following the relation in Eq. (1.1.28), the following holds, on closed surfaces:∫
Ω
∇Ωx ·∇ΩϕdΩ=

∫
Ω

H ϕ ·nΩ dΩ, (1.1.33)

for generic C 1 functions ϕ : Ω→R3. This results is very important for the weak formulation of

geometric PDEs and it will be used extensively in the related chapters of this work.
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Chapter 1. High order surface PDEs

1.2 High order surface PDEs

Let Ω⊂R3 be a parametric surface described by the geometric mapping X defined in Eq. (1.1.2).

A generic scalar elliptic PDE of order 2m, with m = 1, 2, or 3, can be expressed in weak form as:

find u ∈V0 such that

a(ψ,u) = F (ψ) ∀ψ ∈V0,
(1.2.1)

where a : V0 ×V0 →R is a continuous bilinear form, strongly coercive on V0 ×V0, associated to

one of the surface differential operators (1.1.16), (1.1.20), or (1.1.21), F : V0 →R is a continuous

linear functional, and V0 is a suitable Hilbert space, subspace of H m(Ω) and yielding the

homogeneous counterpart of the essential boundary conditions. In particular, the function

space H m
0 (Ω) is defined as [111]:

H m
0 (Ω) := {ψ : Ω→R, ψ ∈ H m(Ω), Γ0ψ= . . . = Γm−1ψ= 0 on ∂Ω

}
, (1.2.2)

where Γk denotes the trace operator of order k, for k = 0,1, . . . ,m − 1. Thanks to the Lax–

Milgram Lemma [112], the solution of Eq. (1.2.1) exists and is unique. If the domain Ω is a

closed surface, Ω does not possess boundary and thus V0 ≡V , with V ≡ H m(Ω); in this case,

the weak formulation of a generic scalar elliptic PDE of order 2m reads:

find u ∈V such that

a(ψ,u) = F (ψ) ∀ψ ∈V ,
(1.2.3)

where it is assumed that the form a : V ×V →R carries a zero-th order linear operator corre-

sponding to a reaction term, which makes a(·, ·) strongly coercive in V .

By recalling the invertibility of the geometric mapping (1.1.2), problems (1.2.1) and (1.2.3) are

pulled-back into the parametric domain Ω̂ by exploiting the differential operators (1.1.16),

(1.1.18), (1.1.20), and (1.1.21). Problems (1.2.1) and (1.2.3) written into the parametric domain

Ω̂ read:

find û ∈ V̂0 such that

â(ψ̂, û) = F̂ (ψ̂) ∀ψ̂ ∈ V̂0
(1.2.4)

and

find û ∈ V̂ such that

â(ψ̂, û) = F̂ (ψ̂) ∀ψ̂ ∈ V̂ ,
(1.2.5)

respectively, where V̂0 and V̂ correspond to the spaces V0 and V defined over the parametric

domain Ω̂.
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1.2. High order surface PDEs

1.2.1 Laplace–Beltrami biharmonic problem

Let the domain Ω be sufficiently smooth. The biharmonic operator Δ2
Ω· is the fourth or-

der Laplace–Beltrami differential operator on the surface Ω defined as Δ2
Ω· := ΔΩΔΩ·. The

biharmonic problem on Ω with homogeneous essential boundary conditions reads:

find u : Ω→R such that⎧⎪⎪⎨⎪⎪⎩
μΔ2

Ωu +γu = f in Ω,

u = 0 on ∂Ω,

∇Ωu ·n∂Ω = 0 on ∂Ω,

(1.2.6)

where μ and γ ∈R are positive constants, n∂Ω is the outward directed unit vector normal to

the boundary ∂Ω, and f is a sufficiently regular function. If the domain Ω is a closed surface,

problem (1.2.6) reduces to:

find u : Ω→R such that

μΔ2
Ωu +γu = f in Ω.

(1.2.7)

Problems (1.2.6) and (1.2.7) read in weak formulation as in Eqs. (1.2.1) and (1.2.3), for which:

a(ψ,u) :=
∫
Ω
μΔΩuΔΩψdΩ+

∫
Ω
γuψdΩ, (1.2.8)

and

F (ψ) :=
∫
Ω

f ψdΩ, (1.2.9)

with V0 ≡ H 2
0 (Ω), defined in Eq. (1.2.2) for m = 2, and V ≡ H 2(Ω). Problem (1.2.6) is well posed

with γ = 0, while problem (1.2.7) necessitates γ > 0. The problems are then recast into the

parametric domain Ω̂ as in Eqs. (1.2.4) and (1.2.5), with the bilinear form â(·, ·) and linear

operator F̂ (·) obtained by pulling-back a(·, ·) and F (·) into the parametric domain Ω̂ as:

â(ψ̂, û) :=
∫
Ω̂
μ

1

ĝ
∇̂ · (ĝ Ĝ−1∇̂û

) ∇̂ · (ĝ Ĝ−1∇̂ψ̂) dΩ̂+
∫
Ω̂
γ û ψ̂ ĝ dΩ̂, (1.2.10)

and

F̂ (ψ̂) :=
∫
Ω̂

f̂ ψ̂ ĝ dΩ̂, (1.2.11)

respectively.

1.2.2 Laplace–Beltrami triharmonic problem

The triharmonic operator Δ3
Ω· is the sixth order Laplace–Beltrami differential operator on the

surface Ω, defined as Δ3
Ω· :=ΔΩΔΩΔΩ·. Then, the triharmonic problem on Ω with homoge-
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Chapter 1. High order surface PDEs

neous essential boundary conditions reads:

find u : Ω→R such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−μΔ3
Ωu +γu = f in Ω,

u = 0 on ∂Ω,

∇Ωu ·n∂Ω = 0 on ∂Ω,

ΔΩu = 0 on ∂Ω,

(1.2.12)

where μ and γ ∈ R are positive constants and f is a sufficiently regular function. When

considering closed surface domains, the problem becomes:

find u : Ω→R such that

−μΔ3
Ωu +γu = f in Ω.

(1.2.13)

Problems (1.2.12) and (1.2.13) read in weak form as in Eqs. (1.2.1) and (1.2.3), being:

a(ψ,u) =
∫
Ω
μ∇Ω (ΔΩu) ·∇Ω

(
ΔΩψ

)
dΩ+

∫
Ω
γuψdΩ (1.2.14)

and

F (ψ) =
∫
Ω

f ψdΩ, (1.2.15)

respectively, with V0 ≡ H 3
0 (Ω), defined in Eq. (1.2.2) for m = 3, and V ≡ H 3(Ω). Problem (1.2.12)

is well posed for γ= 0, while problem (1.2.13) requires γ> 0. When recast into the parametric

domain Ω̂, the weak formulations of problems (1.2.12) and (1.2.13) read as in Eqs. (1.2.4)

and (1.2.5), with the bilinear form â(·, ·) and linear operator F̂ (·) defined as:

â(ψ̂, û) :=
∫
Ω̂
μ∇̂
[

1

ĝ
∇̂ · (ĝ Ĝ−1 ∇̂û

)]·{Ĝ−1 ∇̂
[

1

ĝ
∇̂ · (ĝ Ĝ−1 ∇̂ψ̂)]} ĝ dΩ̂+

∫
Ω̂
γ û ψ̂ ĝ dΩ̂ (1.2.16)

and

F̂ (ψ) :=
∫
Ω̂

f̂ ψ̂ ĝ dΩ̂, (1.2.17)

respectively.

1.2.3 High order Laplace–Beltrami eigenvalue problems

The Laplace–Beltrami eigenvalue problem defined on a closed surface Ω, as e.g. the sphere, is

defined as:

find u ∈V and λ ∈R such that

a(ψ,u) =λb(ψ,u) ∀ψ ∈V ,
(1.2.18)
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1.2. High order surface PDEs

where a(·, ·) is the bilinear form associated with either the biharmonic problem (1.2.8) or the

triharmonic problem (1.2.14) for γ= 0, while b : V ×V →R is the bilinear form representing

the mass term defined as:

b(ψ,u) :=
∫
Ω

uψdΩ, (1.2.19)

with V ≡ H m(Ω). Due to the symmetry of the problem, all the eigenvalues λ are expected to

be real valued and non negative, i.e. λ ∈R, λ≥ 0.

Problem (1.2.18) can be recast into the parametric domain Ω̂ as:

find û ∈ V̂ and λ ∈R such that

â(ψ̂, û) =λ b̂(ψ̂, û) ∀ψ̂ ∈ V̂ ,
(1.2.20)

where V̂ is the function space associated to V over the parametric domain Ω̂ and â(·, ·) cor-

responds to the bilinear form a(·, ·) pulled-back into the parametric domain, thus being

either (1.2.10), for the biharmonic problem, or (1.2.16), for the triharmonic problem, for γ= 0.

The bilinear form b̂ : V̂ × V̂ →R reads:

b̂(ψ̂, û) :=
∫
Ω̂

û ψ̂ ĝ dΩ̂. (1.2.21)
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Chapter 1. High order surface PDEs

1.3 Phase field models

Phase field models [113] are mathematical models describing the evolution of mixtures of

phases in a domain Ω together with their mutual interaction at the interfaces. This is possible

through the introduction of a scalar field u : Ω→ R, called phase field, which indicates the

presence of the phases. In the case of two phases, to indicate the presence of the first phase or

the second phase in the domain the field can assume, for instance, the pair of values u1 = 0 and

u2 = 1, respectively. Between the phases, the phase field smoothly changes value, generating

a smooth interface between them. The equations governing the phase field usually contain

some parameters which tune the diffusivity of the interface and hence its width; in the limit of

no diffusivity, the correct sharp interface should be recovered. Therefore, these models permit

the approximation of evolving interfaces without the need of front tracking techniques.

In this thesis, both steady and time-dependent high order surface PDEs are considered. Steady

benchmark problems have been introduced in Section 1.2. In addition to those, as examples of

time-dependent high order surface PDEs, two phase field models based on the minimization

of a free energy functional through gradient flow are also considered: the fourth order Cahn–

Hilliard equation, described in Section 1.3.1, and the sixth order crystal equation, described in

Section 1.3.2.

1.3.1 Cahn–Hilliard equation

Spinodal decomposition is the process of phase separation undergone by a quenched homo-

geneous fluid mixture [114]. The Cahn–Hilliard equation is a stiff, nonlinear, fourth order

parabolic equation which describes spinodal decomposition for a binary fluid [44, 45]. Let

Ω⊂R3 be an arbitrary surface domain. The binary fluid mixture lays in Ω and the concentra-

tion of one of its components is denoted by u = u(x, t ) : Ω× (0,T ) → [0,1]; the concentration

of the other phase is then 1−u. The Cahn–Hilliard equation models the dissipation of the

Ginzburg–Landau free energy G within a mass conservative system [115]:

G (u) =Gc (u)+Gs(u), (1.3.1)

where Gc refers to the chemical free energy (bulk energy) and Gs is the surface free energy. The

chemical free energy describes the immiscibility of the mixture’s components and, as far as

isothermal binary mixtures are concerned, it can be written as:

Gc (u) := 1

2θ

[
u log(u)+ (1−u) log(1−u)

]+u(1−u), (1.3.2)

where θ is the ratio between the critical and absolute temperatures [115]; in this work, it is

always set to θ = 3/2 (which refers to a physically relevant case [45,116]), for which Gc assumes

the form of a double well in the variable u, as shown in Figure 1.2. The minimization of

the chemical free energy Gc leads to the separation of the phases. The surface free energy

describes instead the attractive long-range interactions between the molecules of the binary
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Figure 1.2 – Chemical free energy Gc in function of u, with θ = 3/2. The energy forms a double
well, whose minimization favors the separation of the phases.

mixture [44] and reads:

Gs(u) := 1

2
λ∇Ωu ·∇Ωu, (1.3.3)

where the differential operators are defined on the surface Ω and the parameter λ characterizes

the interface thickness between the phases, which is proportional to
�
λ. The minimization of

the surface free energy leads to the coarsening of the phases; in fact, solutions u of the Cahn–

Hilliard equation for which G (u) is minimum correspond to the solutions of the isoperimetric

problem [117].

In order to minimize the free energy G while maintaining the constraint of mass conservation,

the H−1 gradient flow of G on the surface Ω is considered, as in [113]. By assuming suitable

boundary conditions (or simply ∂Ω≡�), the Fréchet derivative [118] of the free energy reads:

δG

δu
=μu −λΔΩu, (1.3.4)

where μu is the chemical potential, corresponding to:

μu := dGc

du
= 1

2θ
log
( u

1−u

)
+1−2u. (1.3.5)

Then, the H−1 gradient flow of G leads to the Cahn–Hilliard problem, reading [45]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
=∇Ω · (Mu∇Ω

(
μu −λΔΩu

))
in Ω× (0,T ) ,

Mu∇Ω(μu −λΔΩu) ·nΩ = h on ∂ΩN × (0,T ) ,

Muλ∇Ωu ·nΩ = 0 on ∂Ω× (0,T ) ,

u = g on ∂ΩD × (0,T ) ,

u(0) = u0 in Ω× {0} ,

(1.3.6)
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Chapter 1. High order surface PDEs

where Mu = M0u (1−u) is the degenerate mobility [114] and the functions g : ∂ΩD →R and

h : ∂ΩN →R form suitable conditions on the boundary decomposed as ∂Ω= ∂ΩD ∪∂ΩN . If

the surface Ω is closed, i.e. if ∂Ω≡�, the boundary conditions in Eq. (1.3.6) are dropped and

the problem reads:⎧⎪⎨⎪⎩
∂u

∂t
=∇Ω · (Mu∇Ω

(
μu −λΔΩu

))
in Ω× (0,T ) ,

u(0) = u0 in Ω× {0} .
(1.3.7)

The term u0 : Ω→ [0,1] refers to a suitable initial solution. Following [44], problems (1.3.6)

and (1.3.7) are non-dimensionalized and written in weak form as:

for a.e. t ∈ (0,T ), find u ∈ L2 (0,T ;V )∩H 1 (0,T ;L2(Ω)
)

such that⎧⎪⎪⎨⎪⎪⎩
∫
Ω

∂u

∂t
ψdΩ+aC H (u(t ))(ψ) = 0 ∀ψ ∈V ,

u(0) = u0 in Ω,

(1.3.8)

where V = H 2(Ω) and:

aC H (u)(ψ) :=
∫
Ω

(
N1Mu∇Ωμu +∇ΩMuΔΩu

) ·∇ΩψdΩ+
∫
Ω

Mu ΔΩuΔΩψdΩ, (1.3.9)

where the boundary conditions (if ∂Ω �= �) are considered homogeneous. All the quantities

and differential operators are now dimensionless and N1 = L2
0

λ
is a dimensionless param-

eter, with L0, M0 and T0 = L4
0

λM0
being the characteristic length, mobility, and time scale,

respectively.

1.3.2 Phase field crystal equation

Materials are often characterized by the properties of their structure at the micro-scale level,

which defines their behavior at macro-scale and, usually, their traits depend on topological

defects at atomic length scale. In order to account for their complex structure, most material

characterizations are based on discrete Molecular Dynamics models, which are accurate but

subject to severe computational time constraints since dealing with atomistic scales and

phonon time scales [46]. On the contrary, continuum models, for their nature, permit the

modeling of physically larger domains for longer time lengths, but with a loss in accuracy of

the physical description of the materials, since they lack control on the microscale. In this

respect, the phase field crystal equation [46,47,119,120] is a mathematical model for the study

of crystal growth in a pure supercooled liquid, for epitaxial growth and for crack propagation

in ductile materials. The model describes a two phase system at atomic length scales, thus

embedding the physical properties of the microstructure in a diffusive time scale. The phase

field crystal equation is based on the definition of a free energy functional C (u), which is
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1.3. Phase field models

minimized, by construction, by a periodic density field. In this way, the free energy functional

“embeds” the periodicity nature of crystal structures directly into its formulation and naturally

includes the elastic energy and symmetry properties of the periodic crystal field [47]. The

solution of the crystal equation is then obtained by the minimization of the energy functional,

under the constraint of mass preservation.

By considering a surface Ω⊂R3 and the variable u = u(x, t ) : Ω× (0,T ) →R as the local atom-

istic density describing the two-phase system, the liquid phase is characterized by spatially

uniform values of u, while the zone with solid crystals presents the typical symmetric and pe-

riodic structures of the crystal lattice. The free energy functional C describing the two-phase

system reads [46]:

C (u) :=
∫
Ω

(
Φ(u)+ D

2
k4u2 −Dk2|∇Ωu|2 + D

2
(ΔΩu)2

)
dΩ, (1.3.10)

where D and k are positive constants, Φ is defined as:

Φ(u) :=−ε

2
u2 − g

3
u3 + 1

4
u4, (1.3.11)

with ε and g positive physical parameters. The Fréchet derivative of the free energy C is

obtained, under suitable boundary conditions on ∂Ω (or ∂Ω≡�), as:

δC (u)

δu
=φ(u)+Dk4u +2Dk2ΔΩu +DΔ2

Ωu, (1.3.12)

where φ(u) :=Φ′(u) =−εu − g u2 +u3. In order to minimize the free energy, the evolution of u

is governed by the H−1 gradient flow of C . The minimization problem yields the following

nonlinear time-dependent sixth order PDE on the surface Ω:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
=ΔΩ

(
φ(u)+Dk4u +2Dk2ΔΩu +DΔ2

Ωu
)

in Ω× (0,T ) ,

∇Ω

(
φ(u)+Dk4u +2Dk2ΔΩu +DΔ2

Ωu
) ·nΩ = 0 on ∂Ω× (0,T ) ,

∇Ω

(
2Dk2ΔΩu +DΔ2

Ωu
) ·nΩ = 0 on ∂Ω× (0,T ) ,

∇Ω (ΔΩu) ·nΩ = 0 on ∂Ω× (0,T ) ,

u(0) = u0 in Ω,

(1.3.13)

where u0 : Ω → R is a suitable initial solution. When considering fully periodic boundary

conditions or closed surfaces, problem (1.3.13) becomes:⎧⎪⎨⎪⎩
∂u

∂t
=ΔΩ

(
φ(u)+Dk4u +2Dk2ΔΩu +DΔ2

Ωu
)

in Ω× (0,T ) ,

u(0) = u0 in Ω.
(1.3.14)

Problems (1.3.13) and (1.3.14) are conveniently rewritten in dimensionless form, for which
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the weak formulation reads:

for a.e. t ∈ (0,T ), find u ∈ L2(0,T ;V )∩H 1(0,T ;L2(Ω)) such that⎧⎪⎪⎨⎪⎪⎩
∫
Ω

∂u

∂t
ψdΩ+aPFC (u(t ))(ψ) = 0 ∀ψ ∈V ,

u(0) = u0 in Ω,

(1.3.15)

where V = H 3(Ω) and:

aPFC (u)(ψ) :=
∫
Ω

(
φ′(u)+N1

)∇Ωu ·∇ΩψdΩ

−N2

∫
Ω
ΔΩuΔΩψdΩ+N3

∫
Ω
∇Ω (ΔΩu) ·∇Ω

(
ΔΩψ

)
dΩ.

(1.3.16)

The differential operators are now dimensionless and N1, N2, and N3 are dimensionless

parameters defined as:

N1 := Dk4

φ0
, N2 := 2Dk2

φ0L2
0

, and N3 := D

φ0L4
0

, (1.3.17)

where L0, φ0 and T0 =
L2

0

φ0
are characteristic values for length, the function Φ of Eq. (1.3.11),

and time, respectively.
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2 Geometric PDEs

Geometric Partial Differential Equations indicate those equations whose unknown represents

the evolution of the geometrical domain which the equations are defined in [10]. These

equations are usually defined on surfaces in 3D; the surface itself represents the unknown

of the problem. An energy functional characterizes the specific geometric problem under

consideration, directly depending on the shape of the surface. A surface geometric PDEs is

derived by minimizing this energy. Surface geometric PDEs and, more generally, interface

evolution problems arise in several applications; examples are material Science, where the

crystalline structure and the properties of the materials are described via models based on

geometric properties [13], as for the Stefan problem [11], or the growth of snow crystals [12],

or in biomembrane modeling [26, 49, 52] and, more recently, in image processing, for instance

for automatic contours detection or image segmentation [14, 15, 16], as well as for surface

reconstruction and restoration [17, 18, 19, 20, 21].

In this chapter, two problems formulated as geometric PDEs defined on 3D surfaces are

introduced. The first one is the mean curvature flow, for which the considered surface moves

along its mean curvature vector. This causes the surface to evolve towards the minimization

of its area [121] and it is of fundamental interest for the study of minimal surfaces. Problems

of this kind arise, for example, when studying grain boundary motion in alloys or modeling

physical systems involving surface tension, such as biological cells and membranes, bubbles,

capillarity, and others, and have been extensively studied theoretically [121, 122, 123, 124].

The second problem under consideration is the Willmore flow problem [125], which leads to

the minimization of the Willmore (or bending) energy, used, for example, in optimal surface

modeling [126], surface restoration [18], and in physical models for biomembranes [55, 58, 60].

Theoretical results about the existence, uniqueness, and regularity of the solutions of the

Willmore flow problem can be found in [127, 128, 129, 130].
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Chapter 2. Geometric PDEs

2.1 Evolving surfaces

The geometric PDEs considered in this thesis are unsteady problems, where the surface

domain in which they are defined evolves from an initial state. Therefore, a time (or pseudo-

time) variable t is introduced, bounded between an initial time t0 = 0 and a final time T ∈R+.

Let now {Ωt }t∈(0,T ) be a family of C 2,1-hypersurfaces, i.e. such that, for each point (p̃0, t̃) ∈
R3×(0,T ) with p̃ ∈Ωt̃ , there exists an open set U ⊂R3 and a function u ∈C 2,1 (U × (t̃ −δ, t̃ +δ)

)
,

for a constant δ> 0, such that [10]:

U ∩Ωt =
{

p ∈U | u(p, t ) = 0
}

and ∇u(p, t ) �= 0 ∀p ∈U ∩Ωt . (2.1.1)

Now, let Ω0 ⊂R3 represent the initial surface, at time t = 0, described through the geometrical

mapping X0 : Ω̂→R3, where Ω̂ is the parametric domain introduced in Section 1.1. At each

time instance t , the corresponding manifold Ωt , evolved up to time t , is represented by the

geometrical mapping Xt : Ω̂→R3. The evolution of the surface domain under consideration,

represented by the family of compact, oriented C 2,1-hypersurfaces {Ωt }t∈(0,T ), is thus described

through the corresponding family of geometrical mappings {Xt }t∈(0,T ). It is convenient, from

the notational point of view, to represent the evolving surface through the time-dependent

geometric mapping:

X(ξ, t ) = Xt (ξ) ξ ∈ Ω̂, ∀t ∈ (0,T ), (2.1.2)

which, together with the represented surfaces, is assumed to be sufficiently smooth both in

space and time. Therefore, for each t ∈ (0,T ) the surface Ωt is represented by X(t) = X(ξ, t),

for ξ ∈ Ω̂. The boundary of Ωt , if present, is denoted by ∂Ωt . In general, Ωt depends on the

mapping X(t ), thus it is possible to consider Ωt =Ω(X(t )).

For convenience of notation, let GT be the topological cylinder defined as [48]:

GT := ⋃
t∈(0,T )

Ωt × {t } . (2.1.3)

Then, as done in Eq. (1.1.27) for non-evolving surfaces, the identity function x : GT →R3 for

time-dependent surfaces is introduced as:

x(X(ξ, t ), t ) := X(ξ, t ) ∀ξ ∈ Ω̂, t ∈ [0,T ]. (2.1.4)

Let V : Ω̂× (0,T ) →R3 be defined as:

V(ξ, t ) := ∂X

∂t
(ξ, t ) ∀ξ ∈ Ω̂, t ∈ (0,T ). (2.1.5)

For a general function ψ : GT →R, its material derivative ψ̇ reads:

ψ̇(X(ξ, t ), t ) := ∂ψ

∂t
(X(ξ, t ), t )+V(ξ, t ) ·∇ψ(X(ξ, t ), t ) ∀ξ ∈ Ω̂, t ∈ (0,T ), (2.1.6)
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where ∇ψ is the three-dimensional spatial gradient of a smooth prolongation of ψ from Ωt

into a tubular region in R3 containing Ωt . Let v : GT →R3 denote the velocity of the surface Ωt :

v(X(ξ, t ), t ) := ẋ(X(ξ, t ), t ) ∀ξ ∈ Ω̂, t ∈ (0,T ). (2.1.7)

Following Eq. (2.1.6), the material derivative of the identity function is written has:

ẋ(X(ξ, t ), t ) :=
(
∂x

∂t
+v ·∇x

)
(X(ξ, t ), t ) ∀ξ ∈ Ω̂, t ∈ (0,T ); (2.1.8)

since ∂x/∂t ≡ 0 and ∇x = I [48], the velocity of the points of the surface, defined on GT in

Eq. (2.1.8), is simplified into:

v(X(ξ, t ), t ) = ∂x

∂t
(X(ξ, t ), t ) = V(ξ, t ) ∀ξ ∈ Ω̂, t ∈ (0,T ). (2.1.9)

The normal component of the velocity of the evolving surface is denoted with v : GT →R, and

reads:

v(X(ξ, t )) := v(X(ξ, t )) ·nΩt (X(ξ, t )), ∀ξ ∈ Ω̂, t ∈ (0,T ). (2.1.10)

In order to simplify the notation, for quantities defined on GT or Ωt , as e.g. x, v and v , here

henceforth the arguments X(ξ, t ) and t will be dropped, since it is always assumed that ξ ∈ Ω̂

and t ∈ (0,T ).

A useful way of describing the local evolution (or perturbation) of Ωt in a small interval of

time can be accomplished by looking at the evolution of the individual points of the surface.

In particular, by considering a small final time T̃ , the points of the surface evolve according to

a system of ordinary differential equations [110]:⎧⎪⎨⎪⎩
d

d t
p(t ) =ϕ(p(t )) t ∈ (0, T̃ ),

p(0) = p,
(2.1.11)

for each given point p ∈Ωt ; ϕ : Ωt →R3 is a velocity (or perturbation) field. The trajectories

of the points of the surfaces, governed by the velocity ϕ, can be expressed by the family of

transformations T ϕ
ε : Ωt →R3, for ε ∈ [0, T̃ ), defined as [110]:

T ϕ
ε (p) := p(ε) ∀p ∈Ωt . (2.1.12)

This is a convenient way to describe Ωt+ε as a transformation of the surface Ωt , reading:

Ωt+ε = T ϕ
ε (Ωt ) = {T ϕ

ε (p), p ∈Ωt
} ∀ε ∈ [0, T̃ ). (2.1.13)

Finally, the transport theorems, useful for computing the time derivative of integral quantities

[10, 110], are recalled in Theorems 4 and 5.
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Theorem 4. Let ψ ∈ C 1(Ω̃t ), where the open set Ω̃t is such that the surface Ωt ⊂ Ω̃t for all

t ∈ (0,T ). Then, the material derivative of the integral of ψ over the surface Ωt is:

d

d t

∫
Ωt

ψdΩt =
∫
Ωt

∂ψ

∂t
dΩt +

∫
Ωt

ψv H dΩt +
∫
Ωt

∂ψ

∂nΩ
v dΩt , (2.1.14)

where H is the mean curvature defined in Eq. (1.1.23) and v is the normal velocity defined in

Eq. (2.1.10).

Theorem 5. If the surface Ωt is the boundary of an open, bounded subset Θt ⊂R3, then, given a

function ψ ∈C 1(Θt ), the material derivative of the integral of ψ in the volume Θt satisfies:

d

d t

∫
Θt

ψdΘt =
∫
Θt

∂ψ

∂t
dΘt +

∫
Ωt

ψv dΩt . (2.1.15)

2.2 Shape differential calculus

Let Ψ be a scalar function depending on Ωt and p ∈Ωt , i.e. Ψ =Ψ(Ωt ,p). The Lagrangian

derivative of Ψ with respect to the vector field ϕ : Ωt →R3 is obtained as [110]:

Ψ̇(Ωt ,p;ϕ) := lim
ε→0

Ψ
(
Ωt+ε,T ϕ

ε (p)
)−Ψ(Ωt ,p)

ε
∀p ∈Ωt , (2.2.1)

where the transformation flow T ϕ
ε , for the vector field ϕ, is defined in Eq. (2.1.12). Now, let

the open, bounded subset Θt ⊂R3 be the volume enclosing Ωt , for each t ∈ (0,T ). The shape

derivative of a scalar function Ψ̃ depending on the volume Θt , i.e. Ψ̃= Ψ̃(Θt ,p), in Θt along

the direction ϕ is defined as [110]:

Ψ̃′(Θt ,p;ϕ) := ˙̃Ψ(Θt ,p;ϕ)−∇Ψ̃ ·ϕ, (2.2.2)

where the Lagrangian derivative ˙̃Ψ is defined as in Eq. (2.2.1) for functions depending on the

volume Θt . In particular, by returning to functions Ψ depending on the surface Ωt and by

considering vector fields ϕ which are normal to the surface, then the shape derivative of Ψ in

Ωt along ϕ sees the last term of Eq. (2.2.2) vanishing, reading:

Ψ′(Ωt ,p;ϕ) := Ψ̇(Ωt ,p;ϕ). (2.2.3)

Now, let J be a shape energy functional depending on the surface Ωt , i.e. J = J (Ωt ). By consid-

ering a fixed time t ∈ (0,T ), the shape differential of J , i.e. the first variation of J corresponding

to a deformation of its argument Ωt along the direction ϕ : Ωt →R3, is denoted with d J (Ωt )(ϕ)

and reads [110]:

d J (Ωt )(ϕ) := lim
ε→0

J (Ωt+ε)− J (Ωt )

ε
, (2.2.4)

where Ωt+ε is the domain perturbed along ϕ, as defined in Eq. (2.1.13). In Eq. (2.2.4), the
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2.2. Shape differential calculus

functional J depends on Ωt , but it can also be defined to depend instead on the volume Θt ,

with a definition of shape differential analogue to Eq. (2.1.13). In general, three forms of energy

functionals are usually considered. If J takes the form:

J (Θt ) =
∫
Θt

Ψ̃(Θt ,p)dΘt , (2.2.5)

i.e. J consists in a volume integral over Θt of a function Ψ̃ depending on the shape of Θt and

the position p, then its shape derivative in the direction ϕ assumes the form [110]:

d J (Θt )(ϕ) =
∫
Θt

Ψ̃′(Θt ,p;ϕ)dΘt +
∫
Ωt

Ψ̃(Θt ,p)ϕ ·nΩt dΩt . (2.2.6)

If instead J has the form:

J (Ωt ) =
∫
Ωt

Ψ̃(Θt ,p)dΩt , (2.2.7)

then its shape derivative in the direction ϕ reads:

d J (Ωt )(ϕ) =
∫
Ωt

Ψ̃′(Θt ,p;ϕ)dΩt +
∫
Ωt

(
∂Ψ̃

∂nΩt

(Θt ,p)+ Ψ̃(Θt ,p)H

)
ϕ ·nΩt dΩt . (2.2.8)

Finally, if J is a surface integral of a function depending on the shape of Ωt , i.e.:

J (Ωt ) =
∫
Ωt

Ψ(Ωt ,p)dΩt , (2.2.9)

then its shape derivative is calculated by considering a normal extension of Ψ as a constant

into a neighborhood of Ωt , resulting in:

d J (Ωt )(ϕ) =
∫
Ωt

Ψ′(Ωt ,p)dΩt +
∫
Ωt

Ψ(Ωt ,p)H ϕ ·nΩt dΩt . (2.2.10)

An important result, that gives a common formulation to the shape derivatives, is described in

the Structure theorem (Theorem 3.6) and its corollary in [110], whose contents are condensated

in the following theorem.

Theorem 6. Consider the shape functional J and assume that d J(Θt )(ϕ) exists for all ϕ ∈
D(R3;R3). Then, there exists an element G ∈D′(R3;R3), called shape gradient, with support in

Ωt and such that:

d J (Θt )(ϕ) =
∫
Ωt

G ϕ ·nΩt dΩt ∀ϕ ∈D(R3;R3). (2.2.11)

Theorem 6 states, in particular, that the shape derivative d J along ϕ, for each direction ϕ, only

depends on the normal component of ϕ on Ωt .
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2.3 Geometric PDEs as geometric gradient flows

A geometric PDE defined on a surface is an equation, or a system of equations, describing

the evolution of the points of the surface, on which the equations are defined. Starting from

an initial surface Ω0, identified by X0 : Ω̂→ R3, the aim is finding, for all the times t ∈ (0,T ),

the family of surfaces {Ωt }t∈(0,T ) ⊂R3 identified by their geometrical mapping X(t) : Ω̂→R3,

whose evolution obeys a differential law of the form:{
Ẋ =F (t ,X,nΩ, H ,K , . . .) in Ω̂, for t ∈ (0,T ),

X(0) = X0,
(2.3.1)

possibly with additional boundary conditions in case the domain is not a closed surface.

The law F identifies the problem at hand and potentially depends on several geometrical

quantities associated with the geometry. In general, the geometric PDEs treated in this thesis

derive from the minimization of a shape energy functional J(Ω). This functional can be

seen as the objective functional in an optimization process, where the design variable is

represented by the surface Ω itself. J usually depends on geometrical quantities associated

to the geometrical mapping of the surface Ω, such as the surface normal and the curvatures

described in Section 1.1. Moreover, in this thesis changes of topology are neglected and the

parametric domain Ω̂ is kept invariant throughout the geometric evolution process.

In order to minimize the energy, the gradient flow of J is considered [113, 131]. Let V (Ωt ) be

a Hilbert space induced by the scalar product M (·, ·) on Ωt . The gradient flow of the energy

functional J aims at minimizing J by seeking, for all t ∈ (0,T ), a velocity ẋ ∈V (Ωt ) such that:

M (ẋ,ϕ) =−d J (Ωt )(ϕ) ∀ϕ ∈V (Ωt ), t ∈ (0,T ). (2.3.2)

In particular, by using Theorem 6, problem (2.3.2) is equivalent to:

M (ẋ,ϕ) =−
∫
Ωt

G ϕ ·nΩt dΩt ∀ϕ ∈V (Ωt ), t ∈ (0,T ). (2.3.3)

A common choice for M (·, ·) is the L2(Ωt ) scalar product, for which:

M (ϕ1,ϕ2) :=
∫
Ωt

ϕ1 ·ϕ2 dΩt ∀ϕ1,ϕ2 ∈ L2(Ωt ), t ∈ (0,T ). (2.3.4)

Therefore, the L2-gradient flow of the energy functional J reads: given an initial surface

Ω0 ⊂R3, represented by x0, for a.e. t ∈ (0,T ) find Ωt ⊂R3 such that:⎧⎪⎨⎪⎩
∫
Ωt

ẋ ·ϕdΩt =−μd J (Ωt )(ϕ) ∀ϕ ∈V (Ωt ),

x(0) = x0 in Ω0,
(2.3.5)

where μ ∈ R+ is a constant representing a mobility and V is a suitable function space for

the trial and test functions, which will be defined later specifically for each problem under
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2.4. Mean curvature flow

consideration. Problem (2.3.5) can be expressed also in strong form as:⎧⎪⎪⎨⎪⎪⎩
ẋ =−μG nΩt in Ωt , t ∈ (0,T ),

b.c.s. on ∂Ωt ,

x(0) = x0 in Ω0,

(2.3.6)

where “b.c.s” stands for the (possible) boundary conditions and G is the shape gradient

associated with J . Problems (2.3.5) and (2.3.6) represent, in general, highly nonlinear systems

of PDEs, whose steady states correspond to local minima of the energy J . Indeed, regardless of

the choice of scalar product M , the gradient flow in Eq. (2.3.2) is always evolving towards the

(local) minimization of the energy J , as:

d J (Ωt )(ẋ) =−M (ẋ, ẋ) =−‖ẋ‖2
V (Ωt ) ≤ 0 t ∈ (0,T ). (2.3.7)

2.4 Mean curvature flow

The first geometric PDE considered in this thesis is the mean curvature flow. Let J A be the

energy functional defined as:

J A(Ωt ) :=
∫
Ωt

1dΩt , (2.4.1)

which corresponds to the area of the surface Ωt . By applying the formula in Eq. (2.2.10) to

the functional J A , the shape derivative of J A in Ωt along the direction ϕ : Ωt →R3 is obtained

as [48, 121]:

d J A(Ωt )(ϕ) =
∫
Ωt

H ·ϕdΩ, (2.4.2)

where H is the total mean curvature vector defined in Eq. (1.1.25). Following the definition in

Eq. (2.2.11), the shape gradient of the area functional GA is the mean curvature, i.e. :

GA := H . (2.4.3)

Therefore, the mean curvature flow is the problem associated with the minimization of the area

functional J A by means of a L2-gradient flow. Following the prototype Eq. (2.3.5), the problem

reads: given an initial surface Ω0 ⊂R3 identified by the map x0 : Ω̂→R3, for all t ∈ (0,T ) find

the surface Ωt , identified by x : Ωt →R3, such that:⎧⎪⎨⎪⎩
∫
Ωt

ẋ ·ϕdΩt =−μd J A(Ωt )(ϕ) ∀ϕ ∈V (Ωt ),

x(0) = x0 in Ω0,
(2.4.4)
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where V (Ωt ) is a suitable Hilbert function space, which will be specified in Chapter 5. The

mean curvature flow problem in strong flow can be written as in Eq. (2.3.6), reading: for all

t ∈ (0,T ), find the surface Ωt such that:⎧⎪⎪⎨⎪⎪⎩
ẋ =−μH in Ωt ,

b.c.s. on ∂Ωt ,

x(0) = x0 in Ω0.

(2.4.5)

The mean curvature flow models the evolution of the surface towards the local minimization

of its area [10]. This can be verified by using the transport Theorem 4 and by setting ψ= 1 and

normal velocity v =−H from Eq. (2.4.5), thus obtaining:

d

d t
J A(Ωt ) =− 1

μ

∫
Ωt

v2 dΩt ≤ 0, (2.4.6)

indicating a decrease of the surface area in time.

The mean curvature flow problem has been extensively studied, from different points of view.

In case of mono-dimensional parametric space Ω̂, then Ωt represents a curve in the physical

space. The mean curvature flow problem for curves is known as curve shortening flow. In this

regard, smooth solutions in finite time have been studied for instance in [132,133]. Approaches

for handling the cusp-like singularities that can arise if the initial curve is not embedded are

described in [134, 135, 136]. Regarding surfaces, in [121] an approach to the surface mean

curvature flow based on the measure theory is considered. In [123] existence of a solution is

studied for the parametric evolution of an initial smooth convex surface without boundary.

Singularities arising from the surface evolution according to the mean curvature are analyzed

in [122]. The mean curvature flow for non-parametric surfaces with boundary is analyzed

in [124]. For more details and references see [10, 121, 123].

2.5 Willmore flow

The Willmore energy functional JW is defined as [125]:

JW (Ωt ) := 1

2

∫
Ωt

H 2dΩt (2.5.1)

The energy JW expresses the bending energy associated to the surface Ωt [125]. The Willmore

flow problem is the L2-gradient flow of JW . Under suitable hypotheses, the shape derivative of

JW at Ωt along ϕ : Ωt →R3 is given by [125]:

d JW (Ωt )(ϕ) =−
∫
Ωt

(
ΔΩH − 1

2
H 3 +H |H |2

)
ϕ ·nΩt dΩt , (2.5.2)
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2.5. Willmore flow

which, for three dimensional surfaces is equivalent to:

d JW (Ωt )(ϕ) =−
∫
Ωt

(
ΔΩH + 1

2
H 3 −2H K

)
ϕ ·nΩt dΩt , (2.5.3)

in virtue of Eq. (1.1.26). The shape gradient GW of the Willmore energy then reads:

GW :=−ΔΩH − 1

2
H 3 +2H K . (2.5.4)

In this thesis, the Willmore flow is considered only for closed surfaces, for which ∂Ωt ≡ �.

Then, by following the prototype Eq. (2.3.5), the Willmore flow problem reads: given an initial

surface Ω0 ⊂R3 identified by the mapping x0 : Ω0 →R3, find, for all t ∈ (0,T ), the surface Ωt ,

identified by x : Ωt →R3, such that:⎧⎪⎨⎪⎩
∫
Ωt

ẋ ·ϕdΩt =−μd JW (Ωt )(ϕ) ∀ϕ ∈V (Ωt ),

x(0) = x0 in Ω0,
(2.5.5)

with a suitable Hilbert function space V (Ωt ). Problem (2.5.5) can be expressed in strong form

as follows: find, for all t ∈ (0,T ), the surface Ωt such that:⎧⎪⎨⎪⎩ẋ =μ

(
ΔΩH + 1

2
H 3 −2HK

)
nΩt in Ωt ,

x(0) = x0 in Ω0.
(2.5.6)

When considering curves, the problem is generally known as the elastic flow of curves. In this

case, global existence in time of a solution for curves in Rn was studied in [137] and [138],

for n = 2 and n ≥ 3 respectively. For surfaces, which represent the focus of this thesis, the

Willmore flow problem has been studied analytically mainly on closed surfaces. Existence of a

solution up to the finite time T <+∞ for two-dimensional surfaces in Rn , with n ≥ 3, is proven

in [127], with T depending on the curvature of the initial surface Ω0. Existence and uniqueness

of the local solution of problem (2.5.6) under the hypothesis that the initial geometry Ω0 is a

compact, closed, immersed, and orientable C 2,α-surface in R3 is proven in [130], together with

the global existence of the solution in time where Ω0 is “sufficiently” close to a sphere. In [128]

global existence of solutions is shown under the assumption that
∫
Ω0

|H̊ |2 is sufficiently small,

being H̊ the trace-free part of the second fundamental form H . In [129] the authors proved

that if Ω0 is a smooth immersion of a sphere in R3 and it is such that its Willmore energy

JW (Ω0) ≤ 16π, then its Willmore flow smoothly exists for all times and converges to a sphere.

2.5.1 Willmore flow with spontaneous curvature

When modeling cell membranes, more general energies than the pure Willmore energy in

Eq. (2.5.1) are usually considered. The spontaneous curvature is an extension of the Willmore
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energy functional, which reads:

JW0 (Ωt ) := 1

2

∫
Ωt

(H −H0)2dΩt , (2.5.7)

where H0 : Ωt →R represents the prescribed spontaneous curvature over the surface Ωt . H0

is used in biophysics to model physical asymmetries of the membranes, due, for instance,

to chemical differences in the environment in which the cell is immersed [60]. The shape

derivative of JW0 in Ωt along the direction ϕ : Ωt →R3 reads [125]:

d JW0 (Ωt )(ϕ) =−
∫
Ωt

[
ΔΩ(H −H0)− 1

2
H(H −H0)2 + (H −H0)

(
|∇ΩnΩt |2 +

∂H0

∂nΩt

)]
ϕ·nΩt dΩt .

(2.5.8)

In case of constant spontaneous curvatures, i.e. H0 ∈R, the shape derivative of JW0 in Eq. (2.5.8)

is simplified into the following [72, 139]:

d JW0 (Ωt )(ϕ) =−
∫
Ωt

[
ΔΩH − 1

2
H(H −H0)2 + (H −H0)

(
H 2 −2K

)]
ϕ ·nΩt dΩt

=−
∫
Ωt

[
ΔΩH +H

(
1

2
H 2 − 1

2
H 2

0 −2K

)
−2H0K

]
ϕ ·nΩt dΩt .

(2.5.9)

The Willmore flow problem with spontaneous curvature on closed surfaces is written in weak

and strong form as Eqs. (2.5.5) and (2.5.6), respectively, with the shape derivative replaced by

d JW0 of Eq. (2.5.9).
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When using the Finite Element Method (FEM) to approximate surface and geometric PDEs, a

challenge for obtaining an accurate numerical approximation is the construction of a suitable

computational mesh, which still represents an approximation of the original geometry [112].

Indeed, generating a mesh of “good quality” is necessary not only to accurately represent the

surface, but also to accurately evaluate the differential operators which are associated to the

geometrical properties of the manifold. In particular, this requires the accurate computation

of several geometrical quantities, such as the normal and curvature of the surface introduced

in Sections 1.1 and 1.1.2. Moreover, besides being time consuming, the process of mesh gener-

ation may require a large number of Degrees Of Freedom (DOFs) for the PDE approximation.

In the FEM context, different approaches have been introduced aiming at controlling the

approximation error induced by the discretization of the geometry; examples are the surface

FEM [22, 23], or geometrically consistent Adaptive FEM [25, 26, 27, 49]. Other approaches are

based on modeling the surface as immersed in the 3D domain or treated implicitly, as, for

example, for level set formulations [29, 30] or diffuse and resistive interface methods [31, 32].

In alternative to the above mentioned methods, this thesis focuses on the use of Isogeometric

Analysis [34, 35] for the numerical approximation of the PDEs. Isogeometric Analysis (IGA)

is a discretization method for approximating PDEs based on the isogeometric paradigm, for

which the same basis functions are used first for the geometrical description of the domain

and then for the numerical approximation of the solution of the PDEs [34, 35]; in this respect,

IGA was developed with the goal of filling the gap between Computer Aided Design (CAD)

and FEM, by providing a unified representation of the geometrical design, the computational

domain, and the approximation function spaces. One potential advantage of IGA is its ability

to directly exploit the description of the geometry for the spatial discretization of the PDEs,

without requiring the time-consuming process of generating a computational mesh, which

often only represents an approximation of the geometry.

While IGA is nowadays adopted for several geometrical representations [140, 141], including

T-splines [142], in this thesis the focus is devoted to tensor-product B-splines and NURBS

surfaces [37] built as single patches. This choice is mainly motivated by the ability of NURBS
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and B-splines to exactly represent several geometries of practical interest, especially in in-

dustrial applications, at the coarsest level of discretization. Moreover, additional refinement

procedures permit the enhancement of the approximation properties of the finite dimensional

spaces, while not affecting the geometrical representation.

The focus of this thesis is mainly to address high order PDEs. For equations of order 2m,

with m ≥ 1, besides the already mentioned geometrical advantages, IGA allows the use of

the standard Galerkin formulation, without invoking the mixed formulations required by the

isoparametric FEM [42] with the standard Lagrange polynomial basis functions when m ≥ 2.

The possibility of using globally C k -continuous NURBS basis functions, with m −1 ≤ k ≤ p −1

and p being the polynomial degree, yields IGA finite dimensional spaces that are subspaces

of the trial and test Sobolev spaces H m that naturally arise when dealing with PDEs of order

2m, with m ≥ 1 [40]. In addition, periodic NURBS basis functions can be built on surfaces

with the goal of obtaining globally high order continuous NURBS function spaces [44]. This in

turn allows the construction of NURBS function spaces of the required regularity and thus the

solution of high order PDEs defined on closed surfaces.

In this chapter, the B-Spline and NURBS basis functions are introduced, which define the

geometry and build the approximation function spaces; then, spatial discretization of generic

elliptic PDEs with NURBS-based IGA within the Galerkin method is described. The concepts

which are introduced in this chapter act as a framework for the numerical approximation of

the PDEs of interest covered in this thesis.
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3.1. Univariate B-Spline and NURBS

3.1 Univariate B-Spline and NURBS

Let Î ⊂ R be a reference interval, acting as parametric domain. The reference interval Î is

divided into sub-domains called patches. Each patch is defined through a knot vector, a

collection of non-negative values reading Ξ := {ξi }n
i=1 ∈Rn , with n ∈N, n ≥ 2. The single values

ξi , for i = 1, . . . ,n, are the knots and are assumed to be ordered in ascending order. The knots

divide the knot vector into the knot spans, specifically into the intervals [ξi ,ξi+1] ⊂ R, for

i = 1, . . . ,n −1. In analogy with the FEM, the knot spans are also called mesh elements and

the parametric domain acts as the (reference) computational mesh. A uniform knot vector is

defined by knots which are equally spaced; otherwise, it is called non-uniform. A knot can

be repeated inside the knot vector. In particular, if the knot ξi is repeated r times, it is said to

have multiplicity r and it is written, in this thesis, with the notation {ξi }r inside the knot vector.

We focus on single-patch mappings; this means that the parametric interval Î is considered

to host a single knot vector. Moreover, the parametric domain is represented by the interval

Î ≡ [0,1] ⊂R and therefore the knot vector is normalized, i.e. the knots ranges from 0 to 1.

The B-Spline basis functions of degree p on the reference interval Î are defined through the

Cox-de Boor recursion formula. In particular, the piecewise constant basis functions, i.e. for

which p = 0, read:

N̂i ,0(ξ) =
{

1 if ξi ≤ ξ≤ ξi+1

0 otherwise
, (3.1.1)

for i = 1, . . . ,n −1. This represents the initialization of the recursion formula, for which each

basis function of degree p is defined as linear combination of two basis functions of degree

p −1 as follows:

N̂i ,p (ξ) = ξ−ξi

ξi+p −ξi
N̂i ,p−1(ξ)+ ξi+p+1 −ξ

ξi+p+1 −ξi+1
N̂i+1,p−1(ξ), (3.1.2)

for i = 1, . . . ,nb f , nb f = n −p −1; nb f represents the number of basis functions. Note that, if

a denominator in Eq. (3.1.2) is equal to zero, then the corresponding quotient is considered

to be zero. The B-Spline basis functions, defined in Eqs. (3.1.1) and (3.1.2), enjoy several

interesting properties; the reader is referred to the book [37] for an in-depth analysis. In

particular, the B-Spline basis functions are pointwise non-negative over the entire parametric

domain and constitute a partition of unity. Moreover, the support of each basis function of

degree p extends over p +1 knot spans. Therefore, with a basis of degree p, to evaluate all

basis functions in a certain point ξ ∈ [0,1] it is necessary to evaluate just p +1 of them.

The continuity across the knots of B-Spline basis functions can be easily achieved by changing

the multiplicity of the knots inside the knot vector. In particular, by considering basis functions

of order p, if the knot ξi has multiplicity 1 ≤ ri ≤ p then the B-Spline basis functions are

C p−ri -continuous across that knot. Therefore, if the knot has multiplicity ri = p then the

basis is interpolatory in ξi . Nevertheless, inside the knot spans the basis functions are C p−1-
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(a) p = 1 (b) p = 2 (c) p = 3

Figure 3.1 – Univariate B-spline basis functions of polynomial degrees p = 1, 2, and 3 obtained
from the knot vectors Ξ= {{0}p+1 , 1

5 , 2
5 , 3

5 , 4
5 , {1}p+1} and globally C p−1-continuous in Î = (0,1).

continuous. In this thesis, only open knot vectors are considered, for which the first and last

knots are always repeated p +1 times, regardless of the multiplicity of the other knots (and

thus also of the global continuity of the basis functions); this also means that the basis is

interpolatory at the boundaries of the knot vector. Examples of univariate B-Spline basis

functions of different polynomial degrees and maximal global continuity are represented in

Figure 3.1, while in Figure 3.3 an example of B-Spline basis functions built from a knot vector

composed by knots with different multiplicity is reported instead; the different multiplicity of

the knots defines the degree of continuity of the basis functions across the knots. In addition,

in order to visually compare the B-Spline basis functions with the FEM basis, in Figure 3.2

basis functions over three mesh elements are drawn: Figures 3.2a and 3.2b show C 2- and C 0-

continuous B-Spline basis functions, respectively, of polynomial order p = 3 and Figure 3.2c

the standard Lagrangian P3 FEM basis.

The NURBS basis functions (an acronym for Non-Uniform Rational B-Splines) of degree p

are obtained as projective transformations of the B-Spline basis functions N̂i ,p defined in

Eqs. (3.1.1) and (3.1.2), reading:

R̂i ,p (ξ) := wi
nb f∑
j=1

w j N̂ j ,p (ξ)

N̂i ,p (ξ) , (3.1.3)

where wi ∈ R, for i = 1, . . . ,nb f are the weights of the transformation. From now on, the

subscript p will be omitted from the basis functions N̂i and R̂i , to simplify the notation. The

NURBS basis functions share the basic properties of the B-Spline basis functions; for more,

including implementation details, see [37].

By using the basis functions defined in Eq. (3.1.3), a NURBS curve in R3 is defined through the
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3.1. Univariate B-Spline and NURBS

(a) B-Spline basis, C 2-continuous (b) B-Spline basis, C 0-continuous

(c) FEM basis

Figure 3.2 – Comparison of univariate B-Spline and FEM basis functions of degree p = 3: in
(a), B-Spline basis functions obtained from the knot vector Ξ= {{0}4, 1

3 , 2
3 , {1}4} and globally

C 2-continuous; in (b), B-Spline basis built from Ξ=
{

{0}4,
{1

3

}3
,
{2

3

}3
, {1}4

}
and C 0-continuous

at the element boundaries; in (c), standard Lagrangian FEM basis. 3 elements are shown,
separated by black dashed lines.

geometrical parametrization:

C : Î ⊂R→R3, C(ξ) =
nb f∑
i=1

R̂i (ξ)Pi ∀ξ ∈ Î , (3.1.4)

where Pi ∈ R3, i = 1, . . . ,nb f , are the control points in the physical space. The knot vector

together with the control points completely define the curve and its properties. In particular,

the continuity properties of the curve are defined through its knot vector and are not affected

by the control points. Moreover, by moving a single control point one affects the curve only

in p +1 knot spans. This is of particular interest in the CAD world and it is one of the main

reasons for the popularity of NURBS geometries in industrial design. The linear combination

of the control points is called control polygon. Thanks to the non-negative and compactly
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Figure 3.3 – Univariate B-spline basis functions of degree p = 3 obtained from the knot vector

Ξ=
{

{0}4 , 1
5 ,
{ 3

10

}2
, 2

5 ,
{3

5

}3
, 4

5 , {1}4
}

, in which the knots have different multiplicity. In particular,

the basis functions are C 2-continuous across the knots 1
5 , 2

5 , and 4
5 , C 1-continuous across the

knot 3
10 , and C 0-continuous (i.e. interpolatory) at the knot 3

5 .

supported basis functions, which form a partition of unity, the control polygon completely

contains the curve; this is known as the convex hull property. An example of NURBS curve is

sketched in Figure 3.4a.

3.2 Multivariate B-Spline and NURBS

The construction adopted for monodimensional parametric domains can be extended to

the multidimensional case. In particular, consider the d-dimensional parametric domain

Ω̂ built as product of d reference intervals. Each reference interval α = 1, . . . ,d is divided

into knots, which define the knot vector Ξα = {ξα,i
}nα

i=1 ∈ Rnα . The knot vector Ξα defines a

univariate B-Spline basis
{
R̂α,i
}nb f ,α

i=1 of polynomial degree pα, with nb f ,α = nα−pα−1 being

the cardinality of the basis functions. The tensor product of the knot vectors defines a natural

partition of the parametric domain into subregions, which represent the mesh elements in

the multivariate case. Specifically, in the case d = 2, by considering a rectangular parametric

domain Ω̂ ⊂ R2 (which, in case of normalized knot vectors, is defined as Ω̂ ≡ [0,1]2), the

bivariate B-Spline basis functions in each point ξ = (ξ1,ξ2) ∈ Ω̂ are defined by the tensor

product of the monodimensional basis functions on each parametric direction, reading:

N̂i , j (ξ) := N̂1,i (ξ1) N̂2, j (ξ2), (3.2.1)

for i = 1, . . . ,nb f ,1 and j = 1, . . . ,nb f ,2, for a total of nb f = nb f ,1 nb f ,2 basis functions. The

corresponding bivariate NURBS basis functions are then defined as:

R̂i , j (ξ) := wi , j∑nb f ,1

k=1

∑nb f ,2

l=1 wk,l N̂k,l (ξ)
N̂i , j (ξ), (3.2.2)
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3.2. Multivariate B-Spline and NURBS

(a) Curve (b) Surface (c) Volume

Figure 3.4 – Different NURBS geometries. (a) is a NURBS curve of degree p = 2. (b) is a
NURBS surface, defined through the tensor product of the two univariate basis of degrees

p = 1 and p = 2, built by the knot vectors Ξ1 =
{
{0}2, {1}2} and Ξ2 =

{
{0}3,

{1
4

}2
,
{1

2

}2
,
{3

4

}2
, {1}3

}
,

respectively. (c) is a NURBS volume, defined through the tensor product of the three uni-
variate basis of degrees p = 1, p = 2, and p = 1, built by the knot vectors Ξ1 = {{0}2, {1}2},
Ξ2 =

{
{0}3,

{1
4

}2
,
{1

2

}2
,
{3

4

}2
, {1}3

}
, and Ξ3 =

{
{0}2, {1}2}, respectively. In all the three cases, the

control points are represented by red dots, the control polygon/net/lattice is highlighted in
red, and the mesh elements are divided by black lines.

for i = 1, . . . ,nb f ,1 and j = 1, . . . ,nb f ,2. By using the basis in Eq. (3.2.2), a NURBS surface in R3

is then defined through the parametrization:

S : Ω̂⊂R2 →R3, S(ξ) :=
nb f ,1∑
i=1

nb f ,2∑
j=1

R̂i , j (ξ)Pi , j ∀ξ ∈ Ω̂, (3.2.3)

where the control points
{

Pi , j
}

i∈[1,nb f ,1], j∈[1,nb f ,2] describe a control net. Example of a NURBS

surface is shown in Figure 3.4b. Similarly to Eq. (3.2.1), by considering the parallelepipedic

parametric domain Θ̂ ⊂ R3 (being Θ̂ ≡ [0,1]3 in case of normalized knot vectors), trivariate

B-Spline basis functions in each point ξ= (ξ1,ξ2,ξ3) ∈ Θ̂ are defined as:

N̂i , j ,k (ξ) := N̂1,i (ξ1) N̂2, j (ξ2) N̂k,3(ξ3), (3.2.4)

for i = 1, . . . ,nb f ,1, j = 1, . . . ,nb f ,2, and k = 1, . . . ,nb f ,3, for a total of nb f = nb f ,1 nb f ,2 nb f ,3 basis

functions. The corresponding trivariate NURBS basis functions then read:

R̂i , j ,k (ξ) := wi , j ,k∑nb f ,1

l=1

∑nb f ,2

m=1

∑nb f ,3

o=1 wl ,m,o N̂l ,m,o(ξ)
N̂i , j ,k (ξ), (3.2.5)
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for i = 1, . . . ,nb f ,1, j = 1, . . . ,nb f ,2, and k = 1, . . . ,nb f ,3. By using the basis in Eq. (3.2.5), a NURBS

volume in R3 is then defined through the parametrization:

V : Θ̂⊂R3 →R3, V(ξ) :=
nb f ,1∑
i=1

nb f ,2∑
j=1

nb f ,3∑
k=1

R̂i , j ,k (ξ)Pi , j ,k ∀ξ ∈ Θ̂, (3.2.6)

where the control points
{

Pi , j ,k
}

i∈[1,nb f ,1], j∈[1,nb f ,2],k∈[1,nb f ,3] define a control lattice. Example

of a NURBS volume is reported in Figure 3.4c. In general, the inclusion of weights in the

construction of the NURBS basis functions is necessary to exactly represent geometries such

as conics, for which B-Spline basis functions cannot be used.

Regardless of the dimensionality of the parametric domain, the basis functions built from

the tensor product of the univariate basis can be enumerated such that they are indexed by

a single index 1 ≤ i ≤ nb f ; the same enumeration can be applied also to the control points

building the control net/lattice. In this way, by choosing a suitable parametric space Ω̂, all

NURBS geometries, defined by the parametrizations in Eqs. (3.1.4), (3.2.3), and (3.2.6), can be

described by the general NURBS geometrical mapping:

X : Ω̂→R3, X(ξ) :=
nb f∑
i=1

R̂i (ξ)Pi ∀ξ ∈ Ω̂, (3.2.7)

for i = 1, . . . ,nb f . Moreover, multivariate B-Spline and NURBS basis functions share the main

properties of their univariate counterparts; for more details, see [37].

3.3 NURBS function spaces

Let Ω̂ ⊂ Rd be the parametric domain, with d = 1, 2, or 3, and Ω ⊂ R3 the physical domain,

described by a geometrical mapping X : Ω̂→Ω of the type defined in Eq. (3.2.7). The NURBS

function space N̂h over the parametric domain Ω̂ is defined as:

N̂h := span
{
R̂i , i = 1, . . . ,nb f

}
(3.3.1)

and its counterpart in the physical domain Ω as:

Nh := span
{
R̂i ◦X−1, i = 1, . . . ,nb f

}
. (3.3.2)

According to the isogeometric concept, these spaces will be used to build the trial function

spaces for the approximation of PDEs. The subscript h refers to the characteristic size of the

mesh elements, and is usually defined as the maximum diameter of the mesh elements in the

physical space [35, 43]. The computational domain Ω is usually represented at its coarsest

level of discretization, from which the spaces N̂h and Nh are built; the coarsest approximation

is often already suitable to reproduce exactly the surface geometry.

For NURBS, there are three different kinds of refinement procedures which permit the enrich-
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3.3. NURBS function spaces

(a) Original basis (b) Basis after knot insertion

(c) Basis after order elevation (d) Basis after k-refinement

Figure 3.5 – Different refinement strategies applied to a B-Spline basis originally of degree
p = 2 and built from the knot vector Ξ= {{0}3, 1

2 , {1}3} (shown in (a)): 1 level of knot insertion, 1
level of order elevation, and 1 level of k-refinement are shown in (b), (c), and (d), respectively.

ment of the NURBS function spaces [35]. Consider, for instance, the knot vector:

Ξ=
{

{0}3 ,
1

2
,{1}3

}
, (3.3.3)

which defines the B-Spline basis functions of degree p = 2 shown in Figure 3.5a. The knot in-

sertion refers to the procedure of splitting the knot spans by introducing new knots, effectively

increasing the number of mesh elements and basis functions; when the continuity between

elements is preserved, inserting knots with the correct multiplicity can be compared to the

h-refinement procedure of the FEM. As an example, after one level of knot insertion, the knot

vector Ξ, originally defined in Eq. (3.3.3), becomes:

Ξh =
{

{0}3 ,
1

4
,

1

2
,

3

4
,{1}3

}
, (3.3.4)

for which the (nontrivial) knot spans are split in two. The corresponding B-Spline basis

functions are shown in Figure 3.5b. The process of increasing the polynomial degree of the
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(a) Original (b) 1 level of h-ref. (c) 2 level of h-ref.

Figure 3.6 – h-refinement (knot insertion) applied to the NURBS geometry in (a): 1 level of h-
ref. in (b) and 2 levels of h-ref. in (c). Under refinement, the original geometrical representation
is maintained exactly, while the number of mesh elements (knot spans), basis functions, and
control points is increased.

basis functions while preserving the existing continuity across the edges of the elements,

is called order elevation and it is closely related to the FEM p-refinement. Applied to Ξ of

Eq. (3.3.3), it results in the following knot vector:

Ξp =
{

{0}4 ,

{
1

2

}2

, {1}4
}

. (3.3.5)

The basis functions defined by Ξp and shown in Figure 3.5c are now of polynomial degree

p = 3. Moreover, to preserve the internal continuity of the original basis, the knot 1
2 has

been duplicated, so that the resulting basis functions are globally C p−2 (=C 1) -continuous.

Finally, B-splines and NURBS benefit from another form of refinement, which does not have

counterparts in FEM, the k-refinement, for which the degree of the basis functions is firstly

elevated and then new unique knots are inserted, maintaining the highest possible continuity

across the elements. One level of k-refinement applied to the knot vector Ξ results in:

Ξk =
{

{0}4 ,
1

4
,

1

2
,

3

4
,{1}4

}
, (3.3.6)

which defines the B-Spline basis functions shown in Figure 3.5d. All these refinement proce-

dures must preserve the original representation of the underlying geometry while enriching

the dimension and approximation properties of the function space; in this regard, an example

of refinement of a cylindrical geometry is reported in Figure 3.6. For a detailed description

about these refinement procedures, the reader is referred to [34, 35] and, for implementation

details and algorithms, to [37].

42



3.3. NURBS function spaces

(a) p = 2, globally C 1-continuous (b) p = 3, globally C 2-continuous

Figure 3.7 – Periodic univariate B-spline basis functions.

3.3.1 Periodic NURBS function spaces

To build closed curves and closed or partially closed surfaces, especially conics, such as circles,

spheres, cylinders, or tori, the usual NURBS construction is such that the basis functions

are only globally C 0-continuous in Ω̂ and Ω [35, 37]. As an example, consider the cylinder

shown in Figures 3.4b and 3.6. It is represented as a NURBS surface defined through the tensor

product of two univariate basis of polynomial degree p1 = 1 and p2 = 2 in the two parametric

directions, characterized by the knot vectors:

Ξ1 =
{
{0}2, {1}2} and Ξ2 =

{
{0}3,

{
1

4

}2

,

{
1

2

}2

,

{
3

4

}2

, {1}3
}

, (3.3.7)

respectively. The NURBS basis along the second parametric direction is of degree p2 = 2 but

just C 0-continuous at the patch and element boundaries, as evident from the multiplicities

of the internal knots. This is the standard procedure for representing conics with single-

patch NURBS, see [35, 37]. Nevertheless, for the approximation of PDEs over the surface, one

may be interested in considering a NURBS space Nh for which the basis functions feature

higher global continuity degree over the physical domain, especially for the the numerical

approximation of high order PDEs. In order to build such basis functions, we consider an

approach based on algebraic constraints and local linear transformations of the NURBS basis

functions originally used to represent the surface, leading to a subparametric approach, as

in [105]. Such smooth basis functions can be defined by suitably using the k-refinement

procedure and enforcing periodic conditions on the original basis functions. For example,

consider again the cylinder whose knot vectors are reported in Eq. (3.3.7); the knot vector Ξ2,

characterizing the NURBS basis along the second parametric direction, is replaced by the
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following:

Ξ2 =
{

{0}3,

{
1

4

}3

,

{
1

2

}3

,

{
3

4

}3

, {1}3
}

, (3.3.8)

and then appropriately h-refined. The increment of multiplicity of the internal knots in (3.3.8)

leads the corresponding NURBS basis functions to be discontinuous at the (original, before

the h-refinement) element boundaries. The requested degree of continuity is then restored at

each of these discontinuities and at the patch boundaries by enforcing algebraic constraints

between the DOFs and by transforming the NURBS basis functions which have support near

the discontinuities and the boundaries, as done in [44] for planar surfaces and in [105] for

3D surfaces. In particular, we define a periodic NURBS function space by applying a linear

transformation operator Tper ∈Rnb f ×nb f to the basis functions R̂ := {R̂i
}nb f

i=1 which define the

NURBS space N̂h , as:

R̂per := Tper R̂, (3.3.9)

thus obtaining, together with the necessary constraints among the DOFs, a set of periodic

basis functions R̂per . The periodic NURBS function spaces are then constructed as:

N̂
per

h := span
{
R̂per

i , i = 1, . . . ,nb f
}

(3.3.10)

and

N
per

h := span
{
R̂per

i ◦X−1, i = 1, . . . ,nb f
}

. (3.3.11)

Such procedure allows the construction of periodic basis functions preserving high order

continuity internally and across the boundaries of the NURBS patch. Examples of univariate

periodic B-Spline basis functions of polynomial degrees p = 2 and p = 3 and globally C 1- and

C 2-continuous, respectively, are shown in Figure 3.7.
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3.4. NURBS-based Isogeometric Analysis

3.4 NURBS-based Isogeometric Analysis

Let Ω ⊂ R3 be a domain defined as a NURBS curve, surface, or volume through a geomet-

rical mapping of the form (3.2.7). Now, consider the prototype elliptic PDE of the 2m-th

order in Eq. (1.2.1) for m = 2,3 defined on Ω and whose variational form is reported here for

convenience:

find u ∈V0 such that

a(ψ,u) = F (ψ) ∀ψ ∈V0,
(3.4.1)

where V0 ⊂ H m(Ω). In this thesis, the numerical approximation of such PDEs is obtained by

means of NURBS-based IGA in the framework of the Galerkin method. By considering the

NURBS function space Nh defined in Eq. (3.3.2), used also for the geometrical representation

in Eq. (3.2.7), an approximate solution uh ∈Nh is sought such that:

uh(p) =
nb f∑
i=1

(
R̂i ◦X−1) (p)Ui ∀p ∈Ω, (3.4.2)

where U = (U1, . . . ,Unb f

)T ∈ Rnb f is the vector of control variables, corresponding to the un-

knowns of the discrete problem. For IGA within the Galerkin framework, uh is obtained by

solving the finite dimensional problem:

find uh ∈Vh such that

a(ψh ,uh) = F (ψh) ∀ψh ∈Vh ,
(3.4.3)

where Vh :=V0∩Nh . Then, following Eq. (1.2.4), problem (3.4.3) is rewritten on the parametric

domain Ω̂ as:

find ûh ∈ V̂h such that

â
(
ψ̂h , ûh

)= F̂
(
ψ̂h
) ∀ψ̂h ∈ V̂h ,

(3.4.4)

where V̂h := V̂g ∩N̂h . The solution ûh defined on the parametric domain Ω̂ reads:

ûh (ξ) =
nb f∑
i=1

R̂i (ξ) Ui . (3.4.5)

The same procedure is followed when considering problems defined on closed surfaces, like

for Eqs. (1.2.3) and (1.2.5).

The high order Laplace–Beltrami eigenvalue problem defined in Eq. (1.2.18) is discretized

by means of NURBS-based IGA in a similar way. On the parametric domain Ω̂, the discrete

problem reads:

find ûh ∈ V̂h and λh ∈R such that

â(ψ̂h , ûh) =λhb̂(ψ̂h , ûh) ∀ψ̂h ∈ V̂h ,
(3.4.6)
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Figure 3.8 – Examples of NURBS basis functions of degree p = 2 on the sphere; globally
C 0-continuous basis functions (top row) and C 2-continuous a.e. basis functions (bottom row).

where â(·, ·) is either the bilinear form (1.2.10) or (1.2.16), b̂(·, ·) is the bilinear form of Eq.

(1.2.21), and V̂h is a suitable NURBS function space whose elements satisfy the differentiability

requirements associated to the operators under consideration (that is H m
0 (Ω̂) or H m(Ω̂) for an

original differential operator of order 2m). The eigenvalues λh are real since the considered

bilinear forms are symmetric.

We remark that, depending on the order of the PDE, it is necessary to satisfy different differ-

entiability requirements on uh and ψh . Specifically, for PDEs of order 2m the trial and test

function spaces should be subspaces of the function space H m(Ω), for m ≥ 1. This require-

ment is satisfied for example if the basis functions are at least globally C m−1-continuous on

the surface Ω. This is a distinguishing feature of NURBS-based IGA: the global continuity

of the NURBS basis functions can be tuned directly as they are constructed or enforced by

means of suitable refinement procedures, as seen in Sections 3.3.1. As mentioned before, if

the original basis functions representing the geometry do not meet the necessary continuity

requirement, by using a subparametric approach globally C m−1-continuous basis functions

on closed or partially closed surfaces can be defined, through suitable local linear transforma-

tions and algebraic constraints. In these cases, the NURBS spaces for the IGA approximation

are built as e.g. V̂ per
h = V̂ ∩N̂

per
h and V per

h =V ∩N
per

h from Eqs. (3.3.10) and (3.3.11). In this

respect, for fourth order problems (m = 2) at least globally C 1-continuous basis functions are

used and at least globally C 2-continuous basis functions for sixth order problems (m = 3).

However, some closed surfaces of practical interest, as e.g. the sphere, can only be built by

NURBS basis functions which do not possess the required degree of global continuity, as the

presence of localized singularities of the geometrical mapping prevents the basis functions to

be globally C m−1-continuous on Ω. For example, the standard single patch construction of
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the sphere involves the presence of two singularities at the poles, for which the subparametric

approach leads to the use of NURBS spaces where the functions are only C 0-continuous at

the poles and up to C m−1-continuous elsewhere. In this case, the basis functions are C m−1-

continuous a.e. in Ω and globally C m−1-continuous in Ω̂. Nevertheless, even in presence of

these pointwise singularities, we show by numerical evidence that the spaces V per
h obtained

in this manner yield the same convergence rates for the errors of the standard conformal

Galerkin method using subspaces of H m(Ω). This is true even if the basis functions are not

pointwise C m−1-continuous across the poles of the sphere, as it will be shown in Sections 4.1.1

and 4.1.3. Nevertheless, the basis functions and their derivatives are in any case evaluated in

the Gauss–Legendre quadrature nodes, which are internal to the mesh elements and therefore

not laying in the singularity points corresponding to the poles of the sphere. As example, in

Figure 3.8 eight NURBS basis functions of degree p = 2 on the sphere are reported: the top row

shows the original non-transformed NURBS basis functions which are only C 0-continuous

across the equator and four meridians (indicated as black lines); the bottom row shows four

periodic basis functions which have been transformed as in Eq. (3.3.9) and are C 1-continuous

on the sphere except at the poles.

3.4.1 A priori error estimate

In the next chapter, we will test the accuracy of the NURBS-based IGA approximation of prob-

lem (3.4.3) under h-refinement. In this respect, in [40] error estimates for the approximation of

elliptic high order PDEs by means of NURBS-based IGA are available for 2D and 3D domains.

In particular, Theorem 3.3 of [40] is reported for reference in the following:

Theorem 7. For the elliptic PDE of order 2m in (3.4.3) defined in Ω⊂Rd , for d = 2,3, endowed

with homogeneous essential boundary conditions, let u ∈ H r (Ω), for r ≥ m, be the exact solution

of problem (3.4.3) and uh be the approximate solution, obtained by means of NURBS-based

IGA in the framework of the Galerkin method. Then, the following a priori error estimate in

lower order norms Hσ(Ω), with 0 ≤σ≤ m, holds:

‖u −uh‖Hσ(Ω) ≤Cshape hβ‖u‖H r (Ω), (3.4.7)

where β := min{δ−σ,2(δ−m)}, with δ := min{r, p +1}, p is the polynomial degree of the basis

functions, and Cshape is a constant independent of h.

Theorem 7 is stated and proven in [40] for problems for which the dimension of the parametric

domain Ω̂ ⊂ Rk is equal to the dimension of the physical domain Ω ⊂ Rd , i.e. k = d . It can,

however, be extended to the case of surfaces with boundaries, similarly to the results in [43]

for second order surface PDEs. The case of fully closed surfaces is not covered by the theorem.

Nevertheless, in the next chapter we will report numerical error analysis also for the case of

closed surfaces (as the sphere), showing consistent convergence rates.
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4 IGA for high order surface PDEs

In this chapter, we consider the numerical approximation of the high order surface PDEs

introduced in Chapter 1, by means of NURBS-based IGA, which we briefly described in

Chapter 3. Firstly, we study the approximation of the steady problems described in Section 4.1,

in particular the Laplace–Beltrami biharmonic and triharmonic problems and the Laplace–

Beltrami eigenvalue problem. Then, we consider the time-dependent phase field problems

introduced in Section 4.2, in particular the Cahn–Hilliard and phase field crystal equations.

The solution of these problems aims at establishing a computational framework for the

geometric PDEs solved in Chapter 5. We provide numerical results both on open and closed

surfaces. Most of these results were published in [105], of which this chapter represents an

overview.
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(a) Solution of Test 4.1.1 (b) Solution of Test 4.2.1

Figure 4.1 – Exact solutions u of the biharmonic and triharmonic problems (Tests 4.1 and 4.2)
on a quarter of cylinder.

4.1 Numerical approximation of steady PDEs

In this section, we propose three test problems: the numerical approximation of the Laplace–

Beltrami biharmonic (Test 4.1) and triharmonic (Test 4.2) problems on a quarter of cylinder, a

cylinder, and a unit sphere. Then, we approximate high order Laplace–Beltrami eigenvalue

problems on the unit sphere (Test 4.3).

4.1.1 Test 4.1. Laplace–Beltrami biharmonic problem

We consider the numerical approximation of the Laplace–Beltrami biharmonic problem

described in Section 1.2.1 on different geometries. In particular, we consider different domains

Ω, namely:

• a quarter of cylinder in Test 4.1.1;

• a cylinder, closed on the lateral surface, but of finite length in Test 4.1.2;

• a unit sphere (a fully closed surface) in Test 4.1.3.

We consider problem (1.2.6) ifΩ has a boundary, otherwise, for closed surfaces, problem (1.2.7)

is solved instead. Since V ⊆ H 2(Ω), for the discretization of the problem (and the exact

representation of the geometry) we consider NURBS bases of degree p ≥ 2 and at least globally

C 1-continuous a.e. in the parametric domain Ω̂. Regarding the cylinder and the sphere, we

enforce global H 2-regularity in the physical space across the closed surface by means of the

periodic transformations of the NURBS basis functions described in Section 3.3.1. We remark

that, in this way, we obtain basis functions which are C p−1-continuous everywhere on the

closed lateral surface of the cylinder; on the sphere, the basis functions are C p−1-continuous

a.e., with exception at the poles.

We consider a right-hand-side function f hand-crafted in such a way that the exact solution

u is known and is globally C∞-continuous on Ω. Specifically, for Test 4.1.1, with the domain

Ω = (0,π/2)× (0,1) representing, in cylindrical coordinates (θ, z), a quarter of cylinder with
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4.1. Numerical approximation of steady PDEs

(a) Solution of Tests 4.1.3 and 4.2.3

Figure 4.2 – Exact solution u of the biharmonic and triharmonic problems (Tests 4.1 and 4.2)
on a unit sphere.

(a) Solution of Test 4.1.2 (b) Solution of Test 4.2.2

Figure 4.3 – Exact solutions u of the biharmonic and triharmonic problems (Tests 4.1 and 4.2)
on a cylinder.

unitary radius and centered at the origin, we consider the following exact solution in cylindrical

coordinates (Figure 4.1a):

u(θ, z) = sin2 (2θ)sin2 (πz) , (4.1.1)

where θ = atan(y/z), with μ = 1 and γ = 0. On the cylinder (Test 4.1.2), with domain in

cylindrical coordinates being Ω = (0,2π)× (0,1), we consider the following exact solution

instead (Figure 4.3a):

u(θ, z) = sin
(�

2+2θ
)

sin2
(π

2
z
)

. (4.1.2)

On the sphere of unitary radius centered at the origin (Test 4.1.3) we use (Figure 4.2a):

u(x, y, z) = (x −x0)(y − y0)2 − (y − y0)(z − z0)2 + (x −x0)2(z − z0), (4.1.3)

with x0 = 0.05, y0 = 0.1, and z0 = 0.15.
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Figure 4.4 – Test 4.1.1. Biharmonic problem on the quarter of cylinder. Errors in norms
H 2(Ω) and L2(Ω) vs. mesh size h for NURBS bases of degrees p = 2 and 3, globally C 1- and
C 2-continuous, respectively (logarithmic scales are used on both the axes).

The biharmonic problem is governed by a fourth order operator (for which, by using the

notation of Section 1.2, m = 2). By applying Theorem 7, when considering exact solutions

u ∈ H r (Ω), with r ≥ p +1 ≥ m (as it is the case with u ∈C∞(Ω)), the following estimates hold

for problem (1.2.6), following directly from the inequality (3.4.7):

‖u −uh‖H 2(Ω) ≤Cshape hp−1‖u‖H r (Ω)

‖u −uh‖L2(Ω) ≤ C̃shape hmin{p+1,2p−2}‖u‖H r (Ω).
(4.1.4)

In order to compute the norm H 2(Ω), instead of employing the full seminorm, we use the

equivalent norm L2(Ω) of the Laplace–Beltrami surface operator. Indeed, for closed surfaces

or open surfaces on which the essential boundary conditions are enforced, one has:

‖ΔΩϕ‖L2(Ω) � |ϕ|H 2(Ω), (4.1.5)

for ϕ ∈ H 2(Ω) on a closed surface or ϕ ∈ H 2
0 (Ω). In Figure 4.4, we report the errors in norms

H 2(Ω) and L2(Ω) obtained by the IGA approximation of the biharmonic problem on the

quarter of cylinder (Test 4.1.1) under h-refinement, having used NURBS bases of degree

p = 2 and p = 3, which are globally C 1- and C 2-continuous, respectively. We observe that the

convergence rates are in agreement with the error estimates (4.1.4). Indeed, the convergence

rates are 1 and 2 for the errors in norm H 2(Ω) using basis of degree p = 2 and 3, respectively;

similarly, the rates are 2 and 4 for the errors in the norm L2(Ω) for p = 2 and 3, respectively.

In Figure 4.5, we plot the errors obtained on the cylinder (Test 4.1.2). Differently from Test 4.1.1,

the cylinder possesses a closed lateral surface (even if it has a top and bottom boundary),

which needed transformation of the NURBS basis functions to enforce the required degree of

continuity; nevertheless, the estimates in Eq. (4.1.4) for the errors hold and same convergence

rates as Test 4.1.1 are observed.
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Figure 4.5 – Test 4.1.2. Biharmonic problem on a cylinder. Errors in norms H 2(Ω) and L2(Ω)
vs. mesh size h for NURBS bases of degrees p = 2 and 3, globally C 1- and C 2-continuous,
respectively (logarithmic scales are used on both the axes).
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Figure 4.6 – Test 4.1.3. Biharmonic problem on the sphere. Errors in norms H 2(Ω) and L2(Ω)
vs. mesh size h for NURBS bases of degrees p = 2 and 3, C 1- and C 2-continuous a.e. on Ω,
respectively (logarithmic scales are used on both the axes).

The errors obtained for the approximation of the biharmonic problem on the unit sphere

(Test 4.1.3) are reported instead in Figure 4.6. In this case, the convergence rates still satisfy

the estimate in Eq. (4.1.4). Actually, the convergence rate for the error in norm L2(Ω) is higher

than predicted from Eq. (4.1.4) since for p = 2 it is equal to 3; we provide an explanation of this

behavior in the following remark.

Remark 1. The error estimate (4.1.4), and more in general (3.4.7), is not optimal in lower order

norms, at least for problems defined on closed surfaces. Specifically, one would rather expect the

error estimate in L2(Ω) norm to be:

‖u −uh‖L2(Ω) ≤ C̃shape hp+1‖u‖H r (Ω). (4.1.6)

This is precisely what we obtain in Figure 4.6 for p = 2, but not for p = 3. By returning to the

error estimate of Eq. (4.1.4), we remark that the threshold h2p−2 arises from a regularity result
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10−2 10−110−10

10−8

10−6

10−4

10−2

100

102

h

E
rr

o
r

103 104 10510−10

10−8

10−6

10−4

10−2

100

102

DOFs
E

rr
o

r

10−2 10−110−10

10−8

10−6

10−4

10−2

100

102

h

E
rr

o
r

103 104 10510−10

10−8

10−6

10−4

10−2

100

102

DOFs

E
rr

o
r

Figure 4.7 – Test 4.1.3. Biharmonic problem on the sphere. Errors in norms H 2(Ω) and L2(Ω)
vs. mesh size h (left) and number of DOFs (right), obtained with IGA and FEM for degrees
p = 2 (top) and 3 (bottom); the IGA approximation uses NURBS basis functions C 1- and
C 2-continuous a.e. on Ω, respectively (logarithmic scales are used on both the axes).

for problems with boundaries in the track of the Aubin–Nitsche duality argument [40], as it

is actually confirmed for the approximation on the quarter of cylinder in Figure 4.4 and 4.5.

The same argument can be applied also in the case of the cylinder as reported in Figure 4.5,

which has closed lateral surface but still possesses boundaries at the top and bottom. However,

for fully closed surfaces, we numerically find the optimal convergence rate of Eq. (4.1.6) for the

error in norm L2(Ω) irrespective of the value of p. Although we do not have a rigorous proof,

we speculate that on closed surfaces the exact solution does not suffer the regularity limitation

featured instead for open surfaces, i.e. endowed with boundary ∂Ω, and hence the optimal

convergence rate hp+1 can be achieved.
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4.1. Numerical approximation of steady PDEs

4.1.2 Test 4.1. Comparison with isoparametric FEM

For the sake of comparison, we also consider the approximation of the biharmonic prob-

lem (1.2.7) on the sphere Ω by means of a standard isoparametric FEM discretization. In this

case, in view of the FEM approximation based on C 0-continuous Lagrangian basis functions,

the following mixed formulation is considered:

find u, v : Ω→R such that{−ΔΩu − v = 0 in Ω,

−μΔΩv +γu = f in Ω,

(4.1.7)

where v : Ω→R is an auxiliary unknown. Problem (4.1.7) in weak form reads:

find u, v ∈V such that⎧⎪⎪⎨⎪⎪⎩
∫
Ω
∇Ωu ·∇ΩϕdΩ−

∫
Ω

v ϕdΩ= 0 ∀ϕ ∈V ,

μ

∫
Ω
∇Ωv ·∇ΩψdΩ+γ

∫
Ω

uψdΩ=
∫
Ω

f ψdΩ ∀ψ ∈V ,

(4.1.8)

with V ≡ H 1(Ω). Problem (4.1.8) is discretized using isoparametric FEM of degrees p = 2 and 3

on successively finer meshes of the unit sphere. In this case, the geometry is not represented

exactly, as it happens instead with NURBS. We remark that, due to the difficulty of achieving

high order continuity across the elements, standard isoparametric FEM discretizations [42]

require a system of equations with approximately twice the number of DOFs than those of IGA,

being therefore potentially less efficient. A comparison between the approximation errors

obtained with IGA and these FEM discretizations is shown in Figure 4.7, for which both the

errors vs. the mesh size and the number of DOFs involved in the IGA and FEM approximations

are reported. As we notice from Figure 4.7, the IGA approximation requires a smaller number

of DOFs than its FEM counterpart of the same polynomial degree to achieve the same accuracy.

4.1.3 Test 4.2. Laplace–Beltrami triharmonic problem

We consider the numerical approximation of the triharmonic problem described in Sec-

tion 1.2.2 on different geometries. In particular, we consider the approximation of prob-

lem (1.2.12) on the quarter of cylinder (Test 4.2.1) and the cylinder (Test 4.2.2), and of prob-

lem (1.2.13) on the unit sphere (Test 4.2.3). These geometries are the same considered for the

biharmonic problem of Section 4.1.1, but, this time, represented by NURBS basis of degree

p ≥ 3 and at least globally C 2-continuous a.e. in the parametric domain Ω̂ (for the cases of

closed surfaces, the periodic NURBS function spaces described in Section 3.3.1 are employed).

Then, the same function spaces are used for the discretization of the problems. Regarding

Test 4.2.1, defined on the quarter of cylinder, we consider the following exact solution in
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Chapter 4. IGA for high order surface PDEs

cylindrical coordinates (θ, z) (Figure 4.1b):

u(θ, z) = sin3(2θ) sin3(πz), (4.1.9)

where θ = atan(y/z), with μ= 1, γ= 0, and f suitably chosen. For Test 4.2.2, defined on the

cylinder, we consider the following exact solution instead (Figure 4.3b):

u(θ, z) = sin
(�

2+2θ
)

sin3
(

3

2
πz

)
. (4.1.10)

For problem (1.2.13) defined on the sphere (Test 4.2.3), we consider a right-hand-side function

f such that the exact solution u is the one reported in Eq. (4.1.3) and shown in Figure 4.2a,

using the same parameters.

By applying Theorem 7 to problem (1.2.12), an elliptic PDE of order 6 endowed with homoge-

neous essential boundary conditions for which u ∈ H r (Ω) with r ≥ p +1 ≥ m, the following

estimates hold:

‖u −uh‖H 3(Ω) ≤Cshape hp−2‖u‖H r (Ω)

‖u −uh‖L2(Ω) ≤Cshape hmin{p+1,2p−4}‖u‖H r (Ω).
(4.1.11)

Similarly to the case of the biharmonic problem, we do not compute the norm H 3(Ω) by using

the seminorm H 3(Ω), but rather we use the norm L2(Ω) of the third order Laplace–Beltrami

operator. Indeed, for closed surfaces and problems with essential boundary conditions, the

former seminorm and norm are equivalent, i.e.:

|ϕ|H 3(Ω) � ‖∇ΩΔΩϕ‖L2(Ω), (4.1.12)

for ϕ ∈ H 3(Ω) with Ω closed or ϕ ∈ H 3
0 (Ω). Figure 4.8 shows the errors in norms H 3(Ω)

and L2(Ω) obtained by the IGA approximation of the triharmonic problem on the quarter

of cylinder (Test 4.2.1) under h-refinement, with C 2-continuous NURBS basis functions of

degrees p = 3 and 4. We observe that the convergence rates obtained are in agreement with the

error estimate (4.1.11); indeed, the rates are 1 and 2 for the errors in norm H 3(Ω) using basis

of degrees p = 3 and 4, respectively, and 2 and 4 for the errors in norm L2(Ω) for p = 3 and 4,

respectively. Similarly, as shown in Figure 4.9, the numerical approximation the triharmonic

problem on the cylinder (Test 4.2.2) yields the same convergence rates as in Test 4.2.1 on the

quarter of cylinder, i.e. in agreement with the estimate of Eq. (4.1.11).

Figure 4.10 shows the errors obtained by the numerical approximation of the triharmonic

problem on the sphere (Test 4.2.3). As for the biharmonic problem on the sphere, the conver-

gence rates for the errors in norm H 3(Ω) are in agreement with Eq. (4.1.11), while the errors in

norm L2(Ω) converge at a higher rate, precisely 4 and 5 for basis functions of degrees p = 3

and 4, respectively. We explain this result in the track of Remark 1 for which we expect the

optimal convergence rate p +1 for problems on closed surfaces, as indicated in Eq. (4.1.6).
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Figure 4.8 – Test 4.2.1. Triharmonic problem on the quarter of cylinder. Errors in norms H 3(Ω)
and L2(Ω) vs. mesh size h for NURBS bases of degree p = 3 and 4 and globally C 2-continuous
in both cases (logarithmic scales are used on both the axes).
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Figure 4.9 – Test 4.2.2. Triharmonic problem on the cylinder. Errors in norms H 3(Ω) and L2(Ω)
vs. mesh size h for NURBS bases of degree p = 3 and 4 and globally C 2-continuous in both
cases (logarithmic scales are used on both the axes).

4.1.4 Test 4.2. Comparison with isoparametric FEM

In addition, we consider the approximation of the triharmonic problem (1.2.13) defined on

the sphere Ω by means of a standard isoparametric FEM approximation. In this respect, we

consider the problem in mixed formulation:

find u, v, w : Ω→R such that⎧⎪⎪⎨⎪⎪⎩
−ΔΩu +w = 0 in Ω,

−ΔΩw + v = 0 in Ω,

−μΔΩv +γu = f in Ω,

(4.1.13)
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Figure 4.10 – Test 4.2.3. Triharmonic problem on the sphere. Errors in norms H 3(Ω) and L2(Ω)
vs. mesh size h for NURBS bases of degrees p = 3 and 4 and C 2-continuous a.e. on Ω in both
cases (logarithmic scales are used on both the axes).
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Figure 4.11 – Test 4.2.3. Triharmonic problem on the sphere. Errors in norm H 3(Ω) and L2(Ω)
vs. mesh size h (left) and number of DOFs (right), obtained with IGA and FEM for degree
p = 3; for the IGA approximation NURBS basis functions C 2-continuous a.e. on Ω are used
(logarithmic scales are used on both the axes).

where v and w : Ω→R, are auxiliary unknowns. Problem (4.1.13) in weak form reads:

find u, v, w ∈V such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω
∇Ωu ·∇ΩϕdΩ+

∫
Ω

w ϕdΩ= 0 ∀ϕ ∈V ,∫
Ω
∇Ωw ·∇ΩψdΩ+

∫
Ω

v ψdΩ= 0 ∀ψ ∈V ,

μ

∫
Ω
∇Ωv ·∇ΩϑdΩ+γ

∫
Ω

uϑdΩ=
∫
Ω

f ϑdΩ ∀ϑ ∈V ,

(4.1.14)
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(a) Bilaplacian, p = 2, C 1-continuous a.e. (b) Trilaplacian, p = 3, C 2-continuous a.e.

Figure 4.12 – Test 4.3. Laplace–Beltrami eigenvalue problems on the sphere. Normalized spec-
tra (ratio λn,h/λn vs. n/nb f ) computed by solving the bilaplacian and trilaplacian eigenvalue
problems, with NURBS bases of degree p = 2 and C 1-continuous a.e. in Ω (left) and degree
p = 3 and C 2-continuous a.e. in Ω (right), respectively.

with V ≡ H 1(Ω). Problem (4.1.14) is discretized using isoparametric FEM of degree p = 3

on successively finer meshes on the unit sphere. In this case, the FEM discretizations yield

systems of equations with approximately three times the amount of DOFs with respect to

the corresponding IGA discretizations. The errors obtained with IGA and FEM are reported

in Figure 4.11 vs. the mesh size and the number of DOFs. As we can observe, IGA yields the

same level of error with a much smaller number of DOFs, for which the same accuracy can be

obtained more efficiently.

4.1.5 Test 4.3. High order Laplace–Beltrami eigenvalue problems

We consider the numerical approximation of the eigenvalue problem (1.2.20) associated to the

Laplace–Beltrami operators of the fourth (m = 2) and sixth (m = 3) orders on the unit sphere.

The exact eigenvalues, solution of the eigenvalue problem governed by an operator of order

2m, with m ≥ 1, are:

λn = (n(n +1))m for n = 0,1, . . . , (4.1.15)

where each eigenvalue λn has multiplicity 2n +1 (see e.g. [33]).

For the numerical approximation of the eigenvalue problem for m = 2 we employ NURBS

bases of degree p = 2 and C 1-continuous a.e. in Ω, while for m = 3 we use NURBS bases of

degree p = 3 and C 2-continuous a.e. in Ω. In Figure 4.12 we report the normalized spectra,

i.e. the ratio λn,h/λn vs. the normalized eigenvalue number n/nb f , considering two different

mesh sizes h for both the bilaplacian and trilaplacian eigenvalue problems.

59



Chapter 4. IGA for high order surface PDEs

(a) Bilaplacian, p = 2 (b) Trilaplacian, p = 3

Figure 4.13 – Test 4.3. Laplace–Beltrami eigenvalue problems on the sphere. Comparison
of the normalized spectra computed by solving the bilaplacian (left) and trilaplacian (right)
eigenvalue problems with IGA and isoparametric FEM for degrees p = 2 and 3, respectively; the
IGA approximation uses NURBS basis functions C 1- and C 2-continuous a.e. on Ω, respectively.

Then, we compare the normalized spectra obtained with IGA against the ones obtained using

isoparametric FEM discretizations. The bilaplacian and trilaplacian eigenvalue problems

are approximated using FEM in mixed formulation, similarly to Eqs. (4.1.7) and (4.1.13),

respectively. For the comparison of the bilaplacian problem we use for IGA NURBS of degree

p = 2 and C 1-continuous a.e. in Ω with 2,048 DOFs, while for FEM we consider Lagrangian

basis functions of degree p = 2 and C 0-continuous for a total of 3,972 DOFs. Regarding the

trilaplacian problem, we consider an IGA discretization with NURBS basis functions of degree

p = 3 and C 2-continuous a.e. in Ω for a total of 2,048 DOFs against a FEM discretization with

Lagrangian basis functions of degree p = 3 and C 0-continuous with 3,318 DOFs. In Figure 4.13

we report the normalized spectra obtained for the Laplace–Beltrami eigenvalue problems of

orders 4 and 6 on the sphere approximated by IGA and isoparametric FEM. It is quite evident

that the IGA approximation with high order continuous basis functions yields more accurate

results than its FEM counterpart even with a lower number of DOFs involved. Still, we remark

that the isoparametric FEM do not allow the exact representation of the sphere.
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4.2 Phase field models

In this section we consider the numerical approximation of the Cahn–Hilliard (Test 4.4) and

phase field crystal equations (Test 4.5), introduced in Sections 1.3.1 and 1.3.2, respectively. As

these are time-dependent problems, we firstly describe our approach to the time discretization

using the α-method. Then, we proceed with the description of the IGA spatial discretization

and we report numerical results for the approximation of these phase field models on open

and closed surfaces.

4.2.1 Time discretization by the generalized-α method

As far as the time discretization is concerned, we employ for both the phase field models under

consideration the generalized-α method [44, 45, 143]. This is a fully implicit time integration

scheme, allowing the control on the numerical dissipation by suitably tuning a parameter.

Let us consider a partition of the interval [0,T ] ⊂ R into N ∈N, N > 0, time steps, with time

instances denoted as tn , for n = 0, . . . , N , for which t0 = 0 and tN = T . We denote the size of

time step n with Δtn = tn+1 − tn . Let us consider the approximated solution ûh(tn) = ûn
h at

time tn and discretized by means of NURBS-based IGA, such that:

ûn
h =

nb f∑
i=1

R̂iUi (tn) and ˙̂un
h =

nb f∑
i=1

R̂iU̇i (tn), (4.2.1)

the latter being the time derivative. We denote with Un and U̇n the vectors of control variables

associated with the solution and their time derivatives at time tn , i.e. Un = {Ui (tn)}
nb f

i=1 and

U̇n = {U̇i (tn)}
nb f

i=1. The generalized-α method consists in solving, at each time instance tn , with

n ≥ 0, the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̂es(U̇n+αm ,Un+α f ) = 0

Un+α f = Un +α f
(
Un+1 −Un)

U̇n+αm = U̇n +αm

(
U̇n+1 − U̇n

)
Un+1 = Un +ΔtnU̇n +δΔtn

(
U̇n+1 − U̇n

)
,

(4.2.2)

where the residual vector R̂es(·, ·) is associated with the weak residuals (which, in our case,

will be defined later in Eqs. (4.2.15) and (4.2.21) for the problems under consideration); the

vectors U0 and U̇0 are associated with the initial solution û0
h and initial velocity ˙̂u0

h , as:

û0
h =

nb f∑
i=1

R̂iUi (t0) and ˙̂u0
h =

nb f∑
i=1

R̂iU̇i (t0). (4.2.3)
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The parameters αm , α f and δ are chosen such that:

δ= 1

2
+αm −α f and αm ≥α f ≥

1

2
, (4.2.4)

leading to an unconditionally stable and second order accurate method when employed for

linear problems [144]. Moreover, they can be tuned to control the numerical dissipation

of the high frequencies. By denoting with ρ∞ ∈ [0,1] the limit of the spectral radius of the

amplification matrix for Δt →∞, the parameters can be chosen in terms of ρ∞ as:

αm = 1

2

(
3−ρ∞
1+ρ∞

)
, α f =

1

1+ρ∞
, and δ= 1

1+ρ∞
. (4.2.5)

In order to solve the nonlinear system of equations (4.2.2) resulting from time and space

discretizations, we employ the Newton method [50], as in [44]. We denote with the subscript

k the current Newton iterate, starting from k = 0, and with kmax the maximum number of

sub-iterations allowed. Then, we have the following predictor–multicorrector scheme at each

discrete time instance tn , with n ≥ 0:

Predictor (initialization phase of Newton method):

Un+1
0 = Un

U̇n+1
0 = δ−1

δ
U̇n .

(4.2.6)

Corrector:

1. Interpolate the solution and time derivative vectors at the intermediate time instances

tn+α f and tn+αm , respectively:

U
n+α f

k+1 = Un +α f
(
Un+1

k −Un) ,
U̇n+αm

k+1 = U̇n +αm
(
U̇n+1

k − U̇n) . (4.2.7)

2. Calculate the problem-specific residual vector:

Qk+1 := Res
(
U̇n+αm

k+1 ,U
n+α f

k+1

)
. (4.2.8)

Then, check if the relative norm of the residual is below a certain tolerance τ:

‖Qk+1‖
‖Q0‖

≤ τ. (4.2.9)

If this is the case, the scheme has converged; otherwise, continue with step 3.

3. Assemble the tangent stiffness matrix:

Kk+1 :=αm

∂Res
(
U̇n+αm

k+1 ,U
n+α f

k+1

)
∂U̇n+αm

+α f δΔtn

∂Res
(
U̇n+αm

k+1 ,U
n+α f

k+1

)
∂Un+α f

. (4.2.10)
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4. Solve the following linear system:

Kk+1ΔU̇n+1
k+1 =−Qk+1. (4.2.11)

5. Correct the time derivative vector with the solution of the linear system (4.2.11):

U̇n+1
k+1 = U̇n+1

k +ΔU̇n+1
k+1, (4.2.12)

then update the solution vector:

Un+1
k+1 = Un+1

k +δΔtnΔU̇n+1
k+1. (4.2.13)

6. Set k = k +1. If k < kmax continue from step 1.

For the numerical tests of the next sections, we set ρ∞ = 0.5 and the solution of the linear

system (4.2.11) of step 4 is performed with the GMRES method [145] with incomplete LU

factorization as preconditioner.

4.2.2 Test 4.4. Approximation of the Cahn–Hilliard equation

We consider the numerical approximation of the Cahn–Hilliard equations with boundary

conditions (1.3.6) on a quarter of cylinder (Test 4.4.1) and its counterpart for closed surfaces

on a unit sphere (Test 4.4.2). Since the Cahn–Hilliard equation is a fourth order PDE, we

require the NURBS basis functions used for the discretization of the problem to be at least

globally C 1-continuous a.e., eventually by employing the periodic NURBS function space

construction described in Section 3.3.1. Finally, problem (1.3.8) is rewritten in the parametric

domain Ω̂ and discretized using NURBS-based IGA, reading:

for a.e. t ∈ (0,T ), find ûh ∈ L2(0,T ;V̂h)∩H 1 (0,T ;L2(Ω̂)
)

such that⎧⎪⎪⎨⎪⎪⎩
R̂es(ûh(t ))(ψ̂h) = 0 ∀ψh ∈ V̂h , t ∈ (0,T ),

+ possible B. C. on ∂Ω̂ (if ∂Ω �= �),

ûh(0) = ûh,0 in Ω̂,

(4.2.14)

where V̂h := H 2(Ω̂)∩ N̂h , with, eventually, N̂h := N̂
per

h for closed surfaces. R̂es is the weak

residual defined as:

R̂es(ûh(t ))(ψ̂h) :=
∫
Ω̂

∂ûh

∂t
ψ̂h dΩ̂+ âC H (ûh(t ))(ψ̂h) ∀ψ̂h ∈ V̂h , (4.2.15)

with âC H (·)(·) obtained by a pull-back operation on the form (1.3.9) and ûh,0 as the pull-back

of the L2-projection of u0 onto Nh . The weak residual, defined on Ω, reads:

Res(uh(t ))(ψh) :=
∫
Ω

∂uh

∂t
vh dΩ+aC H (uh(t ))(ψh) ∀ψh ∈Vh , (4.2.16)
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t = 0 t = 2.4359 ·10−5 t = 3.3341 ·10−5 t = 4.9030 ·10−5

t = 1.5472 ·10−4 t = 6.4608 ·10−4 t = 2.6637 ·10−3 t = 9.3117 ·10−3

t = 4.1936 ·10−1 t = 2.1636 t = 2.6770 t = 1036.0280

Figure 4.14 – Test 4.4.1a. Cahn–Hilliard equation on a quarter of cylinder: evolution of the
solution with volume fraction v f = 0.5.

where Vh := H 2(Ω)∩Nh , with, eventually, Nh :=N
per

h .

Solutions of the Cahn–Hilliard equation are characterized by extremely variable time scales.

In order to obtain simulations reaching a steady state by considering all the time scales to a

sufficiently long final time T , it is necessary to employ an adaptive time stepping procedure.

We resort to the scheme proposed in [44, 45, 146]. The adaptive scheme relies on comparing

the solutions obtained by solving the problem firstly with the generalized-α method and

then with the Backward Euler method. Specifically, at each time step n the following iterative

procedure is performed, indicating with i the iteration:

1. Set i = 0 and Δtn,0 =Δtn−1.

2. Solve problem (4.2.14) at time step n with the generalized-α method using the time step
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4.2. Phase field models

t = 0 t = 3.9655 ·10−6 t = 8.3046 ·10−6 t = 5.6984 ·10−5

t = 2.0318 ·10−4 t = 6.9938 ·10−4 t = 2.2248 ·10−3 t = 9.8516 ·10−3

t = 1.6943 ·10−2 t = 4.5596 ·10−2 t = 8.2304 ·10−2 t = 1010.3975

Figure 4.15 – Test 4.4.1b. Cahn–Hilliard equation on a quarter of cylinder: evolution of the
solution with volume fraction v f = 0.35.

size Δtn,i , obtaining the solution vector Un+1
α,i .

3. Solve problem (4.2.14) at time step n with the Backward Euler method using the time

step size Δtn,i , obtaining the solution vector Un+1
BE ,i .

4. Calculate the relative error between the solution vectors obtained using the two time

discretization schemes:

en+1,i :=
‖Un+1

α,i −Un+1
BE ,i‖

‖Un+1
α,i ‖ . (4.2.17)
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(a) v f = 0.5 (Test 4.4.1a) (b) v f = 0.35 (Test 4.4.1b)

Figure 4.16 – Test 4.4.1. Cahn-Hilliard equation on the quarter of cylinder: energies G (t ), Gc (t ),
and Gs(t ) vs. time, with volume fractions v f = 0.5 (Test 4.4.1a, left) and v f = 0.35 (Test 4.4.1b,
right).

5. Calculate the new time step size as:

Δtn,i+1 = γa

√
τ

en+1,i
Δtn,i , (4.2.18)

where γa ∈R+ is a safety parameter.

6. If en+1,i < τ, with τ ∈R+ being a tolerance, or the maximum number of iterations imax is

reached, stop the iterations; otherwise, continue from step 2.

For the results presented in this thesis, we set τ= 10−3 and γa = 0.85.

We consider the numerical solution of the Canh–Hilliard equation with initial data u0 repre-

senting a random mixture of the phases. In particular, the volume fraction is a measure of the

quantity of a phase with respect to the other one, reading:

v f :=
∫
Ω u0 dΩ

|Ω| ; (4.2.19)

this ratio is conserved throughout the evolution in time of the mixture.

Regarding the approximation of the Canh–Hilliard equation on the quarter of cylinder, we

consider the case with v f = 0.5 (Test 4.4.1a) and the case with v f = 0.35 (Test 4.4.1b), with

homogeneous natural boundary conditions and considering M0 = 1, λ= 1.3144 ·10−3, L0 = 1,

and initial time step size Δt0 = 10−12. The IGA discretization is performed with NURBS basis

functions of degree p = 2, globally C 1-continuous, for a total of 16,384 elements, yielding

16,384 DOFs. The evolution of the phases for Tests 4.4.1a and 4.4.1b are outlined in Figures 4.14

and 4.15, respectively, where we highlight the phase transition from the initial mixed condition

to the steady state. For both the cases, the evolution of the total free energy G (t ), as well as the

chemical (bulk) Gc (t ) and the surface Gs(t ) energies, are reported in Figure 4.16. In Test 4.4.1a,
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t = 0 t = 3.7984 ·10−9 t = 1.1342 ·10−8 t = 1.2135 ·10−7

t = 1.0820 ·10−6 t = 9.6472 ·10−6 t = 8.6242 ·10−5 t = 2.9177 ·10−4

t = 4.8412 ·10−4 t = 8.0595 ·10−4 t = 2.8751 ·10−3 t = 7.0022 ·10−2

Figure 4.17 – Test 4.4.2a. Cahn–Hilliard equation on the sphere: evolution of the solution with
volume fraction v f = 0.5.

at the beginning the majority of the energy is represented by the chemical one and the phases

undergo an initial separation. Then, the energy becomes mostly interfacial and, as it gets

minimized, it leads to the coarsening of the phases, until they reach the equilibrium status

for which the interface is minimal. Instead, in Test 4.4.1b the prevalence of one phase in the

initial mixture, tuned through the volume fraction v f , leads to the scarcer phase to confine

itself on a corner of the geometry and the resulting minimal interface is circular.

Regarding the approximation on the sphere, we consider the case with v f = 0.5 (Test 4.4.2a)

and the case with v f = 0.3 (Test 4.4.2b). In both the cases, we set M0 = 1, λ = 1.3144 ·10−3,

L0 = 1 and we consider a spatial IGA discretization based on NURBS bases of degree p = 2 and

C 1-continuous a.e. on Ω; the mesh is comprised of 8,844 elements, for a total number of 8,192

DOFs. We initially set Δt0 = 10−14. The results are reported in Figure 4.17 (for Test 4.4.2a) and

Figure 4.18 (for Test 4.4.2b), for several time instances. The evolutions of the total, the chemical,

and the interface energies are reported in Figure 4.19. Finally, we report in Figure 4.20 the
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t = 0 t = 6.4305 ·10−5 t = 5.8724 ·10−4 t = 8.2920 ·10−4

t = 3.3687 ·10−3 t = 9.5514 ·10−3 t = 1.9369 ·10−2 t = 5.2653 ·10−2

t = 1.0873 ·10−1 t = 2.1818 ·10−1 t = 1.9039 t = 4.0040

Figure 4.18 – Test 4.4.2b. Cahn–Hilliard equation on the sphere: evolution of the solution with
volume fraction v f = 0.3.

evolution in time of the time step size Δt for Tests 4.4.2a and 4.4.2b, to show how the adaptive

scheme adapt the time step size to reach the equilibrium states in less computational time.
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(a) v f = 0.5 (Test 4.4.2a) (b) v f = 0.3 (Test 4.4.2b)

Figure 4.19 – Test 4.4.2. Cahn-Hilliard equation on the sphere: energies G (t ), Gc (t ), and Gs(t )
vs. time, with volume fractions v f = 0.5 (Test 4.4.2a, left) and v f = 0.3 (Test 4.4.2b, right).

(a) v f = 0.5 (Test 4.4.2a) (b) v f = 0.3 (Test 4.4.2b)

Figure 4.20 – Test 4.4.2. Cahn-Hilliard equation on the sphere: time step size Δt vs. time, for
volume fractions v f = 0.5 (Test 4.4.2a, left) and v f = 0.3 (Test 4.4.2b, right).

4.2.3 Test 4.5. Approximation of the phase field crystal equation

We consider the approximation of the phase field crystal equation, described in Section 1.3.2,

on an open and a closed surface. In particular, we consider problem (1.3.13) with natural

boundary conditions on the quarter of cylinder and problem (1.3.14) on a torus. The geometry

is always represented exactly by NURBS with a single patch. Problems (1.3.13) and (1.3.14) are

characterized both by a sixth order PDE; therefore, we consider the function space V ⊆ H 3(Ω),

with function at least globally C 2-continuous. We rewrite problem (1.3.15) in the parametric

domain Ω̂ and spatially discretize it with NURBS-based IGA, obtaining the following semi-

discretized problem:

find ûh(t ) ∈ L2(0,T ;V̂h)∩H 1(0,T ;L2(Ω̂)) such that{
R̂es(ûh(t ))(ψ̂h) = 0 ∀ψ̂h ∈ V̂h , t ∈ (0,T ),

ûh(0) = ûh,0 in Ω̂× {0} ,

(4.2.20)
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where V̂h := H 3(Ω̂)∩ N̂
per

h and R̂es is obtained performing the pull-back operation on the

weak residual:

Res(uh(t ))(ψh) :=
∫
Ω

∂uh

∂t
ψh dΩ+aPFC (uh(t ))(ψh), (4.2.21)

with aPFC (·)(·) being the form associated with the crystal equation and reported in Eq. (1.3.16).

Unlike the Cahn–Hilliard equation, the phase field crystal equation does not involve large

variations of the time scales; nevertheless, an ad hoc empirical time step size adaptivity scheme

has been employed, in order to reduce the overall computational cost of the simulation: at

each time step the successive time step size is calculated as the actual one rescaled by a factor

depending on the number of Newton sub-iterations Nnew ton carried at the corrector stage of

the generalized-α method. Specifically, Δtn+1 = min
{
βnΔtn ,Δtmax

}
, where:

βn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1.2 if Nnew ton < 3,

1.1 if Nnew ton = 3,

0.8 if Nnew ton = 4,

0.5 if Nnew ton > 4.

(4.2.22)

This is intended to keep the number of Newton iterations between 3 and 4 at each time step,

which represents a compromise between the computational cost and the accuracy of the

solution; moreover, with respect to the adaptivity scheme described in Section 4.2.2, it does

not require the assembly and solution of two linear systems at each time step.

We consider an initial condition u0 representing a single crystal immersed in a uniform liquid

field. We choose the parameters D = 106, k = 10−3/2, L0 = 1, φ0 = 5, g = 0, and ε= 1, for which

the dimensionless parameters are N1 = 0.2, N2 = 4 ·10−3, and N3 = 2 ·10−5, and the initial time

step size Δt0 = 5 ·10−5. We consider the spatial IGA approximation of the phase field crystal

problem by using NURBS basis functions of degree p = 3 and C 2-continuous on Ω; since also

the geometrical mapping of the torus does not have singularities, we are able to enforce the

required degree of continuity globally. For Test 4.5.1 on the quarter of cylinder, the mesh is

comprised of 1,024 elements, yielding 1,024 DOFs. Regarding Test 4.5.2 on the torus, the mesh

is made of 36,305 elements, for a total of 32,768 DOFs. The results for Tests 4.5.1 and 4.5.2

are reported in Figures 4.21 and 4.23, respectively. The evolutions of the energy C (t ) for both

cases are reported in Figure 4.22 and 4.24, from which we observe that it is monotonically

decreasing in time.
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t = 0 t = 1.6459 ·10−3 t = 3.7365 ·10−3 t = 5.3139 ·10−3

t = 6.9484 ·10−3 t = 8.6139 ·10−3 t = 1.0309 ·10−2 t = 1.1926 ·10−2

t = 1.3592 ·10−2 t = 1.5222 ·10−2 t = 1.7662 ·10−2 t = 3.2653 ·10−2

Figure 4.21 – Test 4.5.1. Phase field crystal equation on the quarter of cylinder: evolution of
the solution.

Figure 4.22 – Test 4.5.1. Phase field crystal equation on the quarter of cylinder: energy C (t)
vs. time.
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t = 0 t = 1.2078 ·10−2 t = 2.2928 ·10−2

t = 3.3984 ·10−2 t = 4.4512 ·10−2 t = 5.4830 ·10−2

t = 6.5140 ·10−2 t = 7.5643 ·10−2 t = 8.6342 ·10−2

t = 9.7245 ·10−2 t = 1.0941 ·10−1 t = 1.2884 ·10−1

Figure 4.23 – Test 4.5.2. Phase field crystal equation on the torus: evolution of the solution.

Figure 4.24 – Test 4.5.2. Phase field crystal equation on the torus: energy C (t ) vs. time.
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5 IGA for geometric PDEs

In this chapter, based on the paper [106], we consider the numerical approximation of the

geometric PDEs introduced in Chapter 2, namely the mean curvature and the Willmore flow

problems.

Being ubiquitous in many applications, the approximation of geometric PDEs has been

extensively analyzed using different approaches in literature, which we briefly recall hereafter.

Considering the mean curvature flow problem described in Section 2.4, several formulations

based on the FEM have been considered by various authors (see e.g. [147, 148]), with the level

set method (e.g. in [149,150]), or based on a phase field approach (see [10]). The approximation

of the Willmore flow is also of particular interest as it can be considered as a simplified

model for more complex curvature-based geometric flows. The seminal work [151] considers

a general surface evolver, which has been applied to the Willmore energy using the FEM.

Approximations based on finite difference schemes for axisymmetric solutions are proposed

in [152]. In general, the numerical approximation of the Willmore flow on parametric surfaces

is based on the FEM, as e.g. in [48,153,154]; in [155] a formulation based on the level set method

is used, while in [138, 156, 157] approximations of the Willmore flow for curves — also called

elastic flow of curves — are studied. For a general review on the numerical approximation

of geometric PDEs we refer the interested reader to [10], while, for approximating PDEs on

evolving surfaces, to the review work [158]. Nevertheless, all these approaches generally

involve geometric approximations of quantities which may lead to accuracy issues or complex

numerical schemes, which we instead aim at removing by using NURBS-based IGA.

In this chapter, we describe our approach to the numerical approximation of the mean

curvature and Willmore flow problems. Firstly, we describe our approach to the discretization

in space and time of a generic geometric PDE. As in Chapter 4, we discretize in space with

NURBS-based IGA in Section 5.1. Time discretization is performed by employing high order

Backward Differentiation Formulas (BDF) in a semi-implicit formulation and is introduced

in Section 5.2. Applications of these techniques to the mean curvature and Willmore flow

problems follow in Sections 5.3 and 5.4, respectively, with details regarding the formulation

adopted for each of the two problems and numerical results on several common geometries.
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5.1 Spatial discretization with IGA

Let us consider a generic shape energy functional J (Ω) and the associated geometric gradient

flow problem of Eq. (2.3.5), in weak form, which we rewrite here for convenience: given

Ω0 ⊂Rd ,

for a.e. t ∈ (0,T ), find Ωt ⊂Rd such that⎧⎪⎨⎪⎩
∫
Ωt

ẋ ·ϕdΩt =−μd J (Ωt )(ϕ) ∀ϕ ∈V (Ωt ),

x(0) = x0 in Ω0.

(5.1.1)

The unknown surface Ωt is defined through the identity map x at time t , as described in

Section 2.1. This problem can be written in a (more) general way as follows:

for a.e. t ∈ (0,T ), find x ∈Vg ,t such that{
m(ẋ;ϕ)+a(x;ϕ) = 0 ∀ϕ ∈V0,t ,

x(0) = x0 in Ω0,

(5.1.2)

where a(·; ·) is the form associated with the right-hand-side of Eq. (5.1.1) and defining the

problem under consideration and m(·; ·) is the mass form:

m(ẋ;ϕ) :=
∫
Ωt

ẋ ·ϕdΩt . (5.1.3)

The Hilbert spaces Vg ,t and V0,t depend on the order of the spatial differential operators

involved in the form a(·; ·); in the case that Ωt is open (that is with boundary), Vg ,t accounts for

the non-homogeneous essential boundary conditions and V0,t is its homogeneous counterpart.

If the problem is defined on closed geometries, then ∂Ωt ≡� for all t ∈ (0,T ) and the spaces

V0,t and Vg ,t coincide and are identified with the Hilbert space indicated as Vt , resulting in the

following problem:

for a.e. t ∈ (0,T ), find x ∈Vt such that{
m(ẋ;ϕ)+a(x;ϕ) = 0 ∀ϕ ∈Vt ,

x(0) = x0 in Ω0.

(5.1.4)

The forms a(·; ·) and m(·; ·), the function spaces, and the geometric quantities depend on the

current computational domain Ωt , which itself depends on x(t ). Therefore, problems (5.1.2)

and (5.1.4) are highly non-linear.

Since we deal with parametric geometries defined by geometrical mappings of the form (1.1.2),

which are invertible a.e., following Section 3.4, we pull-back problem (5.1.2) into the paramet-
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ric domain Ω̂ (problem (5.1.4) can be treated in the same way), thus obtaining:

for a.e. t ∈ (0,T ), find X ∈ V̂g such that{
m̂(Ẋ,ϕ̂)+ â(X;ϕ̂) = 0 ∀ϕ̂ ∈ V̂0,

X(0) = X0 in Ω̂,

(5.1.5)

where X is the time-dependent geometric mapping defining Ωt , as introduced in Eq. (2.1.2),

and V̂g and V̂0 correspond to the pull-back of the function spaces Vg ,t and V0,t on the para-

metric domain Ω̂, respectively; the forms m̂(·, ·) and â(·; ·) result from the pull-back operation

applied to m(·; ·) and a(·; ·), respectively. In particular, we have:

m̂(Ẋ,ϕ̂) =
∫
Ω̂

Ẋ · ϕ̂ ĝ dΩ̂ for ϕ̂ ∈ V̂0, (5.1.6)

where ĝ is the determinant of the first fundamental form of the mapping, defined in Eq. (1.1.10).

The form a(·; ·), which depends on the problem under consideration, is pulled-back in a similar

fashion, using the geometric quantities introduced in Section 1.1.

Then we proceed with the spatial discretization of problem (5.1.5). We consider trial and

test functions in the form of (3.2.7) choosing suitable NURBS function spaces Nh and N̂h

accordingly with (3.3.2) and (3.3.1). Indeed, for all t ∈ (0,T ), we seek solutions in the form:

xh(t ) =
nb f∑
i=1

(
R̂i ◦X−1)Pi (t ) (5.1.7)

in the physical space; Pi (t ), for i = 1, . . . ,nb f , are the time-dependent control points introduced

in Section 3.2 which describe the evolving surface and, in this context of geometric PDEs, also

play the role of vector-valued control variables. The semi-discretized problem reads:

for a.e. t ∈ (0,T ), find xh ∈Vg ,t ,h such that{
m(ẋh ;ϕh)+a(xh ;ϕh) = 0 ∀ϕh ∈V0,t ,h ,

xh(0) = x0,h in Ω0,

(5.1.8)

which can be pulled-back into the parametric domain Ω̂, thus obtaining:

for a.e. t ∈ (0,T ), find Xh ∈ V̂g ,h such that{
m̂(Ẋh ,ϕ̂h)+ â(Xh ;ϕ̂h) = 0 ∀ϕ̂h ∈ V̂0,h ,

Xh(0) = X0,h in Ω0.

(5.1.9)

The finite-dimensional function spaces Vg ,t ,h , V0,t ,h , V̂g ,h and V̂0,h are subsets of the NURBS

function spaces defined as Vg ,t ,h :=Vg ,t ∩ [Nh]d , V0,t ,h :=V0,t ∩ [Nh]d , V̂g ,h := V̂g ∩ [N̂h]d and

V̂0,h := V̂0 ∩ [N̂h]d , respectively. In this setting, the family of unknown geometries {Ωt }t∈(0,T )

is described through the time-dependent mapping Xh , as well as from the corresponding

time-dependent identity map xh , following the notation introduced in Section 2.1.
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As already outlined in Section 3.3.1, while simple geometries can straightforwardly be repre-

sented by using C p−1-continuous NURBS basis functions in a single patch, this may be not

the case of more complex geometries, as the closed ones, for which the single patch NURBS

representation involves bases which are only globally C 0-continuous in Ω and Ω̂ (e.g. a circle

for d = 2 or a sphere for d = 3). Since we are interested in the approximation of geometric PDEs

of order two or higher (as the Willmore flow), we need to use trial and test function spaces built

from high order globally continuous basis functions over the whole geometry. Therefore, when

dealing with closed geometries, we consider the construction of periodic NURBS function

spaces N
per

h as defined in Eq. (3.3.11). However, since the control points {Pi }
nb f

i=1 describe

the geometry but at the same time represent the unknown of the problem, we cannot use a

subparametric approach as described in Section 3.4 and applied for the approximation of

high order PDEs in Chapter 4. Indeed, we also need to apply the same transformations to the

control points in order to use the same NURBS function space for both the solution and the

geometrical representation, i.e. a pure isoparametric approach. Specifically, using the same

linear operator of Eq. (3.3.9), we apply the transformation [44]:

Pper := (Tper )−T P (5.1.10)

to obtain the transformed control points Pper
i ∈ R3, for i = 1, . . . ,nb f . We stress the fact that

the representation of Ω given by the periodic NURBS basis functions R̂per together with the

control points Pper is equivalent to the one given by the original NURBS basis functions R̂

with the control points P, i.e.:

Xh =
nb f∑
i=1

R̂per
i Pper

i =
nb f∑
i=1

R̂i Pi . (5.1.11)

Therefore, when dealing with closed or partially closed geometries, the quantities R̂per , Pper

and N
per

h are used instead of the original ones, for example in Eqs. (5.1.7), (5.1.8), and (5.1.9).

In order to simplify the notations, from now on we will drop the superscript “per”, referring

indifferently to both the non-transformed or the transformed NURBS function space and

control points depending on the situation at hand (either open or closed geometries).
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5.2 Time discretization with Backward Differentiation Formulas

Problems governed by geometric PDEs are quite often nonlinear. Considering for example

the general problem (5.1.1), all the geometric quantities, such as curvatures and normal

vectors, as well as the tangent differential operators and the function spaces are defined

with regard to the geometry Ω; therefore, they depend themselves on the unknown x. In

literature [26,48,49,52,147], such problems are typically discretized in time with semi-implicit,

first order schemes: at each time instance, the geometrical terms are evaluated using the

solution computed at the previous time instance, thus leading to the solution of a linear

system. Here, we propose the use of high order implicit Backward Differentiation Formulas

(BDF) [50, 159, 160].

Let us consider the time interval [0,T ] and divide it into N > 0 (for N ∈N) time steps of size

Δtn = tn+1 − tn , with n = 0, . . . , N − 1, and such that t0 = 0 and tN = T . We introduce the

approximate geometry Ωn+1 as the geometry defined by the NURBS mapping:

Xn+1
h (ξ) =

nb f∑
i=1

R̂i (ξ)Pn+1
i (5.2.1)

from Eq. (3.2.7), where
{

Pn+1
i

}nb f

i=1 are the control points coordinates computed at the time

instance tn+1. Considering a fixed time step size Δt , i.e. Δtn =Δt for n = 0, . . . , N −1, the time

discretization using a k-th order BDF scheme consists in approximating the time derivative

Ẋh at time instance tn+1 through a linear combination of the mappings Xh at the time step

n +1 and the k previous time steps, as:

Ẋn+1
h � 1

Δt

(
α0Xn+1

h −
k∑

i=1
αi Xn+1−i

h

)
, (5.2.2)

for n ≥ k −1, with the coefficients αi ∈R, for i = 0, . . . ,k, suitably chosen such that the approxi-

mation is of order k.

In order to avoid to solve a nonlinear system of equations at each time step, we recast it in a

semi-implicit formulation. This is actually the usual procedure considered in the literature (see

e.g. [48, 52]), for which the geometric terms inducing the nonlinearities are treated explicitly,

i.e. are evaluated at the previous time instance. Instead, in this thesis we exploit the high order

accuracy of the BDF schemes together with the simplicity of semi-implicit formulations by

introducing a geometry Ω∗ extrapolated from the previous time steps, according to Gregory–

Newton extrapolation, which provides a guess of the approximated geometry at the next

time instance. The extrapolation performed is of the k-th order, the same order as the BDF

scheme considered and it is derived in the same manner as the BDF discretization itself (see

e.g. [159, 160]). The extrapolated geometry Ω∗ is defined by the NURBS mapping:

X∗
h (ξ) =

nb f∑
i=1

R̂i (ξ)P∗
i , (5.2.3)
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where
{

P∗
i

}nb f

i=1 are the control points obtained from the sets
{

Pn+1−k
i

}nb f

i=1
, . . . ,
{

Pn
i

}nb f

i=1 of the

control point coordinates computed at the previous time steps as:

P∗
i :=

k∑
j=1

β j Pn+1− j
i , (5.2.4)

for i = 1, . . . ,nb f , with β j ∈R, for j = 1, . . . ,k, being appropriate coefficients guaranteeing an

extrapolation of the k-th order. Then, we rewrite the problem to be solved such that it lies

on the extrapolated geometry, i.e. the unknowns, as well as the integrals and the geometric

quantities, become defined on Ω∗.

By referring now to the time derivative ẋh at time step n+1 of the identity function xh , defined

on Ω∗, following Eqs. (5.2.1), (5.2.2), and (5.2.3), we approximate it with the k-th order BDF

scheme as:

ẋn+1
h � 1

Δt

[
α0xn+1

h −
k∑

i=1
αi

(
xn+1−i

h ◦Xn+1−i
h

)
◦ (X∗

h)−1

]
, (5.2.5)

for n ≥ k −1. Then, we introduce the velocity vn+1
h : Ω∗ →Rd at the time instance tn+1, defined

as:

vn+1
h :=α0

xn+1
h −xbd f ,n

h

Δt
, (5.2.6)

where xbd f ,n
h : Ω∗ →Rd is defined as:

xbd f ,n
h :=

k∑
i=1

αi

α0

(
xn+1−i

h ◦Xn+1−i
h

)
◦ (X∗

h)−1 (5.2.7)

for n ≥ k−1; moreover, we define the extrapolated solution x∗h : Ω∗ →Rd at time tn+1 following

Eqs. (5.2.3) and (5.2.4):

x∗h :=
k∑

j=1
β j

(
xn+1− j

h ◦Xn+1− j
h

)
◦ (X∗

h)−1, (5.2.8)

for n ≥ k −1. We now consider, at each time instance tn+1, the velocity vn+1
h as an unknown

of the problem. Then, after having computed the velocity vn+1
h , the new identity map xn+1

h :

Ω∗ →Rd is obtained as:

xn+1
h = xbd f ,n

h + Δt

α0
vn+1

h , (5.2.9)

which correspond to the new geometrical mapping Xn+1
h , which defines the new geometry

Ωn+1 as in Eq. (5.2.1) and approximating Ωtn+1 .

In this framework, problem (5.1.8) is therefore discretized in time and rewritten with respect
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Figure 5.1 – Scheme of the geometric mappings involved in problem (5.2.12). In this example
we consider a BDF scheme of order k = 3 for the time discretization. From the parametric
domain Ω̂, we define the geometries from the current and previous 2 time instances, say Ωn ,
Ωn−1 and Ωn−2, through the geometric mappings Xn

h , Xn−1
h and Xn−2

h , respectively. With a
linear combination of these, we define the mapping X∗ for the extrapolated geometry Ω∗.
Then, we solve the problem on the extrapolated geometry, obtaining the velocity vn+1

h as result.
The next surface Ωn+1 at time instance tn+1, defined through the mapping Xn+1

h , is obtained
by advecting the extrapolated geometry Ω∗ with the calculated velocity vn+1

h .

to the unknown velocity vn+1
h as follows:

for n = k, . . . , N −1, find vn+1
h ∈V ∗

g ,h such that⎧⎪⎨⎪⎩
m∗

h(vn+1
h ,ϕh)+a∗

h

(
xbd f ,n

h + Δt

α0
vn+1

h ;ϕh

)
= 0 ∀ϕh ∈V ∗

0,h ,

xbd f ,0
h = xbd f ,0

0,h ,

(5.2.10)

where V ∗
g ,h and V ∗

0,h are the function spaces, corresponding to Vg ,t ,h and V0,t ,h , defined on the

extrapolated geometry Ω∗, xbd f ,0
0,h is obtained by Eq. (5.2.7) from suitable initial conditions

xn
h , for n = 0, . . . ,k −1, and m∗

h(·, ·) and a∗
h(·; ·) are forms corresponding to m(·, ·) and a(·; ·),

respectively, in which the differential operators and domain of integrations are defined in Ω∗.

For example, the form m∗
h(·, ·) reads:

m∗
h(vn+1

h ,ϕh) :=
∫
Ω∗

vn+1
h ·ϕh dΩ∗. (5.2.11)

79



Chapter 5. IGA for geometric PDEs

By exploiting the extrapolated geometry Ω∗ and its geometrical quantities (e.g. the curvatures

and the normal) in the formulation of a∗
h(·; ·) and by performing the integrals on Ω∗, the form

a∗
h(·; ·) becomes bilinear and problem (5.2.10) can be rewritten as:

for n = k, . . . , N −1, find vn+1
h ∈V ∗

g ,h such that⎧⎪⎨⎪⎩
m∗

h(vn+1
h ,ϕh)+ Δt

α0
a∗

h(vn+1
h ,ϕh) =−a∗

h(xbd f ,n
h ,ϕh) ∀ϕh ∈V ∗

0,h ,

xbd f ,0
h = xbd f ,0

0,h .

(5.2.12)

In Figure 5.1 we report a sketch of the scheme leading to the computation of the surface

Ωn+1 to highlight the time discretization procedure described in this section. We remark that

problem (5.2.12) is linear. Moreover, at each time instance the extrapolation of the geometry

Ω∗ is potentially an accurate guess of the unknown geometry of the next time instance,

aided by the exactness of the geometrical representation of NURBS in the IGA-based spatial

discretization.
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5.3 Approximation of the mean curvature flow

Let us consider the mean curvature flow problem defined in Eq. (2.4.5). By assuming sufficient

regularity for all the geometric quantities involved, by using the relation of Eq. (1.1.28), and in-

tegrating by parts the Laplace-Beltrami operator, we recast the mean curvature problem (2.4.5)

in the general formulation of Eq. (5.1.2) with the form a(·; ·) being defined as [147]:

aMC F (x;ϕ) :=μ

∫
Ω
∇Ωx : ∇ΩϕdΩ. (5.3.1)

The mean curvature flow problem in weak form then reads:

for a.e. t ∈ (0,T ), find x ∈Vg ,t such that⎧⎪⎨⎪⎩
∫
Ωt

ẋ ·ϕdΩt +μ

∫
Ωt

∇Ωt x : ∇Ωt ϕdΩt = 0 ∀ϕ ∈V0,t ,

x(0) = x0 in Ω0

(5.3.2)

with Vg ,t and V0,t being subsets of
[
H 1(Ω)

]3
.

The semi-discretized problem obtained by the NURBS-based IGA approximation of the mean

curvature flow problem is in the form of Eq. (5.1.8), with the function spaces Vg ,t ,h and V0,t ,h

being subsets of Vt ,h := [H 1(Ωt )]3 ∩ [Nh]3. To rewrite the semi-discretized problem into the

parametric domain Ω̂ performing a pull-back operation, the form of Eq. (5.3.1) becomes:

âMC F (Xh ;ϕ̂h) :=μ

∫
Ω̂

(
F̂ Ĝ−1∇̂Xh

)
:
(
F̂ Ĝ−1∇̂ϕ̂h

)
ĝ dΩ̂ (5.3.3)

for ϕ̂h ∈ V̂0,h , having used the relation in Eq. (1.1.16), with the function spaces V̂g ,h and V̂0,h

being subsets of V̂h := [H 1(Ω̂)]d ∩ [N̂h]d .

Following Section 5.2, we propose to discretize in time the mean curvature flow problem

employing the BDF schemes of order k, together with the extrapolation of the geometry. The

resulting full discrete problem, written on the extrapolated surface Ω∗, reads:

for n = k, . . . , N −1, find vn+1
h ∈V ∗

g ,h such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω∗

vn+1
h ·ϕh dΩ∗ +μ

Δt

α0

∫
Ω∗

∇Ω∗vn+1
h : ∇Ω∗ϕh dΩ∗ =−

∫
Ω∗

∇Ω∗xbd f ,n
h : ∇Ω∗ϕh dΩ∗

∀ϕh ∈V ∗
0,h ,

xbd f ,0
h = xbd f ,0

0,h ,

(5.3.4)

with the function spaces V ∗
g ,h and V ∗

0,h being subsets of V ∗
h := [H 1(Ω∗)]3 ∩ [Nh]3.
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5.3.1 Numerical results

We consider the numerical approximation of the mean curvature flow problem of Eq. (2.4.5),

in particular by using the formulation proposed in Eq. (5.3.4) described in Section 5.3. In all

out tests we set μ= 1.

Test 5.1.1. We consider the mean curvature flow of an initial unit sphere Ω0 ⊂R3. By exploiting

the radial symmetry of the sphere, the geometry Ωt under mean curvature flow remains a

sphere for each t ∈ (0,T ) with evolution in spherical coordinates described by the ordinary

differential equation [152]:⎧⎨⎩ṙ =−2

r
for t ∈ (0,T ),

r (0) = r0,
(5.3.5)

where r (t ) is the radius of the sphere at time t and r0 the radius of Ω0. This equation admits

the exact solution:

r (t ) =
√

r 2
0 −4t for t ∈ [0,T ), (5.3.6)

from which it is evident that the sphere degenerates into a point at t = r 2
0

4
. Thus, considering

an initial sphere Ω0 of radius r0 = 1, we expect the solution of problem (2.4.5) to be represented

by a shrinking sphere with radius described by Eq. (5.3.6) and collapsing into a single point at

time T = 0.25.

Figure 5.2 displays the evolution of the sphere Ωn+1 obtained by the numerical approximation

of problem (5.3.4), at different time instances; the evolution of the area |Ωn | is reported in

Figure 5.3 together with the evolution of the exact area |Ωtn | computed with Eq. (5.3.6). The

sphere is represented by NURBS of degree p = 2 and C 1-continuous a.e., for a total of 220

elements, yielding 384 DOFs1. Time discretization is performed by employing a BDF scheme

of order k = 2 with fixed time step size Δt = 0.001. The linear systems arising from the full

discretization of the PDEs at each time step are solved by using the GMRES method with the

ILUT preconditioner [50], with the stopping criterion being the relative residual (in Euclidean

norm) below a tolerance of 10−9.

1The amount of DOFs reported corresponds to the size of the linear system solved at each time instance;
therefore, it takes into account for the constraints set to build the periodic basis functions and the fact that the
solution is vector-valued (the velocity v ∈R3 for each control point).
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t = 0 t = 0.036 t = 0.071 t = 0.107

t = 0.142 t = 0.178 t = 0.213 t = 0.249

Figure 5.2 – Test 5.1.1. Mean curvature flow of a sphere. Solution at different time instances.
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Figure 5.3 – Test 5.1.1. Mean curvature flow of a sphere. Evolution of the approximated area
|Ωn | and exact area |Ωtn | vs. time t ; NURBS of degree p = 2 and C 1-continuous a.e. with 220
mesh elements are used.
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(a) p = 2, C 1-continuous a.e., 32 quad. pts.
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(b) p = 3, C 2-continuous a.e., 42 quad. pts.
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(c) p = 2, C 1-continuous a.e., 72 quad. pts.
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(d) p = 3, C 2-continuous a.e., 72 quad. pts.

Figure 5.4 – Test 5.1.1. Mean curvature flow of a sphere. Behavior of the error on the area er rn

vs time t for meshes with different NURBS basis functions (ref. 1 with 384 DOFs and ref. 2 with
6,144 DOFs) and using (p +1)2 (in (a) and (b)) and 72 (in (c) and (d)) quadrature points per
mesh element.
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(a) p = 2, C 1-continuous a.e. (b) p = 3, C 2-continuous a.e.
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(c) Evolution of the condition number vs. time t

Figure 5.5 – Test 5.1.1. Mean curvature flow of a sphere. Sparsity patterns (a) and (b) and evolu-
tion of the condition numberκ(A) of the matrix associated to the fully discrete problem (5.2.12)
vs. time t (c) using NURBS basis functions of degrees p = 2 and 3, C 1- and C 2-continuous a.e.,
respectively, and two refinement levels yielding 384 and 6,144 DOFs, respectively.
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We report in Figure 5.4 the behavior of the errors on the numerically approximated area vs

time, say er rn := |Ωtn −Ωn |, obtained by solving problem (5.2.12) with NURBS of degree p = 2

and 3, which are C p−1-continuous a.e., respectively. We compare the errors obtained using

meshes of 220 and 2,380 elements for the p = 2, C 1-continuous NURBS basis, while 275 and

2,555 elements for the p = 3, C 2-continuous basis (yielding 384 and 6,144 DOF for both p = 2

and 3). In particular, Figures 5.4a and 5.4b show the errors obtained using the standard Gauss–

Legendre quadrature rule with (p +1)2 points per mesh element for the approximation of the

integrals, while Figures 5.4c and 5.4d show the errors obtained using 72 quadrature points

per element, thus with a significantly increased accuracy of the numerical integration. We

observe that the errors are very small in all the cases and only increase when the geometry

tends to degenerate in a point, as expected from the exact solution of Eq. (5.3.6). In addition,

a smoother behavior of the error er rn is observed when using a large number of quadrature

nodes. Nevertheless, the errors remain very small, even for the standard Gauss–Legendre

quadrature formulas with (p +1)2 points typically used in IGA and employed in the rest of this

thesis.

We report in Figures 5.5a and 5.5b the sparsity patterns of the matrix A arising from the

fully discrete problem (5.2.12) with NURBS of degree p = 2 and 3, respectively, with 384

DOFs in both the cases. The evolutions of the condition number of the matrices associated

to problem (5.2.12) at each time step are reported in Figure 5.5c for the NURBS already

considered for the results in Figure 5.4; the condition number κ(A) is actually a lower bound

of the 1-norm condition number of the matrix A. The condition number κ increases with the

degree of the NURBS basis functions and when the mesh is refined. We remark that, for this

specific problem, the NURBS mapping is singular at the poles of the sphere, which leads to

high values of the condition number. Moreover, the sphere shrinks according to the mean

curvature flow and eventually degenerates in a point, another reason for the increment of the

condition numbers. Nevertheless, in the case under consideration, the condition numbers

κ(A) are never high enough to significantly interfere with the accuracy of the GMRES solver

(for the chosen tolerance).

In order to compare the performance of the proposed scheme with BDFs of different orders

with respect to the time step size Δt , simulations with BDFs of orders k = 1, 2, and 3 have been

performed for meshes comprised of NURBS basis functions of degrees p = 2 and 3, which

are C 0- and C p−1-continuous a.e. on the surface. Errors on the area with respect to the exact

solution are reported in Figure 5.6 in logarithmic scale; the reported errors are computed as:

er rñ := |Ωtñ −Ωñ | (5.3.7)

at fixed time tñ = 0.016, with ñ = tñ/Δt . The BDF schemes are initialized with the correspond-

ing numbers of exact time steps in order to bootstrap the time integration method correctly,

such that order of convergence of k is maintained for each BDF used. The meshes considered

are built out of NURBS basis functions of degrees p = 2 and 3, with 220 and 275 elements,

respectively; for the degree p = 2, meshes with basis functions C 1-continuous a.e. and C 0-
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Figure 5.6 – Test 5.1.1. Mean curvature flow of a sphere. Absolute errors on the area at time
tñ = 0.016 er rñ vs. Δt , for different BDF schemes (BDF of orders k = 1, 2, and 3) and NURBS
basis functions (p = 2 and 3, which are C 0- and C p−1-continuous a.e.).

continuous a.e. are considered, with 384 and 600 DOFs, respectively; for the degree p = 3,

meshes with basis functions C 2-continuous a.e. and C 0-continuous a.e. are considered, with

384 and 864 DOFs respectively. We remark that the errors corresponding to the spatial dis-

cretization are significantly small, even when approximating the problem with a low amount

of mesh elements; this fact permits us to employ high order temporal discretizations and

recover the full rate of convergence. Also, since the smooth C p−1-continuous basis functions

lead to a smaller number of DOFs than their C 0-continuous counterpart, the former generally

lead to more efficient and accurate discretizations.

Test 5.1.2. Next, we study the evolution of a torus subject to mean curvature flow. We consider
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t = 0 t = 0.020 t = 0.039 t = 0.059

t = 0.078 t = 0.098 t = 0.117 t = 0.137

Figure 5.7 – Test 5.1.2a. Mean curvature flow of a torus with R0 = 1 and r0 = 0.5. Solution at
different time instances.

a family of toric surfaces Ω0 ⊂R3 described by:(
R0 −

√
x2 + y2

)2
+ z2 = r 2

0 (x, y, z) ∈R3, (5.3.8)

in a standard Cartesian coordinate system, where R0 and r0 are the torus’ major and minor

radii, respectively, of the initial configuration corresponding to Ω0, being R0 > 0 and r0 ∈ (0,R0).

Depending on the ratio between the two radii R0/r0, the torus is evolving either to collapse into

a circle or to self-penetrate and merge into a disk. Figures 5.7 and 5.9 show the evolution of tori

with R0 = 1, r0 = 0.5 and R0 = 1, r0 = 0.7, respectively, subject to mean curvature flow. The first

torus has an aspect ratio R0/r0 such that it collapses into a circle, while the second one tends

to merge into an ellipsoid; since we adopt a parametric representation of the geometry and

we do not support topology changes, we let the geometry evolve until a self-intersection of the

surface occurs. The evolution of the toric areas is plotted in Figures 5.8 and 5.10, respectively.

We consider NURBS with basis functions of degree p = 2 and globally C 1-continuous, with

836 elements and 1,536 DOFs for both the cases; we used a BDF scheme of order k = 2 for
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Figure 5.8 – Test 5.1.2a. Mean curvature flow of a torus with R0 = 1 and r0 = 0.5. Evolution of
the approximated area |Ωn | vs. time t ; NURBS of degree p = 2 and globally C 1-continuous
with 836 mesh elements, yielding 1,536 DOFs, are used.

integration in time with time step size Δt = 0.001.

Test 5.1.3. We consider the mean curvature flow of an open surface, in particular a cylindrical

shell. We parametrize the cylinder by its radius R0 and height L0. The bottom and top bases of

the cylinder (two circles of radius R0) are fixed (i.e. we set xh = x0,h on ∂Ω), while the lateral

surface (Ωt ) is free to evolve according to the mean curvature flow. The geometry minimizing

the area depends on the aspect ratio L0/R0 of the initial cylinder Ω0. In particular, the final

solution may either be discontinuous, consisting in two circles at the bases of the cylinder, and

thus involving a topology change (known as Goldschmidt solution [161]), or exhibit a catenoid

as local minimum, generated by rotating the catenary of equation:

x = a cosh
( y

a

)
(5.3.9)

along the y-axis, with a ∈R being solution of the nonlinear relation:

cosh

(
L0

2a

)
− R0

a
= 0. (5.3.10)

Such catenoid has area equal to:

Acat =πa2
[

sinh

(
L0

a

)
+ L0

a

]
. (5.3.11)

Figures 5.11 and 5.12 show the evolution of two cylinders, the first with radius R0 = 1 and

height L0 = 1, while the second one with R0 = 1 and L0 = 2. The meshes considered in the

spatial approximation are both NURBS built of basis functions of degree p = 2 and globally

C 1-continuous, with 456 elements, for a total of 1,152 DOFs; time integration is performed

employing a BDF scheme of order 2, with time step size Δt = 0.001. The evolutions of the
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t = 0 t = 0.024 t = 0.048 t = 0.072

t = 0.054 t = 0.068 t = 0.081 t = 0.095

Figure 5.9 – Test 5.1.2b. Mean curvature flow of a torus with R0 = 1 and r0 = 0.7. Solution at
different time instances.

areas |Ωt | are also plotted in Figures 5.11 and 5.12, respectively. The first cylinder has aspect

ratio L0/R0 = 1 such that a catenoid is a local minimum and the numerical solution effectively

converges to such geometry. The second cylinder (for L0/R0 = 2) does not feature a catenoid

as local minimum, therefore the minimization process continues towards the solution with

topology changes, which we stop when a singularity in the geometrical mapping (an indicator

of a topology change) is reached. In both the cases, we obtain accurate solutions even by

employing spatial discretizations involving a very small amount of mesh elements and DOFs.

We remark that the formulation for the mean curvature flow problem based on Eq. (5.3.2)

can suffer from tangential motion of the control points. In some situations, this may lead to

deterioration of the mesh quality. Nevertheless, in the cases analyzed in this work, also thanks

to the exactness of the NURBS geometrical representation and the calculation of the geomet-

rical quantities, the tangential motions are negligible and do not affect the outcome of the

simulations. If necessary, in order to eliminate or at least to control such tangential motions, a

splitting similar to the one which will be proposed for the Willmore flow in Section 5.4 can be
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Figure 5.10 – Test 5.1.2b. Mean curvature flow of a torus with R0 = 1 and r0 = 0.7. Evolution
of the approximated area |Ωn | vs. time t ; NURBS of degree p = 2 and globally C 1-continuous
with 836 mesh elements, yielding 1,536 DOFs, are used.

devised for the mean curvature flow too.
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t = 0 t = 0.05 t = 0.10 t = 0.15 t = 0.20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6

6.1

6.2

6.3

Time

A
re

a

Approximated area
Exact minimal area

Figure 5.11 – Test 5.1.3a. Mean curvature flow of a cylinder with R0 = 1 and L0 = 1. Evolution of
the approximated area |Ωn | vs. time t for a cylinder with R0 = 1 and L0 = 1 (a) and with R0 = 1
and L0 = 2 (b); NURBS of degree p = 2 and globally C 1-continuous with 456 mesh elements,
yielding 1,152 DOFs, are used.
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Figure 5.12 – Test 5.1.3b. Mean curvature flow of a cylinder with R0 = 1 and L0 = 2. Evolution
of the approximated area |Ωn | vs. time t ; NURBS of degree p = 2 and globally C 1-continuous
with 456 mesh elements, yielding 1,152 DOFs, are used.
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5.4 Approximation of the Willmore flow

The Willmore flow problem of Eq. (2.5.6) is a nonlinear time dependent high order PDE. For

spatial discretizations based on the standard FEM with C 0-continuous basis functions, mixed

formulations to decrease the order of the PDE are commonly used [48, 49, 153]. In addition,

the term HK in the shape derivative of the Willmore energy of Eq. (2.5.3), which involves both

the mean (H) and the Gauss (K ) curvatures, depends nonlinearly on the principal curvatures

and it is difficult to treat with variational methods [48]; therefore, terms as K or the normal to

the surface nΩ are usually avoided through suitable manipulations in the weak formulation of

the problem. Regardless of the order of the differential problem, these considerations lead to

the adoption of mixed formulations where additional unknowns are introduced, usually being

the mean curvature H or the mean curvature vector H [48, 49,153,154], for which the resulting

PDEs are of the second order, and the (approximate) curvature usually treated in a weak sense.

In the framework of NURBS-based IGA, one benefits both from the exact representation of

the initial geometry Ω, with the possibility of calculating the geometrical quantities directly

from the NURBS representation, and the ability to treat high order tangential PDEs in a

straightforward manner, as outlined in Chapter 4. Therefore, by considering closed surfaces,

we propose the following weak formulation of the Willmore flow problem:

for a.e. t ∈ (0,T ), find x ∈Vt and v ∈Wt such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωt

v ψdΩt +μ

∫
Ωt

(ΔΩt x ·nΩt )ΔΩt ψdΩt

+μ

∫
Ωt

(
1

2
H 2 −2K

)(
ΔΩt x ·nΩt

)
ψdΩt = 0 ∀ψ ∈Wt ,

∫
Ωt

ẋ ·ϕdΩt −
∫
Ωt

v nΩt ·ϕdΩt = 0 ∀ϕ ∈Vt ,

x(0) = x0,

(5.4.1)

where Vt := [H 2(Ωt )
]3

, while Wt := H 2(Ωt ); the normal velocity v (defined in Eq. (2.1.10)) is

also an unknown of the problem.

We consider NURBS-based IGA for the approximation of (5.4.1). We therefore discretize

the equations following the same procedure described in Section 3.4, thus seeking the trial

and test functions for the unknowns xh and vh in the function spaces Vt ,h :=Vt ∩ [Nh]3 and

Wt ,h :=Wt ∩Nh , respectively. We remark that, with IGA, the evaluation of the terms involving

H and K is straightforward, since the curvatures can be computed directly and “exactly” from

the NURBS mapping xh . Problem (5.4.1) is rewritten into the parametric domain Ω̂ through

a pull-back operation as described in Section 3.4 and similarly to the approximation of the

mean curvature flow problem of Section 5.3; in this case, we also use the relation of Eq. (1.1.20)

for the treatment of the Laplace-Beltrami operator in the parametric domain Ω̂. We remark
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that, since we need to ensure that the test and trial function spaces are subsets of H 2, we

consider NURBS function spaces with basis functions at least globally C 1-continuous a.e. in

Ωt , for all t ∈ (0,T ). Moreover, since Ω is closed, we consider NURBS periodic function spaces,

as mentioned in Section 3.4. Finally, we highlight that, with the formulation of Eq. (5.4.1), the

amount of tangential motions is limited, since the velocity v evolving the surface is aligned, in

the “weak sense”, along the normal nΩ to the current surface Ω.

Considering a time discretization performed with the BDF schemes as described in Section 5.2,

the full discrete Willmore flow problem reads:

for n = 0, . . . , N −1, find vn+1
h ∈V ∗

h and vn+1
h ∈W ∗

h such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω∗

vn+1
h ψh dΩ∗ +μ

Δt

α0

∫
Ω∗

(ΔΩ∗vn+1
h ·nΩ∗)ΔΩ∗ψh dΩ∗

+μ
Δt

α0

∫
Ω∗

[
1

2
(H∗

h )2 −2K ∗
h

](
ΔΩ∗vn+1

h ·nΩ∗
)
ψh dΩ∗

=−μ
∫
Ω∗

(
ΔΩ∗xbd f ,n

h ·nΩ∗

)
ΔΩ∗ψh dΩ∗

−μ

∫
Ω∗

[
1

2
(H∗

h )2 −2K ∗
h

](
ΔΩ∗xbd f ,n

h ·nΩ∗

)
ψh dΩ∗ ∀ψh ∈W ∗

h ,

∫
Ω∗

vn+1
h ·ϕh dΩ∗ −

∫
Ω∗

vn+1
h nΩ∗ ·ϕh dΩ∗ = 0 ∀ϕh ∈V ∗

h ,

xbd f ,0
h = xbd f ,0

0,h ,

(5.4.2)

where V ∗
h and W ∗

h are the function spaces Vt ,h and Wt ,h built on Ω∗, respectively, and H∗
h

and K ∗
h represent the mean curvature and Gauss curvature of the extrapolated geometry Ω∗,

respectively. Problem (5.4.2) is then solved after being recast into the parametric domain Ω̂.

5.4.1 Numerical results

We consider the numerical approximation of the Willmore flow problem defined in Eq. (2.5.6)

using the numerical scheme (5.4.1) proposed in Section 5.4. For all the tests we set μ= 1.

Test 5.2.1. As initial geometry Ω0 we consider ellipsoids described by the following relation:

x2

a2
0

+ y2

b2
0

+ z2

c2
0

= 1 (x, y, z) ∈R3, (5.4.3)

where a0,b0,c0 ∈R are positive constants denoting its aspect ratio. It is known that an ellipsoid

should converge to a sphere under Willmore flow [129], which has Willmore energy JW equal

to 8π. For our numerical test, we consider the approximation of the Willmore flow applied

to an initial ellipsoid Ω0 with parameters a0 = 4, b0 = 4, and c0 = 1. The geometry Ω0 is
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t = 0 t = 0.49 t = 1.22 t = 3.66 t = 12.21

Figure 5.13 – Test 5.2.1. Willmore flow of an ellipsoid with a0 = 4, b0 = 4 and c0 = 1. Solution at
different time instances.

represented as a NURBS surface with basis functions of degrees p = 2 and 3, being C 1- and

C 2-continuous a.e., respectively, with two h-refinement levels for each degree. The considered

meshes with NURBS of degree p = 2 are made of 684 and 2,380 elements, respectively for the

two refinement levels; the meshes with basis functions of degree p = 3 are instead made of

779 and 2,555 elements, respectively. With respect to the two h-refinement levels, the total

number of DOFs amounts to 2,048 and 8,192, independently of the degree p of the NURBS

basis functions2. Integration in time is performed by employing the BDF scheme of order

k = 2 with a fixed time step size Δt = 0.01.

Figure 5.13 shows the solution obtained at different time instances, with the mesh comprised

of 779 elements. The evolution in time of the Willmore energy, together with the Willmore

energy associated to a sphere (indicated as Exact final energy), is reported in Figure 5.14,

together with the evolution in time of the area and the volume of the approximated geometry

Ωn . We remark that problem (2.5.6) does not involve any constraint on the area and the

volume of the surface, which are in principle free to evolve while the Willmore energy JW is

being minimized; as a matter of fact, we notice that the evolutions of the area and the volume

are sensitive to the discretization under consideration. We obtain, with the coarsest mesh

built of NURBS of degree p = 2 a final error on the Willmore energy equal to 0.6496 (2.585%);

when refining the mesh, we obtain a significant reduction of such error, being equal to 0.1696

(0.675%). Instead, using NURBS of degree p = 3 yields better results, with errors equal to

0.0237 (0.094%) and 0.0055 (0.022%) for the first and second h-refinement levels, respectively.

Finally, we report in Figures 5.15a and 5.15b the sparsity patterns of the matrix associated

to the full discrete problem (5.4.2) with NURBS of degrees p = 2 and 3, with 2,048 DOFs for

both the cases. In Figure 5.15c the condition number κ(A) is reported at each time instance,

for each NURBS considered for the results of Figure 5.14. The behavior of κ(A) is similar

2The number of DOFs accounts for both a vector valued unknown (the velocity v) and a scalar unknown (the
normal velocity v).
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Figure 5.14 – Test 5.2.1. Willmore flow of an ellipsoid with a0 = 4, b0 = 4 and c0 = 1. Evolution
of the Willmore energy JW , area and volume vs. time t (zoom) for NURBS of degrees p = 2 and
C 1-continuous a.e. with 684 and 2,380 elements, yielding 2,048 and 8,192 DOFs, respectively,
and p = 3 and C 2-continuous a.e. with 779 and 2,555 elements, again yielding 2,048 and 8,192
DOFs, respectively.

to what experienced for Test 5.1.1, in the sense that, the higher degree of the NURBS basis

functions and the finer the mesh, the higher the condition number. With respect to Test 5.1.1,

the condition number is generally higher, due to the high order of derivatives involved in the

Willmore flow problem with respect to the mean curvature problem.

Test 5.2.2. We consider the numerical approximation of the Willmore flow of a torus, described

by the relation in Eq. (5.3.8). In particular, Clifford tori, which are characterized by a ratio

between the outer R0 and inner r0 radii equal to R0/r0 =
�

2, are stationary geometries for the

Willmore flow, with Willmore energy JW equal to 4π2; tori with different aspect ratios tend

to converge to Clifford tori. We numerically simulate the Willmore flow of a initial torus Ω0

with R0 = 1 and r0 = 0.2 (i.e. for which R0/r0 = 5), represented as a NURBS surface with basis

functions of degrees p = 2 and 3, being globally C 1- and C 2-continuous, and two h-refinement

levels. Solutions at different time steps are reported in Figure 5.16. Time discretization is

based on the BDF scheme of order k = 2 and time step size Δt = 0.001. By employing NURBS

basis functions of degree p = 2 and globally C 1-continuous, we consider a NURBS mesh built

of 836 elements, yielding 2,048 DOFs, and a mesh of 2,660 elements, yielding 8,192 DOFs.
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(a) p = 2, C 1-continuous a.e. (b) p = 3, C 2-continuous a.e.
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(c) Evolution of the condition number vs. time t

Figure 5.15 – Test 5.2.1. Willmore flow of an ellipsoid with a0 = 4, b0 = 4 and c0 = 1. Sparsity
patterns in (a) and (b) and evolution of the condition number κ(A) of the matrix associated to
the full discrete problem (5.4.2) vs. time t ((c)), using NURBS basis functions of degrees p = 2
and 3, C 1- and C 2-continuous a.e., respectively, and two refinement levels yielding 2,048 and
8,192 DOFs, respectively, both for p = 2 and p = 3.

Additionally, by employing NURBS basis functions of degree p = 3 and globally C 2-continuous,

we consider a mesh built of 1,025 elements, yielding 2,880 DOFs, and a mesh of 2,993 elements,

yielding 9,792 DOFs.

In Figure 5.17 the evolution of the Willmore energy is reported, together with the Willmore

energy of the Clifford torus (indicated as Exact final energy). If we compare the final Willmore

energy of the approximated solution with the Willmore energy of the Clifford torus we obtain

the following errors with the above mentioned meshes, in order: 0.1146 (0.290%), 0.1130

(0.286%), 0.0114 (0.029%), and 0.0010 (0.003%). Therefore, the best compromise between

accuracy and number of DOFs employed is obtained for NURBS basis functions of degree

p = 3 and globally C 2-continuous, which guarantee a good accuracy even with a small amount
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t = 0 t = 0.003 t = 0.010 t = 0.030 t = 0.100

Figure 5.16 – Test 5.2.2. Willmore flow of a torus with R0 = 1 and r0 = 0.2. Solution at different
time instances.

0 0.5 1 1.5 2 2.5 3

·10−2

40

60

80

100

Time

W
il

lm
o

re
en

er
gy p = 2, C1, ref. 1

p = 2, C1, ref. 2

p = 3, C2, ref. 1

p = 3, C2, ref. 2
Exact final energy

0 1 2 3

·10−2

7
8
9

10
11
12
13
14
15
16

Time

A
re

a

0 1 2 3

·10−2

1

2

3

4

Time

Vo
lu

m
e

Figure 5.17 – Test 5.2.2. Willmore flow of a torus with R0 = 1 and r0 = 0.2. Evolution of the
Willmore energy JW , area and volume vs. time t (zoom) for meshes of two refinement levels
built of NURBS of degrees p = 2 (for 836 and 2,660 elements) and p = 3 (for 1,025 and 2,993
elements), C 1- and C 2-continuous a.e., respectively.
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(a) p = 2, C 1-continuous a.e. (b) p = 3, C 2-continuous a.e.
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(c) Evolution of the condition number vs. time t

Figure 5.18 – Test 5.2.2. Willmore flow of a torus with R0 = 1 and r0 = 0.2. Sparsity patterns
in (a) and (b) and evolution of the condition number κ(A) of the matrix associated to the full
discrete problem (5.4.2) vs. time t ((c)), using NURBS basis functions of degrees p = 2 and 3,
C 1- and C 2-continuous a.e., respectively, and two refinement levels yielding 2,048 and 8,192
DOFs for p = 2, and 2,880 and 9,792 DOFs for p = 3, respectively.

of DOFs.

Finally, we report in Figures 5.18a and 5.18b the sparsity patterns of the matrices associated

to the fully discrete problem (5.4.2) with NURBS of degrees p = 2 and 3, with 2,048 and 2,880

DOFs, respectively. We report in Figure 5.18c the evolution of the condition number κ(A) at

each time step, for each NURBS already considered in Figure 5.17. As usual, the condition

number increases with the degree p of the NURBS basis functions and with the refinement of

the mesh, but, for each discretization, these follow the same overall behavior in time. With

respect to Test 5.2.1, the condition number tends to be smaller, since the mapping does not

present any singularity.
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Test 5.2.3. As a final example, we consider an open surface Ω. We still consider the formulation

of Eq. (5.4.2), even if it is tailored to model closed geometries, since it remains valid if we con-

sider a problem on an open surface with homogeneous essential boundary conditions on the

unknown velocity and normal velocity; the function spaces employed for the approximation

of the velocity and the normal velocity in Eq. (5.4.2) are replaced by V ∗
h := [H 2

0 (Ω∗)]3 ∩ [Nh]3

and W ∗
h := H 2

0 (Ω∗)∩Nh , respectively. We consider the evolution of an initially deformed

quadrilateral surface under Willmore flow, with homogeneous essential boundary conditions,

which evolves toward a flat plane. In Figure 5.19 we report the computed geometry at different

time instances. The NURBS mesh is built of 2,304 elements, yielding 2,116 DOFs, with NURBS

basis functions of degree p = 3 and globally C 2-continuous; the BDF scheme of order 2 is

employed for the time discretization, with time step size Δt = 10−5. Evolution of the Willmore

energy, surface area, and volume are reported in Figure 5.20. Even if designed for closed

geometries, the scheme outlined in Section 5.4 performs well also for open surfaces, involving

large deformations, without changes to the formulation.
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t = 0 t = 0.18 ·10−3 t = 0.53 ·10−3 t = 1.40 ·10−3 t = 2.80 ·10−3

Figure 5.19 – Test 5.2.3. Willmore flow of a deformed rectangular surface with fixed borders.
Solution at different time instances.
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Figure 5.20 – Test 5.2.3. Willmore flow of an open quadrilateral surface. Evolution of the
Willmore energy JW , area and volume vs. time t (zoom) for a mesh of 2,304 elements built of
NURBS of degree p = 2 and globally C 1-continuous.
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6 Equilibrium shapes of lipid vesicles

In this chapter, we apply the framework developed in Chapter 5 for the numerical approxima-

tion of geometric PDEs to the problem of finding the shapes of lipid vesicles in equilibrium

conditions; the discussion and results that follow are based on our paper [107].

A lipid vesicle, as e.g. a red blood cell, is a biomembrane consisting of a lipid bilayer, made of

molecules with a hydrophilic head group and two hydrophobic hydrocarbon chains which

spontaneously aggregate in closed shapes when set in an aqueous environment [55]. Lipid

bilayers are of great interest in biology since they are the fundamental components of the

membrane of cells and organelles [56]; a variety of mathematical models describing their shape

and dynamic behavior has been proposed in recent years. In general, these can be classified

into microscopic discrete molecular based models as for example in [63, 64, 66, 80], multiscale

models as in [67, 68, 70], and macroscopic continuum models as e.g. in [26, 27, 49, 52, 72, 82]. A

common assumption consists in treating the membranes as surfaces embedded into the 3D

space since the combined layer thickness is small compared to the diameter of the vesicle; for

example, for red blood cells, the membrane thickness is less than 100 nm, while their diameter

is about 8μm wide [61]. In these mathematical models the bending elasticity (or curvature

energy) is the driving factor for the configuration of the vesicles, a conjecture that has been

confirmed also by different experiments on isolated vesicles [162].

In Section 6.1, we will introduce two classical and widely used continuum models: the sponta-

neous curvature model [58, 60] and the bilayer coupling model [163, 164, 165]. We refer the

interested reader to [162] for an in-depth analysis of equilibrium shapes obtained with these

two models and to [55] for a general discussion about the modeling of fluid membranes and

vesicles. These models, based on the minimization of the bending energy subject to geometric

contraints, are usually approximated numerically with finite element-based discretizations

of the membrane surface, as in [26, 27, 49, 52, 53, 54], or by using phase field approaches, as

e.g. in [74, 75, 76].

In this chapter, we consider the numerical approximation of the spontaneous curvature

model to seek the equilibrium shapes of lipid vesicles, described in Section 6.1. We consider
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the biomembranes being represented as single-patch NURBS surfaces and we propose the

numerical approximation of their equilibrium shapes by discretizing the equations in space

by means of NURBS-based IGA (see Section 6.2.1) and in time by means of BDF schemes (see

Section 6.2.2). Handling of the geometric constraints is described in Section 6.2.3. Numerical

results follow.

6.1 Mathematical Model

Let us consider a vesicle represented by a compact, connected, oriented and “sufficiently”

smooth closed surface Ω ⊂ R3, parametrized by means of a geometrical mapping as of

Eq. (1.1.2), as described in Section 1.1. In the classical curvature model, the bending en-

ergy of a vesicle depends only on its curvature. In particular, the bending energy related to the

vesicle represented by Ω reads [58]:

JB (Ω) := 1

2
kc

∫
Ω

H 2dΩ+kg

∫
Ω

K dΩ, (6.1.1)

where kc and kg are positive constants representing the bending and the Gaussian rigidities,

respectively. These parameters are difficult to obtain experimentally. In general, the bending

rigidity can be determined mechanically by applying a force to the vesicle and measuring

its response. Alternatively, instead of the mechanical approach, thanks to the membranes’

"softness" the reaction of the vesicles to thermal fluctuations can be obtained by methods

based on image processing. A brief summary of these approaches, with references therein, is

described in an Appendix of [55]. The classical curvature model, however, has no actual physi-

cal realization and cannot describe some behaviors of the vesicles observed experimentally,

such as budding [55], which are due to the bilayer nature of the membrane.

In the spontaneous-curvature model, initially introduced in [60], the bending energy related

to the membrane Ω reads:

JB (Ω) := 1

2
kc

∫
Ω

(H −H0)2dΩ+kg

∫
Ω

K dΩ, (6.1.2)

which, by recalling the definition of Willmore energy with spontaneous curvature JW0 of

Eq. (2.5.7), can be rewritten as:

JB (Ω) := kc JW0 (Ω)+kg JG (Ω). (6.1.3)

The term H0 in Eq. (6.1.2) describes the spontaneous curvature of the vesicle and it accounts

for the unbalance of the membrane due to a different chemical environment on the two sides

of the vesicle, or to different chemical composition of the two layers [55, 166, 167, 168]. In

virtue of the Gauss-Bonnet theorem [109], the second energy term JG of Eq. (6.1.3) does not

depend on the shape of Ω, but it is a topological invariant which only depends on the genus
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g [125] of the surface Ω and it is equal to:

JG (Ω) = 4π(1− g ). (6.1.4)

Although the majority of vesicles have spherical topology, some vesicles of higher genus have

been observed experimentally [55]. Nevertheless, as in this thesis we deal with parametric

geometries and we do not consider topological changes, the term JG will be neglected, by

setting kg = 0.

Moreover, energetic considerations [55] lead to two common assumptions when modeling

lipid membranes. Firstly, the fact that the membrane has a fixed number of lipid molecules and

energetically allows bending deformation more easily than stretching or compressing [169,170]

leads to the consideration of a constraint on the surface area. Secondly, the biomembrane

is impermeable to molecules dispersed in the solution at the time scales of interest, and, for

typical vesicles, the curvature energy can balance only small osmotic differences across the

biomembrane. Therefore, the vesicle adapts to the difference of osmotic pressure by effectively

changing its volume such that the resulting osmotic pressure difference is negligible; then,

the volume is kept constant. This behavior can be effectively approximated by introducing a

constraint on the vesicle volume.

By referring to the surface area of the vesicle with J A , as defined in Eq. (2.4.1), and the enclosed

volume with JV , defined as:

JV (Ω) :=
∫
Ω

x ·nΩ dΩ, (6.1.5)

in order to express the constraints on the area and the volume two Lagrange multipliers are

introduced in the energy of Eq. (6.1.3), thus obtaining the so called Canham–Helfrich energy

JC H [49]:

JC H (Ω,δp,ΠΩ) = kc JW0 (Ω)+ΠΩ

(
J A(Ω)− J A(Ω0)

)
+δp

(
JV (Ω)− JV (Ω0)

)
, (6.1.6)

where Ω0 is a reference (or initial) surface and ΠΩ and δp are the Lagrange multipliers associ-

ated with the area and volume constraints, respectively. More precisely, δp is interpreted as

an osmotic pressure jump across the inner and outer sides of the biomembrane, while ΠΩ as

the tensile stress required to maintain the inextensibility of the membrane [139, 167].

Another assumption that can be made is that the two layers of the biomembrane hardly

exchange molecules between each other. This aspect can be taken into account by exploiting

the fact that the differences between the densities of the layers and the mean density at

the mid-surface depend locally on the mean curvature and, at the leading order, the area

difference between the two layers can be approximated in function of the integrated mean

curvature [55]. Therefore, if no exchange of molecules between the two layers is assumed, a

constraint on the integrated mean curvature can be considered by introducing an energetic

penalization term for the deviations from a given area difference. These models are usually
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called Area Difference Elasticity models [54, 55]. The bilayer coupling model is instead based

on enforcing, with a Lagrange multiplier, a constraint on the area difference [163, 164], that is

the difference:

ΔA = Aext − Ai nt (6.1.7)

between the area of the external layer and the area of the internal layer. It can be approximated

as:

ΔA ≈ 2d M , (6.1.8)

where d is the distance between the two layers and M is defined as:

M(Ω) := 1

2

∫
Ω

H dΩ; (6.1.9)

the approximation in Eq. (6.1.8) holds up to the order d 2/A [162]. By considering the Willmore

energy defined in Eq. (2.5.1), as bending energy and by introducing the Lagrange multiplier q

for the integrated mean curvature, the bilayer coupling model then reads [162]:

JBC (Ω) := kc JW (Ω)+Π′
Ω

(
J A(Ω)− J A(Ω0)

)
+δp ′

(
JV (Ω)− JV (Ω0)

)
+q M(Ω). (6.1.10)

However, if the following relation between the Lagrange multipliers is considered:

Π′
Ω =ΠΩ+ kc

2
H 2

0 , δp ′ = δp, and q =−2kc H0, (6.1.11)

we see that the spontaneous curvature model of Eq. (6.1.6) and the bilayer coupling model of

Eq. (6.1.10) lead to the same equilibrium shapes [165].

With this remark, we now consider the spontaneous curvature model governed by the Canham–

Helfrich energy JC H of Eq. (6.1.6) and we focus, in the next sections, on its numerical approxi-

mation.

6.1.1 Energy minimization

We study the equilibrium shapes of the lipid biomembranes by minimizing the Canham–

Helfrich energy JC H of Eq. (6.1.6). With this aim, we formulate the Canham–Helfrich flow

problem as the L2-gradient flow of JC H . Given an initial closed surface Ω0 ⊂R3, described by

x0, for a.e. t ∈ (0,T ), find x ∈Vt , ΠΩt ∈R, and δpt ∈R such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
Ωt

ẋ ·ϕdΩt =−d JC H
(
Ω(x),ΠΩt ,δpt ;ϕ

) ∀ϕ ∈Vt ,

J A(Ωt ) = J A(Ω0), JV (Ωt ) = JV (Ω0),

x(0) = x0 in Ω0,

(6.1.12)
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where Vt := [H 2(Ωt )]3 and d JC H is the shape derivative of JC H at Ωt along ϕ ∈Vt , reading [139]:

d JC H (Ω,ΠΩ,δp;ϕ) = kc d JW0 (Ω;ϕ)+ΠΩ d J A(Ω;ϕ)+δp d JV (Ω;ϕ), (6.1.13)

where the shape derivatives of JV and J A along ϕ are given by:

d J A(Ω;ϕ) =
∫
Ω

Hϕ ·nΩ dΩ (6.1.14)

(as in Eq. (2.4.2)) and

d JV (Ω;ϕ) =
∫
Ω
ϕ ·nΩ dΩ, (6.1.15)

respectively. By considering a constant spontaneous curvature, i.e. H0 ∈R, we rewrite also the

shape derivative of the energy JW0 from Eq. (2.5.9) as:

d JW0 (Ω;ϕ) =−
∫
Ω

[
ΔΩH +H

(
1

2
H 2 − 1

2
H 2

0 −2K

)
−2H0K

]
ϕ ·nΩ dΩ. (6.1.16)

By using Eqs. (6.1.14), (6.1.15), and (6.1.16) in Eq. (6.1.13) we finally obtain:

d JC H (Ω,ΠΩ,δp;ϕ) =
∫
Ω

{
kc

[
−ΔΩH −H

(
1

2
H 2 − 1

2
H 2

0 −2K

)
+2H0K

]
+ΠΩH +δp

}
ϕ·nΩ dΩ.

(6.1.17)

In particular, the Canham–Helfrich flow problem in strong form reads:

for a.e. t ∈ (0,T ), find Ωt ⊂R3, ΠΩt ∈R, and δpt ∈R such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ =−

{
kc

[
−ΔΩt H −H

(
1

2
H 2 − 1

2
H 2

0 −2K

)
+2H0K

]
+ΠΩt H +δpt

}
nΩt in Ωt ,

J A(Ωt ) = J A(Ω0), JV (Ωt ) = JV (Ω0),

x(0) = x0 in Ω0.

(6.1.18)

The Canham–Helfrich flow represents an extension of the Willmore flow problem, already

discussed in Section 5.4, with the addition of the area and volume constraints, as well as the

spontaneous curvature terms. We then apply the same splitting introduced in Eq. (5.4.1),

for which we treat the velocity v = ẋ and the normal velocity v as unknowns. Therefore, we
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consider the following weak formulation:

for a.e. t ∈ (0,T ), find x ∈Vt , v ∈Wt , ΠΩt ∈R, and δpt ∈R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωt

ẋ ·ϕdΩt −
∫
Ωt

v nΩt ·ϕdΩt = 0 ∀ϕ ∈Vt ,∫
Ωt

vψdΩt +kc

∫
Ωt

(ΔΩt x ·nΩt )ΔΩt ψdΩt −2kc

∫
Ωt

H0 K ψdΩt

+kc

∫
Ωt

(ΔΩt x ·nΩt )

(
1

2
H 2 − 1

2
H 2

0 −2K

)
ψdΩt

+ΠΩt

∫
Ωt

H ψdΩt +δpt

∫
Ωt

ψdΩt = 0 ∀ψ ∈Wt ,∫
Ωt

H x ·nΩt dΩt = A0,
∫
Ωt

x ·nΩt dΩt =V0,

x(0) = x0,

(6.1.19)

with initial area A0 = J A(Ω0) and volume V0 = JV (Ω0). In particular, we consider, for any

given t ∈ (0,T ), the function spaces Vt =
[
H 2(Ωt )

]3
and Wt = H 2(Ωt ), since the formulation of

Eq. (6.1.19) involves second order surface differential operators applied to the trial and test

functions.

6.2 Numerical Approximation

In this section, we consider the numerical approximation of the Canham–Helfrich flow prob-

lem (6.1.19). We introduce both the space and time discretizations and we compare two

numerical approaches to enforce the area and volume constraints through Lagrange multipli-

ers.

6.2.1 Space discretization

As for the geometric PDEs approximated in Chapter 5, for the spatial discretization of prob-

lem (6.1.19) we consider the Galerkin method using NURBS-based IGA subspaces. The

biomembrane evolution is represented by the family of surfaces {Ωt }t∈(0,T ) described by single

patch NURBS mappings as in Eq. (3.2.7). We follow the procedure outlined in Section 5.1. The

NURBS function spaces N̂h and Nh , defined over the parametric domain Ω̂ and the physical

domain Ω, respectively, and introduced in Chapter 3 are considered; since the biomembranes

are represented as closed surfaces, the chosen NURBS spaces are periodic and exhibit high

order global continuity of the basis functions. In an isoparametric approach, these spaces

describe the geometries as well as the trial and test functions. In particular, for any t ∈ (0,T ),

we choose Vt ,h := Vt ∩ [Nh]3 and Wt ,h := Wt ∩Nh as trial and test function spaces, with Vt

and Wt defined in Section 6.1.1. Hence, by considering the formulation of Eq. (6.1.19), the
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semi-discrete problem reads:

for a.e. t ∈ (0,T ) find xh ∈Vt ,h , v ∈Wt ,h , ΠΩt ∈R, and δpt ∈R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωt

ẋh ·ϕh dΩt −
∫
Ωt

vhnΩt ·ϕh dΩt = 0 ∀ϕh ∈Vt ,h ,∫
Ωt

vhψh dΩt +kc

∫
Ωt

(ΔΩt xh ·nΩt )ΔΩt ψh dΩt −2kc

∫
Ωt

H0 Kh ψh dΩt

+kc

∫
Ωt

(ΔΩt xh ·nΩt )

(
1

2
H 2

h − 1

2
H 2

0 −2Kh

)
ψh dΩt

+ΠΩt

∫
Ωt

Hh ψh dΩt +δpt

∫
Ωt

ψh dΩt = 0 ∀ψh ∈Wt ,h ,∫
Ωt

Hh xh ·nΩt dΩt = A0,
∫
Ωt

xh ·nΩt dΩt =V0,

xh(0) = x0,h .

(6.2.1)

We remark that, as problem (6.2.1) derives from the Willmore flow problem and involves

second order surface differential operators, we require the function spaces Vt ,h and Wt ,h to

host basis functions which are at least C 1-continuous a.e. on Ωt .

6.2.2 Time discretization

As done in Chapter 5, for discretizing in time problem (6.2.1) we consider the k-th order BDF

schemes with extrapolation of the geometry, as described in Section 5.2. In particular, by using
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the same notation, the fully discrete Canham–Helfrich problem reads:

for n = k, . . . , N −1 find vn+1
h ∈V ∗

h , vn+1
h ∈W ∗

h , Πn+1
Ω ∈R, and δpn+1 ∈R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω∗

vn+1
h ·ϕh dΩ∗ −

∫
Ω∗

vn+1
h nΩ∗ ·ϕh dΩ∗ = 0 ∀ϕh ∈V ∗

h ,∫
Ω∗

vn+1
h ψh dΩ∗ +kc

Δt

α0

∫
Ω∗

(ΔΩ∗vn+1
h ·nΩ∗)ΔΩ∗ψh dΩ∗

+kc
Δt

α0

∫
Ω∗

[
1

2
(H∗

h )2 − 1

2
H 2

0 −2K ∗
h

]
(ΔΩ∗vn+1

h ·nΩ∗)ψh dΩ∗

+Πn+1
Ω

∫
Ω∗

H∗
h ψh dΩ∗ +δpn+1

∫
Ω∗

ψh dΩ∗

= 2kc

∫
Ω∗

H0K ∗
h ψh dΩ∗ −kc

∫
Ω∗

(
ΔΩ∗xbd f ,n

h ·nΩ∗

)
ΔΩ∗ψh dΩ∗

−kc

∫
Ω∗

[
1

2
(H∗

h )2 − 1

2
H 2

0 −2K ∗
h

](
ΔΩ∗xbd f ,n

h ·nΩ∗

)
ψh dΩ∗ ∀ψh ∈W ∗

h ,∫
Ωn+1

H n+1
h xn+1

h ·nΩn+1 dΩn+1 = A0,
∫
Ωn+1

xn+1
h ·nΩn+1 dΩn+1 =V0,

xbd f ,0
h = xbd f ,0

0,h ,

(6.2.2)

where V ∗
h and W ∗

h correspond to the function spaces Vt ,h and Wt ,h built on Ω∗, respectively.

Problem (6.2.2) is still nonlinear since we are enforcing the constraints on the unknown surface

Ωn+1. In Section 6.2.3 we will discuss how to recover a linear (semi-implicit) formulation of

the problem by appropriate handling of the constraints.

6.2.3 Enforcement of the area and volume constraints

To enforce the area and volume constraints of problem (6.2.2) we propose two approaches.

The first one is an adaptation of the iterative scheme proposed in [49, 52] to our context based

on IGA and BDF discretizations, which enforces the area and volume constraints potentially to

machine precision. Then, we propose a second approach based on the approximation of the

constraints; although being not exact, it is however more convenient from a computational

point of view.
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Constraints enforcement: scheme C-1

We assume for the time being that the Lagrange multipliers Π̃n+1
Ω and δp̃n+1 are given. Then,

we reformulate problem (6.2.2) as follows:

find, for n = 0, . . . , N −1, vn+1
h ∈V ∗

h and vn+1
h ∈W ∗

h such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω∗

vn+1
h ·ϕh dΩ∗ −

∫
Ω∗

vn+1
h nΩ∗ ·ϕh dΩ∗ = 0 ∀ϕh ∈V ∗

h ,∫
Ω∗

vn+1
h ψh dΩ∗ +kc

Δt

α0

∫
Ω∗

(ΔΩ∗vn+1
h ·nΩ∗)ΔΩ∗ψh dΩ∗

+kc
Δt

α0

∫
Ω∗

[
1

2
(H∗

h )2 − 1

2
H 2

0 −2K ∗
h

]
(ΔΩ∗vn+1

h ·nΩ∗)ψh dΩ∗

= 2kc

∫
Ω∗

H0 K ∗
h ψh dΩ∗ −kc

∫
Ω∗

(
ΔΩ∗xbd f ,n

h ·nΩ∗

)
ΔΩ∗ψh dΩ∗

−kc

∫
Ω∗

[
1

2
(H∗

h )2 − 1

2
H 2

0 −2K ∗
h

](
ΔΩ∗xbd f ,n

h ·nΩ∗

)
ψh dΩ∗

− Π̃n+1
Ω

∫
Ω∗

H∗
h ψh dΩ∗ −δp̃n+1

∫
Ω∗

ψh dΩ∗, ∀ψh ∈W ∗
h ,

(6.2.3)

with appropriate initial condition xbd f ,0
h = xbd f ,0

0,h . In compact form, system (6.2.3) reads, for

n = 0, . . . , N −1:

L (vn+1
h , vn+1

h ; ϕh ,ψh) =FW (ϕh ,ψh)+ Π̃n+1
Ω FA(ϕh ,ψh)+δp̃n+1FV (ϕh ,ψh),

∀ϕh ∈V ∗
h , ∀ψh ∈W ∗

h ,
(6.2.4)

with obvious choice of notation. Because of the linearity of L with respect to vn+1
h and vn+1

h ,

thanks to the superposition of effects we can write:

vn+1
h = vn+1

h,W + Π̃n+1
Ω vn+1

h,A +δp̃n+1vn+1
h,V (6.2.5)

and

vn+1
h = vn+1

h,W + Π̃n+1
Ω vn+1

h,A +δp̃n+1vn+1
h,V , (6.2.6)

where vn+1
h,W , vn+1

h,W , vn+1
h,A , vn+1

h,A , vn+1
h,V , and vn+1

h,V satisfy the following (independent) problems:

L (vn+1
h,W , vn+1

h,W ; ϕh ,ψh) =FW (ϕh ,ψh),

L (vn+1
h,A , vn+1

h,A ; ϕh ,ψh) =FA(ϕh ,ψh), ∀ϕh ∈V ∗
h , ∀ψh ∈W ∗

h

L (vn+1
h,V , vn+1

h,V ; ϕh ,ψh) =FV (ϕh ,ψh).

(6.2.7)

At this stage, after solving Eqs. (6.2.7) and using Eq. (6.2.5), one needs to recover the values of

the (unknown) Lagrange multipliers Πn+1
Ω and δpn+1. With this aim, we enforce the area and

volume constraints by looking for the zeros of the vector-valued function fn
c : R2 →R2 defined
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as:

fn
c (Π̃Ω,δp̃) :=

[
J A(Ω̃n+1(Π̃Ω,δp̃))− J A(Ωn)

JV (Ω̃n+1(Π̃Ω,δp̃))− JV (Ωn)

]
= 0, (6.2.8)

where Ω̃n+1(Π̃Ω,δp̃) is the surface defined by the mapping:

x̃n+1
h (Π̃Ω,δp̃) = xbd f ,n

h + Δt

α0

(
vn+1

h,W + Π̃Ω vn+1
h,A +δp̃ vn+1

h,V

)
, (6.2.9)

dependent on the general Lagrange multipliers Π̃Ω and δp̃. Then, the zeros of fc are approxi-

mated by using a quasi-Newton method. We follow the method described in [49]; by indicating

with k ∈N the iteration index, the following algorithm is considered, for all n = 0, . . . , N −1:

1. Set k = 0 and initialize Π̃n+1,0
Ω and δp̃n+1,0 as the solutions of the following problem:

⎡⎢⎢⎣
∫
Ω∗

∇Ω∗ ·vn+1
h,A dΩ∗

∫
Ω∗

∇Ω∗ ·vn+1
h,V dΩ∗∫

Ω∗
nΩ∗ ·vn+1

h,A dΩ∗
∫
Ω∗

nΩ∗ ·vn+1
h,V dΩ∗

⎤⎥⎥⎦
[
Π̃n+1,0

Ω

δp̃n+1,0

]
=

=

⎡⎢⎢⎣−
∫
Ω∗

∇Ω∗ ·vn+1
h,W dΩ∗

−
∫
Ω∗

nΩ∗ ·vn+1
h,W dΩ∗

⎤⎥⎥⎦ .

(6.2.10)

2. Build the surface Ω̃k
n+1, defined by the mapping:

x̃n+1,k
h = xbd f ,n

h + Δt

α0

(
vn+1

h,W + Π̃n+1,k
Ω vn+1

h,A +δp̃n+1,k vn+1
h,V

)
. (6.2.11)

3. Check if the “guess” surface Ω̃k
n+1 is sufficiently accurate, either by the stopping criterium

based on the absolute area and volume conservation, as:

|J A(Ω̃k
n+1)− J A(Ωn)| ≤ τA

A and |JV (Ω̃k
n+1)− JV (Ωn)| ≤ τA

V , (6.2.12)

respectively, or the criterium based on the relative area and volume, as:

|J A(Ω̃k
n+1)− J A(Ωn)|
J A(Ωn)

≤ τR
A and

|JV (Ω̃k
n+1)− JV (Ωn)|
JV (Ωn)

≤ τR
V , (6.2.13)

respectively, where τA
A , τA

V , τR
A , and τR

V ∈ R are suitable tolerances. If the stopping cri-

teria (6.2.12) or (6.2.13) are fulfilled, then stop the iterations, set Πn+1
Ω = Π̃n+1,k

Ω and

δpn+1 = δp̃n+1,k , for which Ωn+1 = Ω̃k
n+1, and proceed to the following time step. Other-

wise, continue to point 4.
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4. Evaluate the Jacobian of fn
c at step k as follows:

D fn,k
c (Π̃n+1,k

Ω ,δp̃n+1,k ) =

Δt

α0

⎡⎢⎢⎢⎣
∫
Ω̃k

n+1

∇Ω̃k
n+1

·vn+1
h,A dΩ̃k

n+1

∫
Ω̃k

n+1

∇Ω̃k
n+1

·vn+1
h,V dΩ̃k

n+1∫
Ω̃k

n+1

nΩ̃k
n+1

·vn+1
h,A dΩ̃k

n+1

∫
Ω̃k

n+1

nΩ̃k
n+1

·vn+1
h,V dΩ̃k

n+1

⎤⎥⎥⎥⎦ .
(6.2.14)

5. Solve the linear system:

D fn,k
c (Π̃n+1,k

Ω ,δp̃n+1,k )

[
ΔΠ̃n+1,k+1

Ω

Δδp̃n+1,k+1

]
= fn

c (Π̃n+1,k
Ω ,δp̃n+1,k ) (6.2.15)

and update the Lagrangian multipliers as:[
Π̃n+1,k+1

Ω

δp̃n+1,k+1

]
=
[
Π̃n+1,k

Ω

δp̃n+1,k

]
−ρ

[
ΔΠ̃n+1,k+1

Ω

Δδp̃n+1,k+1

]
, (6.2.16)

where ρ ∈R is a relaxation parameter, which in this work we consider to be ρ = 1. Then,

set k = k +1 and continue from point 2 until convergence.

With this iterative method, we obtain the Lagrange multipliers Πn+1
Ω and δpn+1 fulfilling the

area and volume constraints by the surface Ωn+1 up to chosen tolerances. From now on, we

will refer to this approach as scheme C-1.

Constraints enforcement: scheme C-2

To avoid solving a nonlinear problem at each time step, we can impose the fulfillment of the

area and volume constraints on an approximate surface Ω∗ obtained by extrapolation. In

particular, for all n = 0, . . . , N −1, we force the identity map xn+1
h of the surface Ωn+1 to fulfill

the following relations:∫
Ω∗

H∗
h xn+1

h ·nΩ∗ dΩ∗ = A0 and
∫
Ω∗

xn+1
h ·nΩ∗ dΩ∗ =V0. (6.2.17)

By considering the area constraint and by using Eq. (5.2.9) we write:∫
Ω∗

H∗
h

(
xbd f ,n

h + Δt

α0
vn+1

h

)
·nΩ∗ dΩ∗ = A0, (6.2.18)

which becomes:∫
Ω∗

H∗
h vn+1

h ·nΩ∗ dΩ∗ = α0

Δt

(
A0 −

∫
Ω∗

H∗
h xbd f ,n

h ·nΩ∗ dΩ∗
)

. (6.2.19)
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Similarly, we rewrite the volume constraint as:∫
Ω∗

vn+1
h ·nΩ∗ dΩ∗ = α0

Δt

(
V0 −

∫
Ω∗

xbd f ,n
h ·nΩ∗ dΩ∗

)
. (6.2.20)

Hereafter, with scheme C-2 we will refer to problem (6.2.2) however with the equations re-

lated to the area and volume constraints replaced, for each n = 0, . . . , N −1, by Eqs. (6.2.19)

and (6.2.20), respectively.

6.3 Numerical Results

In this section, we discuss the numerical results obtained by the approximation of the Canham–

Helfrich problem on different initial geometries. Firstly, we test the formulation of Eq. (6.2.2)

with two ellipsoids of different aspect ratio, showing the results and analyzing the two con-

straint enforcement schemes in action. A comparison with known solutions of the sponta-

neous curvature model follows.

6.3.1 Benchmark cases

As benchmark cases, we consider two biomembranes with initial ellipsoidal geometry Ω0 ⊂R3

defined by the relation in Eq. (5.4.3). In the first case, we take a0 = 4, b0 = 4, and c0 = 1 (which

we refer to as ellipsoid 4-4-1), in the second one, we take a0 = 5, b0 = 5, and c0 = 1 (which we

call ellipsoid 5-5-1). For each of the two ellipsoids, we consider 4 different meshes: the first two

built out of NURBS basis functions of polynomial degree p = 2, C 1-continuous a.e., for two

refinement levels — yielding 684 elements and 2,048 total DOFs (ref. 1) and 2,380 elements

and 8,192 total DOFs (ref. 2), respectively — and other two meshes built out of NURBS basis

functions of degree p = 3, C 2-continuous a.e., for two refinement levels yielding 779 elements

and 2,048 total DOFs (ref. 1) and 2,555 elements and 8,192 total DOFs (ref. 2), respectively.

Regarding the time discretization, we present numerical results obtained using a BDF scheme

of order k = 2 since it represents a good compromise between accuracy and computational

cost, as shown in Chapter 5. We consider a fixed time step size Δt = 0.01, and we set the

constant kc = 1 and the spontaneous curvature to H0 = 0.

In Figures 6.1 and 6.2 we report the approximated surfaces Ωn at different time instances

computed with the ref. 1 meshes built out of p = 2 degree NURBS basis functions and the

scheme C-1 for the enforcement of the constraints, for the ellipsoid 4-4-1 and the ellipsoid

5-5-1, respectively. In both the cases, the biomembrane starts with an initial ellipsoid shape

and converges to the typical biconcave shape of the red blood cells. The aspect ratio of the

initial ellipsoid geometry sets the volume V0 and area A0 constraints. Then, also the final

shape depends on the initial aspect ratio: considering Eq. (5.4.3), the higher a0 and b0 with

respect to c0, the closer the two opposite sides of the biconcave shape. This trend will be

shown more in details in Section 6.3.2.
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t = 0 t = 0.08 t = 0.15 t = 0.23

t = 0.30 t = 0.45 t = 0.75 t = 1.51

Figure 6.1 – Numerical approximation of the Canham–Helfrich flow of an ellipsoid Ω0 with
aspect ratio 4-4-1. Approximated surface Ωn at different time instances, computed with the
ref. 1 mesh built of NURBS basis functions of degree p = 2 and using scheme C-1.

t = 0 t = 0.06 t = 0.16 t = 0.31

t = 0.44 t = 0.75 t = 1.13 t = 1.76

Figure 6.2 – Numerical approximation of the Canham–Helfrich flow of an ellipsoid Ω0 with
aspect ratio 5-5-1. Approximated surface Ωn at different time instances, computed with the
ref. 1 mesh built of NURBS basis functions of degree p = 2 and using scheme C-1.
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(a) Ellipsoid 4-4-1, scheme C-1
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(c) Ellipsoid 4-4-1, scheme C-2
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(d) Ellipsoid 5-5-1, scheme C-2

Figure 6.3 – Numerical approximation of the Canham–Helfrich flow on ellipsoids of aspect
ratio 4-4-1 (Figs. (a) and (c)) and 5-5-1 (Figs. (b) and (d)). Evolution of the Willmore energy JW

with respect to time, using meshes of two refinement levels built of NURBS of degrees p = 2
and p = 3, C 1- and C 2-continuous a.e., respectively, for both schemes C-1 (Figs. (a) and (b))
and C-2 (Figs. (c) and (d)).

In Figure 6.3, we report the evolution of the Willmore energy JW with respect to time for all

the meshes considered (ref. 1 and 2 for discretizations with NURBS of both degrees p = 2 and

p = 3) and both the schemes C-1 and C-2. Similarly, we report in Figure 6.4 the evolution of the

Lagrange multipliers Πn
Ω and δpn with respect to time for the same cases. For all the situations

considered, the energy is minimized until it reaches a stable biconcave configuration with a

more pronounced pinching in the center of the surface when a lower value of the Willmore

energy JW is reached. The results show a common trend: the Willmore energy is minimized to

a smaller and smaller value as the polynomial degree p increases, the mesh is finer and the

scheme for the enforcement of the constraints is more accurate.
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Scheme 1, p = 2, C 1, ref. 2 Scheme 2, p = 2, C 1, ref. 2

Scheme 1, p = 3, C 2, ref. 2 Scheme 2, p = 3, C 2, ref. 2
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(c) Ellipsoid 4-4-1, volume Lag. mult. δp
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(d) Ellipsoid 5-5-1, volume Lag. mult. δp

Figure 6.4 – Numerical approximation of the Canham–Helfrich flow on ellipsoids of aspect
ratio 4-4-1 (Figs. (a) and (c)) and 5-5-1 (Figs. (b) and (d)). Evolution of the Lagrange multipliers
ΠΩ (Figs. (a) and (b)) and δp (Figs. (c) and (d)) for meshes of refinement level 2 built of NURBS
of degrees p = 2 and p = 3, C 1- and C 2-continuous a.e., respectively, for both schemes C-1 and
C-2.

Scheme C-1 is able to enforce the area and volume constraints within any prescribed tolerance,

i.e. the obtained Ωn is such that:

|J A(Ωn)− A0| ≤ εA and |JV (Ωn)−V0| ≤ εV , (6.3.1)

with given tolerances εA , εV ∈R. By considering εA = εV = 10−7, the convergence of the quasi-

Newton iterations to the final values of the Lagrange multipliers takes a number of iterations

usually between 1 and 3. Instead, the scheme C-2 described in Section 6.2.3 enforces the
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p = 2, C 1, ref. 1 p = 2, C 1, ref. 2 p = 3, C 2, ref. 1 p = 3, C 2, ref. 2
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Figure 6.5 – Numerical approximation of the Canham–Helfrich flow on ellipsoids of aspect
ratio 4-4-1 (Figs. (a) and (c)) and 5-5-1 (Figs. (b) and (d)). Errors e A (Figs. (a) and (b)) and eV

(Figs. (c) and (d)) in area and volume preservation with respect to time, for meshes of two
refinement levels built of NURBS of degrees p = 2 and p = 3, C 1- and C 2-continuous a.e.,
respectively, employing the scheme C-2.

constraints only approximately. We report the evolution of the errors in area and volume of

the approximated surfaces in Figure 6.5, for all the meshes considered, calculated as:

e A(t ) = J A(Ωt )− A0

A0
and eV (t ) = JV (Ωt )−V0

V0
, (6.3.2)

respectively. The errors remain always positive, due to an increment in area and volume of

the approximated surfaces with respect to the initial one, mostly concentrated in the initial

time steps of the simulations, where the evolution of the surface is faster. Nevertheless, these

increments remain in practice “small”: with respect to the initial surface, the area of the

118



6.3. Numerical Results

approximated surface is between 0.368÷ 0.408 % larger, for the different NURBS cases of

the ellipsoid 4-4-1, and between 0.441÷0.545 % larger, for the ellipsoid 5-5-1; the volume is

instead between 0.041÷0.049 % larger, for the ellipsoid 4-4-1, and between 0.046÷0.051 %

larger, for the ellipsoid 5-5-1. We consider these errors acceptable, taking also in consideration

the lower computational effort needed with scheme C-2 with respect to scheme C-1: indeed,

the scheme C-1 involves the solution of 3 linear systems related to the problems of Eq. (6.2.7),

which share the same left-hand-side but have different right-hand-sides, followed by the

iterative procedure to find the roots of the function of Eq. (6.2.8), whose Jacobian is costly to

compute. The scheme C-2, instead, leads to a linear system that stems from the discretized

formulation of Eq. (6.2.2) with two additional unknowns, the Lagrange multipliers Πn
Ω and

δpn , which leads to a bigger (and slightly harder) linear system to solve, but still faster to treat

than the whole procedure required for scheme C-1. Basically, by employing scheme C-2 we

gain performance in exchange of lower accuracy in the conservation of the area and volume,

while with scheme C-1 we obtain the best accuracy we can have (up to machine precision) at

the cost of a more costly and involved procedure to follow.

6.3.2 Comparison of equilibrium shapes

Consider a vesicle Ω with surface area A = J A(Ω) and volume V = JV (Ω). Then let us consider

a sphere whose area A0 is the same as the vesicle area A, i.e. A0 = A. The sphere’s radius is

therefore:

R0 =
√

A

4π
, (6.3.3)

and its volume reads:

V0 = 4

3
πR3

0 = 4

3
π

(
A

4π

) 3
2

. (6.3.4)

Since the Canham–Helfrich energy is invariant with regard to scaling transformations, it is

useful to introduce the reduced volume VR as the ratio between the volume of the vesicle and

the volume of the sphere with same surface area, i.e. [162]:

VR := V

V0
, (6.3.5)

which, in terms of the vesicle area and volume, reads:

VR = 6
�
πV

A3/2
. (6.3.6)

For a sphere, obviously we have VR = 1. Similarly, the reduced spontaneous curvature c0 is

derived:

c0 := H0R0, (6.3.7)
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which, in terms of the vesicle area, reads:

c0 = H0

√
A

4π
. (6.3.8)

We now consider the numerical approximation of the spontaneous curvature model to recover

the final equilibrium shapes of vesicles in function of the reduced volume VR . We consider the

case without spontaneous curvature, i.e. c0 = 0. Our aim is to find the final evolved shapes at

different values of VR . Since the area and volume of the vesicles are preserved, the reduced

volume remains fixed throughout the evolution. Therefore, as initial solutions we construct

ellipsoids with aspect ratio such that their reduced volumes assume the desired values. Our

formulation, based on the L2-gradient flow of the Canham–Helfrich energy, leads the evolution

of the geometry towards the nearest local minimum, thus the final equilibrium shape depends

on the initial solution. Therefore, for each reduced volume we consider two different initial

spheroids: an oblate spheroid, for which the polar radius is smaller than the equatorial radius,

and a prolate spheroid, for which the polar radius is greater than the equatorial radius. By

rewriting Eq. (5.4.3) here for convenience, an ellipsoid described by the relation:

x2

a2 + y2

b2 + z2

c2 = 1
(
x, y, z

) ∈R3 (6.3.9)

is an oblate spheroid if b = a and c < a, while it is a prolate spheroid if b = a and c > a (if

a = b = c this reduces to a sphere). Regarding oblate spheroids, their surface area can be

obtained as:

Aob(a,c) = 2πa2

(
1+ 1−e2

ob

eob
tanh−1 eob

)
, (6.3.10)

where eob is the ellipticity, reading:

eob(a,c) =
√

1− c2

a2 . (6.3.11)

In the case of prolate spheroids, the surface area is calculated as:

Apr (a,c) = 2πa2
(
1+ c

a epr
sin−1 epr

)
, (6.3.12)

with ellipticity epr now defined as:

epr (a,c) =
√

1− a2

c2 . (6.3.13)

120



6.3. Numerical Results

The volume of a generic ellipsoid defined by Eq. (6.3.9) is:

V (a,b,c) = 4

3
πabc, (6.3.14)

which, in the case of spheroids for which a = b, reduces to:

V (a,c) = 4

3
πa2c. (6.3.15)

Then, by using Eqs. (6.3.10) and (6.3.15), in order to calculate the aspect ratio of an oblate

spheroid given its reduced volume VR , one can fix c to a certain constant c̄, e.g. c = c̄ = 1, and

then seek a as the root of:

fob(a) = 6
�
π

V (a, c̄)

Aob(a, c̄)3/2
−VR . (6.3.16)

Similarly, considering prolate spheroids and using Eqs. (6.3.12) and (6.3.15), the value of a

such that a spheroid with a = b and c = c̄ fixed has a certain reduced volume VR can be

obtained by finding the root of:

fpr (a) = 6
�
π

V (a, c̄)

Apr (a, c̄)3/2
−VR . (6.3.17)

For the sake of comparison, we consider values for the reduced volume used in [171], for

which the authors have themselves compared their results against the phase diagrams in [162].

An initial NURBS sphere is then scaled in order to assume the desired spheroidal shape by

using, for each value of VR , the parameters obtained with Eqs. 6.3.16 and 6.3.17.

Evolutions of the geometries are reported in Figures 6.7 and 6.9, regarding the oblate and

prolate spheroids, respectively. In Figures 6.8 and 6.10 evolution of the Canham–Helfrich

energies for each case considered is reported. The computational NURBS mesh is built of

NURBS basis functions of degree p = 3 and C 2-continuous a.e., for a total of 779 elements,

yielding a linear system of 2,048 DOFs to solve at each time step. Discretization in time is

performed with a BDF scheme of order 2 and time step size Δt depending empirically on the

initial curvature (which itself depends on the initial aspect ratio of the spheroid, in general

being Δt = 0.01 and changed to 0.5 ·10−4, 10−5, and 10−6 when considering prolate ellipsoids

of reduced volume 0.7, 0.65, and 0.58, respectively).

In Figure 6.6 we report the obtained normalized Canham–Helfrich energy J̃C H , defined as:

J̃C H := JC H

8π
, (6.3.18)

in function of the reduced volume. The resulting diagram shows the same results as Figure 8

in [162]. In particular, for ṼR <VR ≤ 1 with ṼR � 0.65 the prolate shapes have the lowest energy,

evolving towards dumbbell geometries, while for VR < ṼR it is the oblate shapes, assuming the
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VR 1.0 0.9 0.8 0.7 0.65 0.58
J̃C H (oblates) 1.00 1.19 1.39 1.65 1.83 2.20

J̃C H (prolates) 1.00 1.22 1.45 1.70 1.83 2.02
Min. J̃C H 1.00 1.19 1.39 1.65 1.83 2.02

[171] 1.0 1.19 1.40 1.83 2.01

Table 6.1 – Numerical approximation of the Canham–Helfrich flow on different vesicles. Nor-
malized Willmore energy vs reduced volume VR . Meshes built of NURBS of degree p = 3 and
C 2-continuous have been employed.
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Figure 6.6 – Numerical approximation of the Canham–Helfrich flow on different vesicles.
Normalized Canham–Helfrich energy J̃C H vs reduced volume VR . Meshes built of NURBS of
degree p = 3 and C 2-continuous have been used.

discocyte shape typical of red blood cells. In Table 6.1 we report the normalized energies of the

equilibrium shapes obtained by minimizing the Canham–Helfrich energy starting from oblate

and prolate spheroids, for each value of VR considered. The reported values show agreement

of the presented results with the reference values reported in [171].

We remark that, with the approach proposed, the initial shape evolves towards a local mini-

mum, a common drawback of a shape energy minimization approach based on L2-gradient

flow; for instance, considering a initial oblate spheroid of VR = 0.8, it will evolve towards a

discocyte shape, even if the corresponding dumbbell shape, obtained when evolving from an

initial prolate spheroid, would have lower energy.
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t = 0 t = 0.01 t = 0.02 t = 0.03 t = 0.04

Oblate ellipsoid with VR = 0.9

t = 0 t = 0.01 t = 0.03 t = 0.05 t = 0.10

Oblate ellipsoid with VR = 0.8

t = 0 t = 0.02 t = 0.05 t = 0.09 t = 0.28

Oblate ellipsoid with VR = 0.7

t = 0 t = 0.02 t = 0.07 t = 0.15 t = 0.40

Oblate ellipsoid with VR = 0.65
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t = 0 t = 0.03 t = 0.15 t = 0.35 t = 0.80

Oblate ellipsoid with VR = 0.58

Figure 6.7 – Canham–Helfrich flow applied to oblate ellipsoids of different reduced volume VR .
Approximated geometry at different time instances.
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Figure 6.8 – Canham–Helfrich flow applied to oblate ellipsoids of different reduced volume VR .
Evolution of the Canham–Helfrich energies over time.
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t = 0 t = 0.01 t = 0.02 t = 0.03 t = 0.06

Prolate ellipsoid with VR = 0.9

t = 0 t = 0.01 t = 0.02 t = 0.03 t = 0.12

Prolate ellipsoid with VR = 0.8

t = 0 t = 0.10 ·10−3 t = 0.40 ·10−3 t = 0.80 ·10−3 t = 2.10 ·10−3

Prolate ellipsoid with VR = 0.7

t = 0 t = 0.30 ·10−4 t = 2.20 ·10−4 t = 4.70 ·10−4 t = 7.40 ·10−4

Prolate ellipsoid with VR = 0.65
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t = 0 t = 0.31 ·10−4 t = 0.95 ·10−4 t = 2.13 ·10−4 t = 3.04 ·10−4

Prolate ellipsoid with VR = 0.58

Figure 6.9 – Canham–Helfrich flow applied to prolate ellipsoids of different reduced volume
VR . Approximated geometry at different time instances.
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Figure 6.10 – Canham–Helfrich flow applied to prolate ellipsoids of different reduced volume
VR . Evolution of the Canham–Helfrich energies over time.
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7 Dynamics of lipid vesicles in fluids

In Chapter 6, we studied a model for determining the equilibrium shapes of lipid vesicles. Aim

of this chapter is to extend the considered model by introducing the presence of an external

and internal fluid and dealing with the fluid-membrane interaction. This is a common case in

biology, a noticeable example being the red blood cells, filled by cytoplasm, and immersed in

the plasma. In this chapter, we will consider incompressible Newtonian fluids, hence governed

by the incompressible Navier–Stokes equations, an assumption which is usually acceptable at

the space and time scales of cellular flow [55]. When considering the dynamics of a vesicle,

the external fluid plays a major role, as it exerts forces on the membrane while carrying it

with the flow. Nevertheless, also the presence of an internal fluid affects the behavior of

the biomembrane [55]. In fact, even when studying the equilibrium configurations, pure

geometric curvature-based models, as the one analyzed in Chapter 6, may not be enough to

capture the dynamics of the vesicle towards its equilibrium configuration; it may be necessary

to take into account the presence of the internal fluid, which influences the inertia and

eventual strong pinching of the biomembrane, as studied numerically in [52].

Regarding the numerical approximation, one important aspect is the choice of geometrical

representation and space discretization technique for the fluid and the membrane domains.

In fact, standard approximation methods employed for fluid-structure interaction problems

on boundary fitted meshes [172] may not be well suited for this kind of problems, due to the

potentially large displacements and deformations that a vesicle undergoes when immersed

into a fluid. Indeed, a boundary fitted representation requires mesh-motion algorithms able

to cope with the severe deformations, rotations, and translations of the biomembrane around

the fluid computational domain. Conversely, an usual approach consists in empoying a

fixed computational mesh for the fluid and an implicit description of the immersed vesicle,

e.g. by using level sets [73, 87, 88], or diffuse interfaces, as in [86]. In [79, 89] the evolution of

the vesicle is followed by a parametric mesh, which is then updated by the fluid velocity. A

different approach, based on the Boundary Integral Method and supporting also vesicle-vesicle

interactions, is presented in [81]. Approaches based on the immersed boundary method are

employed in [83, 84, 85].
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Θ=ΘO ∪ΘI

ΘI

ΘOΩ

Γ= ΓD ∪ΓN

Figure 7.1 – Domains for the problems considered in this chapter. The containing domain Θ,
with boundary Γ, is split into the domain ΘI internal to the obstacle and the external domain
ΘO ; the boundary of ΘI , interface between ΘI and ΘO , is denoted by Ω.

In this chapter, we consider an approach based on the Resistive Immersed Surface method [92],

used to model obstacles to the flow and porous interfaces [90, 91] by considering a penal-

ization of the fluid velocity in a specific region of the domain. We will discuss the resistive

method in Section 7.2.3; in Section 7.3 we extend the technique to deal with immersed NURBS

geometries.

This chapter is divided into four parts. After a brief description of the notation used for the

fluid and membrane domains in Section 7.1, we introduce the Navier–Stokes equations and

deal with their numerical approximation in Section 7.2. Then, in Section 7.3 we describe our

approach for dealing with immersed NURBS geometries. Finally, we introduce the coupled

model between the vesicle and the surrounding fluid, discussing about the formulation,

discretization, and numerical results in Section 7.4.

7.1 Description of the domains

Let us consider a domain Θ⊂Rd , with d indicating the dimensionality of the physical space,

for d = 2 or 3. A vesicle, represented by ΘI ⊂ Rd , is placed in Θ. The subdomain of Θ that is

not occupied by the immersed object is denoted with ΘO ⊂ Rd and it is filled by fluid. The

object and fluid domains are such that Θ=ΘO ∩ΘI . We denote with Ω⊂Rd−1 the interface

between the two subdomains. We consider the external boundaries of ΘO to be partitioned

into two subsets ΓD and ΓN such that Γ= ΓD ∪ΓN and
◦
ΓD ∩ ◦

ΓN =�. The two boundaries will

different boundary conditions for the fluid, depending on the case and type of flow considered.

The domains, boundaries and the interface are sketched in Figure 7.1. As an example in the

context of blood modeling, the domain Θ could represent a vessel, the object ΘI a red blood

cell, and the interface Ω would represent the membrane of the cell; the subdomain ΘO would

then be filled by the plasma.
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7.2 The fluid equations

Initially, let us consider only the fluid and treat the immersed object just as an obstacle for the

flow. We consider the domains ΘO and ΘI to be both filled with incompressible Newtonian

fluids, potentially with different parameters (e.g. density or viscosity) between each other.

Therefore, we choose to consider the fluids in the whole domain Θ as governed by a single set

of equations, with spatially varying parameters such that they represent the properties of one

fluid or the other depending if evaluated inside the immersed object or outside. Even if in this

section the immersed object is considered to be fixed, we still formulate the problem in the

whole domain Θ, in view of the fluid-vesicle interaction that will be introduced in Section 7.4.

By considering the interval of time (0,T ) and by indicating with u(t) : Θ→Rd the unknown

velocity of the fluid at time t , the equations governing an incompressible fluid in Θ with no

external forces read:

for a.e. t ∈ (0,T ), find u(t ) : Θ→Rd such that⎧⎨⎩ρ
Du

dt
−∇·σ= 0 in Θ, t ∈ (0,T ),

∇·u = 0 in Θ, t ∈ (0,T ),

(7.2.1)

where ρ ∈R+ represents the density of the fluid and σ : Θ→Rd×d is the Cauchy stress tensor.

The first Eq. in (7.2.1) is the momentum equation, since it represents the balance of momentum.

The second equation refers instead to the balance of mass and it is responsible for modeling

the incompressibility of the fluid; it is commonly called continuity equation. In particular, we

consider Newtonian incompressible fluids, for which the stress tensor σ reads:

σ(u, p) =−pI+2μD(u) in Θ, (7.2.2)

where μ : Θ→R+ is the dynamic viscosity of the fluid, p : Θ→R is the unknown pressure, and

D(·) denotes the symmetric gradient operator, i.e.:

D(ϕ) := 1

2

(
∇ϕ+ (∇ϕ)T ) for ϕ : Θ→Rd . (7.2.3)

The notation
Du

dt
refers to the material derivative of u, which reads:

Du

dt
= ∂u

∂t
+u ·∇u. (7.2.4)

Equations (7.2.1) are supplied with the divergence-free initial condition:

u(0) = u0 in Θ, (7.2.5)
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and with suitable boundary conditions on the boundary of the fluid domain, for example:

u = g on ΓD , t ∈ (0,T ),

σn =−pn+2μD(u)n = h on ΓN , t ∈ (0,T ),
(7.2.6)

with g : ΓD → Rd , h : ΓN → Rd , and n being the outward directed unit vector normal to ΓN .

Therefore, for incompressible Newtonian fluids, by using Eqs. (7.2.2) and (7.2.4) in Eq. (7.2.1),

the Navier–Stokes equations read:

for a.e. t ∈ (0,T ), find u(t ) : Θ→Rd and p(t ) : Θ→R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂u

∂t
+ρu ·∇u−2∇· (μD(u)

)+∇p = 0 in Θ, t ∈ (0,T ),

∇·u = 0 in Θ, t ∈ (0,T ),

u = g on ΓD , t ∈ (0,T ),

−pn+2μD(u)n = h on ΓN , t ∈ (0,T ),

u(0) = u0 in Θ,

(7.2.7)

where the viscosity μ is a function defined on Θ such that:

μ(p) =
{
μO if p ∈ΘO ,

μI if p ∈ΘI ,
for p ∈Θ, (7.2.8)

where μO ∈R+ is the dynamic viscosity of the part of fluid in ΘO and μI ∈R+ is the dynamic

viscosity of the part of fluid inside ΘI .

7.2.1 Non-dimensionalization of the Navier–Stokes equations

We proceed with rewriting the Navier–Stokes equations (7.2.7) in dimensionless form. With

this aim, the following dimensionless quantities are introduced:

x̄ = 1

L
x, ū = 1

U
u, t̄ = 1

T
t = U

L
t , (7.2.9)

where L, U , and T refers to the characteristic length, velocity, and time, respectively. The

differential operators are rewritten as:

∂

∂t̄
· = 1

T

∂

∂t
·, ∇̄· = 1

L
∇·, ∇̄·(·) = 1

L
∇·(·), and D̄· = 1

2

(∇̄ ·+∇̄·T )= 1

L
D · . (7.2.10)
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By using the quantities in Eq. (7.2.9) and the operators in Eq. (7.2.10), the Navier–Stokes

equations (7.2.7) are written in dimensionless form as:

for a.e. t ∈ (0,T ), find ū(t ) : Θ→Rd and p(t ) : Θ→R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρU 2

L

∂ū

∂t̄
+ ρU 2

L
ū · ∇̄ū−2∇̄ ·

(
μU

L2 D̄(ū)

)
+ 1

L
∇̄p = 0 in Θ, t ∈ (0,T ),

∇̄ · ū = 0 in Θ, t ∈ (0,T ),

U ū = g on ΓD , t ∈ (0,T ),

−pn+2
μU

L
D̄(ū)n = h on ΓN , t ∈ (0,T ),

U ū(0) = u0 in Θ.

(7.2.11)

Let us introduce the Reynolds number Re, defined as:

Re := ρU L

μ
; (7.2.12)

the dimensionless number Re characterizes the flow regime by giving an indication of the

prevalence of the inertial forces over the viscous forces. By multiplying the terms in the

momentum equation by L/ρU 2, we obtain the following system of equations:

for a.e. t ∈ (0,T ), find ū(t ) : Θ→Rd and p̄(t ) : Θ→R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ū

∂t̄
+ ū · ∇̄ū−2∇̄ ·

(
1

Re
D̄(ū)

)
+∇̄p̄ = 0 in Θ, t ∈ (0,T ),

∇̄ · ū = 0 in Θ, t ∈ (0,T ),

ū = ḡ on ΓD , t ∈ (0,T ),

− p̄n+ 2

Re
D̄(ū)n = h̄ on ΓN , t ∈ (0,T ),

ū(0) = ū0 in Θ,

(7.2.13)

where we have introduced the following dimensionless quantities:

p̄ = 1

ρU 2 p, ḡ = 1

U
g, and h̄ = 1

ρU 2 h. (7.2.14)

In particular, the dimensionless stress tensor σ̄ is linked to the standard stress tensor σ through

the relation:

σ=−ρU 2p̄ I+2
ρU

ρU

μU

L
D̄(ū) = ρU 2

(
−p̄ I+ 2

Re
D̄(ū)

)
= ρU 2σ̄. (7.2.15)

From now on, the overline indicating the dimensionless quantities will be omitted to simplify

the notation; each quantity appearing is always assumed to be dimensionless, unless specified

otherwise.
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7.2.2 Weak formulation of the fluid equations

In order to write problem (7.2.7) in weak formulation, we introduce the following function

spaces for the velocity:

V := [H 1(Θ)
]d

, VR := {ϕ ∈V : ϕ= g on ΓD
}

, V0 := {ϕ ∈V : ϕ= 0 on ΓD
}

,

(7.2.16)

while for the pressure the following ones:

W := L2(Θ) or W :=
{
ψ ∈ L2(Θ) :

∫
Θ
ψdΘ= 0

}
, (7.2.17)

the latter being used if ΓN ≡�.

The weak formulation of the Navier–Stokes problem then reads:

for a.e. t ∈ (0,T ), find u(t ) ∈VR and p(t ) ∈W such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
Θ

∂u

∂t
·ϕdΘ+

∫
Θ

u ·∇u ·ϕdΘ+
∫
Θ

2

Re
D(u) : ∇ϕdΘ−

∫
Θ

p∇·ϕdΘ

=
∫
ΓN

h ·ϕdΓN ∀ϕ ∈V0,∫
Θ
ψ∇·u = 0 ∀ψ ∈W,

(7.2.18)

with the initial condition:

u(0) = u0 in Θ, (7.2.19)

where u0 ∈VR is a compatible divergence-free initial datum.

7.2.3 The Resistive Immersed Surface method

Let us consider Ω to be the boundary of an obstacle immersed in the fluid domain. We require

the following condition to be satisfied in order to have continuity of the velocities at the

interface:

u = v on Ω, t ∈ (0,T ), (7.2.20)

where v : Ω→Rd represents the velocity at which Ω is moving. In view of the fluid-vesicle in-

teraction, for which we consider the immersed object free to move and deform inside the fluid

domain, we adopt in this chapter an approach based on the weak enforcement of the condition

in Eq. (7.2.20). In particular, we consider the Resistive Immersed Surface (RIS), a penalization

method already employed successfully, for instance, to approximate the flow through porous

interfaces [91] or for modeling blood valves [32, 92]. Let us consider the following additional
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penalization term in the weak formulation of the momentum equation [173]:

R(u,ϕ) =
∫
Ω

CR (u−v) ·ϕdΩ (7.2.21)

where CR ∈R+ is a penalization constant. The idea is to avoid the integral over the interface Ω

by replacing it with an integral on the whole domain Θ:

R(u,ϕ) =
∫
Θ

CRχΩ(u− ṽ) ·ϕdΘ (7.2.22)

where ṽ : Θ→ R3 is an appropriate extension, in the direction normal to Ω, of the interface

velocity v to the fluid domain, and χΩ : Θ→ {0,1} is an indicator function such that:

χΩ(p) :=
{

1 if p ∈Ω,

0 if p ∉Ω,
for p ∈Θ, (7.2.23)

which identifies the location in space where the interface Ω lies. The penalty parameter CR

determines how the condition (7.2.20) is enforced: if CR = 0, the condition is transparent to the

equations; for CR high enough, the continuity of the velocities of the fluid and the immersed

body is enforced on Ω [173]. For other values of the penalty factor, the condition acts as a

porous interface, as studied in [91].

In order to employ the term in Eq. (7.2.22) to weakly enforce the continuity condition (7.2.20),

the indicator function for the immersed interface Ω is required. Let us consider an implicit

representation of the interface Ω through a signed distance function, i.e. a function d : Θ→R

such that:

d(p) =
{−dist(p,Ω) if p ∈ΘI ,

dist(p,Ω) if p ∉ΘI ,
for p ∈Θ, (7.2.24)

where dist(p,Ω) indicates the Euclidean distance between the point p and the interface Ω:

dist(p,Ω) := inf
y∈Ω
∥∥y−p

∥∥ for p ∈Θ, (7.2.25)

where ‖·‖ is the standard Euclidean norm in Rd . The signed distance function is zero on Ω,

negative inside the immersed object, and positive outside. With this definition, the indicator

function χΩ can be rewritten in terms of the signed distance function as:

χΩ(p) = δ(d(p)) for p ∈Θ, (7.2.26)

where δ : R→R is the Dirac delta centered in 0, defined as:

δ(x) :=
{

1 if x = 0,

0 if x �= 0
for x ∈R. (7.2.27)
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Similarly, the indicator function for the immersed domain χΘI : Θ→R, defined as:

χΘI (p) :=
{

1 if p ∈ΘI ,

0 if p ∉ΘI ,
for p ∈Θ, (7.2.28)

can be written by using the signed distance function as:

χΘI (p) = 1−H (d(p)) for p ∈Θ, (7.2.29)

where H : R→R is the Heaviside function centered in 0, which reads:

H (x) :=
{

0 if x < 0,

1 if x ≥ 0,
for x ∈R. (7.2.30)

In practice, in view of the discretization of the resistive term, the indicator functions defined in

Eqs. (7.2.26) and (7.2.29) are regularized. This is done by considering smooth approximations

of the Delta and Heaviside functions. For an in-depth analysis on these regularizations

see [174]; here we just highlight that the delta function should be a compact smoothing of the

Dirac delta, with support in a narrow band of controllable width, and should have integral

equal to 1.

First of all, let us denote with δ̃ε : R→ [0,1] the smoothed delta function. The parameter ε ∈R+

controls the width of the smoothing interval, i.e.:

spt δ̃ε ⊆ [−ε,ε], (7.2.31)

where the operator spt indicates the support. The smooth delta function δ̃ε should also satisfy:∫+∞

−∞
δ̃ε dx =

∫+ε

−ε
δ̃ε dx = 1. (7.2.32)

These properties are both satisfied by the following simple smooth approximation of the Dirac

delta ( [88, 92, 175]):

δ̃ε(x) =
⎧⎨⎩

1

2ε

(
1+cos

(πx

ε

))
if |x| ≤ ε,

0 if |x| > ε,
for x ∈R, (7.2.33)

which is adopted in this thesis. A corresponding smoothing H̃ε : R → R of the Heaviside

function, such that it changes values from 0 to 1 in a band large 2ε, reads:

H̃ε(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x <−ε,

1

2

(
1+ x

ε
+ 1

π
sin
(πx

ε

))
if |x| ≤ ε,

1 if x > ε,

for x ∈R. (7.2.34)
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(b) Heaviside function H̃ε

Figure 7.2 – Delta and Heaviside functions, in (a) and (b) respectively.

Both δ̃ε and H̃ε lead to better approximations of the Dirac delta and Heaviside functions as

ε→ 0. A sketch of the two functions is shown in Figure 7.2.

By combining δ̃ε and H̃ε with the signed distance function defined in Eq. (7.2.24) we obtain a

smooth approximation of the indicator function χΩ, which we denote by δε : Θ→R and we

define as:

δε(p) := δ̃ε
(
d(p)

)
for p ∈Θ. (7.2.35)

Similarly, we write Hε : Θ→R, the smooth approximation of χΘI , as:

Hε(p) := 1−H̃ε

(
d(p)

)
for p ∈Θ. (7.2.36)

Due to the property in Eq. (7.2.32), the integral of the smooth indicator function δε over the

whole domain Θ is equal to the measure of the interface Ω:∫
Θ
δε dΘ= |Ω|, (7.2.37)

while the integral of the smooth indicator function Hε results in the measure of the immersed

domain ΘI :∫
Θ

Hε dΘ= |ΘI |. (7.2.38)

The smooth indicator function Hε can also be used to express the smooth variation of quan-

tities defined on Θ which assume different values internally to ΘI or externally. In fact, the
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(a) Delta function δε(d(x))
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(b) Heaviside function Hε(d(x))

Figure 7.3 – Delta and Heaviside functions applied to the disk D = {x ∈R : |x −xc | ≤ r } ⊂ R,
with r = 0.78, xc = 0.1, and ε= 0.3.

regularized viscosity μ of the fluid can be written as:

μ(p) =Hε(p)μI + (1−Hε(p))μO , for p ∈Θ. (7.2.39)

Example. Let us consider a one-dimensional closed disk D ⊂R of radius r ∈R given by:

D = {x ∈R : |x −xc | ≤ r } , (7.2.40)

centered in xc ∈ R. The boundary of D is composed by the two coordinates x1, x2 ∈ R such

that:

x1 = xc − r and x2 = xc + r. (7.2.41)

The disk can be represented implicitly by the signed distance function:

d(x) = |x −xc |− r (7.2.42)

which assumes negative values inside the disk, positive values outside, and is zero on the

boundary. In Figure 7.3 we show the smooth indicator functions δε and Hε applied to the

signed distance function in Eq. (7.2.42) for the disk with radius r = 0.78 and center in xc = 0.1,

by considering a smoothing with ε= 0.3. By decreasing the parameter ε the smoothing bands

around the boundary coordinates get narrower; in the limit of ε→ 0 one obtains from δε the

sum of two Dirac delta functions centered in x1 and x2, and from Hε the indicator function of

the disk χ
D

.

Finally, we rewrite problem (7.2.18) by including also the resistive term in Eq. (7.2.22) with
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smoothed delta function to weakly enforce the condition (7.2.20), obtaining the following

problem:

for a.e. t ∈ (0,T ), find u(t ) ∈VR and p(t ) ∈W such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
Θ

∂u

∂t
·ϕdΘ+

∫
Θ

u ·∇u ·ϕdΘ+
∫
Θ

2

Re
D(u) : ∇ϕdΘ−

∫
Θ

p∇·ϕdΘ

+
∫
Θ

CRδε(u− ṽ) ·ϕdΘ=
∫
ΓN

h ·ϕdΓN ∀ϕ ∈V0,∫
Θ
ψ∇·u = 0 ∀ψ ∈W.

(7.2.43)

In general, the signed distance function d depends on the shape of Ω. While for some common

geometries it can be expressed analytically, as in Eq. (7.2.42) for the disk, for more general

shapes, which cannot be represented via a simple analytical description, its determination

becomes a non-trivial task. In this regard, we will discuss our approach for obtaining the

signed distance of an immersed NURBS geometry in Section 7.3.

7.2.4 Computation of forces on an immersed object

When a obstacle is immersed in a flowing fluid, it is subject to forces exerted by fluid. In

particular, the component of this force aligned to the direction of the flow is called drag, while

the component of the force normal to the direction of the flow is called lift. By considering the

setup sketched in Figure 7.1, the dimensionless forces acting on the immersed object ΘI are

computed as:

F =
∫
Ω

(
−pI+ 2

Re
D(u)

)
n dΩ, (7.2.44)

which in dimensional form read:

Fd = ρFU 2F. (7.2.45)

In particular, the drag and lift are obtained as:

FD =
∫
Ω

(
−p nx + 1

Re

∂ (u · t)

∂n
ny

)
dΩ (7.2.46)

and

FL :=
∫
Ω

(
−p ny + 1

Re

∂ (u · t)

∂n
nx

)
dΩ, (7.2.47)

respectively, where n is the unit vector normal to the interface Ω, with components
(
nx ,ny

)
,

and t is the unit vector tangent to the interface, with components
(
ny ,−nx

)
.

Since we employ an immersed approach to represent the obstacle, we recast the evaluation
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of the forces by considering volume integrals on the fluid domain Θ [176]. In particular, by

considering an indicator function such as χΘI defined in Eq. (7.2.29) and following [177], we

notice that the normal vector to the interface can be retrieved by taking the gradient of the

indicator as [176, 177]:

ñ =−∇χΘI in Θ, (7.2.48)

where the normal ñ : Θ→ Rd is extended to the whole domain Θ and non-zero only at the

interface. This allows us to calculate the forces acting on the immersed obstacle by performing

an integral on Θ, as:

F =−
∫
Θ

(
−pI+ 2

Re
D(u)

)
∇χΘI dΘ. (7.2.49)

In practice, we always deal with the smooth regularizations of the indicator functions in

Eqs. (7.2.35) and (7.2.36) defined with the signed distance describing the immersed object.

Therefore, we calculate the approximated forces exert by the fluid on the obstacle as:

F =−
∫
Θ

(
−pI+ 2

Re
D(u)

)
∇Hε dΘ. (7.2.50)

Then, by using Eq. (7.2.50), the drag and lift forces are derived as:

FD =−
∫
Ω

[
−p

∂Hε

∂x
+ 1

Re

(
∂ux

∂x

∂Hε

∂x
+ ∂ux

∂y

∂Hε

∂y

)]
dΩ (7.2.51)

and

FL =−
∫
Ω

[
−p

∂Hε

∂y
+ 1

Re

(
∂uy

∂x

∂Hε

∂x
+ ∂uy

∂y

∂Hε

∂y

)]
dΩ, (7.2.52)

respectively.

7.2.5 Space discretization of the fluid equations

We consider the fluid domain Θ to be represented by a NURBS volume, if d = 3, or a NURBS

planar surface, if d = 2. We consider the NURBS-based IGA discretization of the Navier–Stokes

equations (7.2.43) in the framework of the Galerkin method. To this aim, we introduce the

finite dimensional function spaces for the velocity:

Vh :=V ∩ [Nh]d ,

VR,h := {ϕh ∈Vh : ϕh = gh on ΓD
}

, VR,h := {ϕh ∈Vh : ϕh = 0 on ΓD
}

,
(7.2.53)

and the pressure:

Wh :=W ∩Nh , (7.2.54)
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where Nh is the NURBS function space holding the basis functions which define the geometri-

cal mapping of Θ, following the isoparametric paradigm; gh is a suitable approximation of g

onto the NURBS space. However, the choice of function spaces in Eqs. (7.2.53) and (7.2.54)

for discretizing problem (7.2.43) does not satisfy the Babuška–Brezzi condition [112, 178],

since both the velocity and the pressure are expressed in terms of the same basis functions.

Therefore, we adopt a stabilized formulation in order to guarantee the well-posedness of the

problem. The semidiscrete problem reads:

for a.e. t ∈ (0,T ), find uh ∈VR,h and ph ∈Wh such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Θ

∂uh

∂t
·ϕh dΘ+

∫
Θ

uh ·∇uh ·ϕh dΘ+
∫
Θ

2

Re
D(uh) : ∇ϕh dΘ

−
∫
Θ

ph∇·ϕh dΘ+
∫
Θ

CRhδε (uh − ṽh) ·ϕh dΘ+SM (ϕh ;uh , ph)

=
∫
ΓN

hh ·ϕh dΓN ∀ϕh ∈V0,h ,∫
Θ
ψh∇·uh +SC (ψh ;uh , ph) = 0 ∀ψh ∈Wh ,

(7.2.55)

with ṽh representing a suitable extension to Θ of the velocity of Ω. The additional stabilization

terms SM and SC refer to the SUPG stabilization and will be described in Section 7.2.6.

Problem (7.2.55) requires also compatible initial conditions:

uh(0) = u0,h in Θ, (7.2.56)

where u0,h is the L2-projection of the initial data u0 onto the NURBS function space VR,h .

Regarding the RIS term, the resistive parameter CRh depends on the mesh element size, and in

particular it is proportional to 1
h , in order to guarantee convergence of the pressure jump [92].

7.2.6 SUPG stabilization

Let rM and rC indicate the strong residuals of the momentum and continuity equations,

reading, element by element:

rM (uh , ph) := ∂uh

∂t
+uh ·∇uh −2∇·

(
1

Re
D(uh)

)
+∇ph +CRhδε(uh − ṽh) (7.2.57)

and

rC (uh) :=∇·uh , (7.2.58)
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respectively. The SUPG stabilization technique [93, 94, 95] consists in adding the following

term to the semidiscrete momentum equation:

SM (ϕh ;uh , ph) := ∑
K∈Kh

[∫
K
τK

M (uh)rM (uh , ph)uh ·∇ϕhdK +
∫

K
τK

C (uh)rC (uh)∇·ϕhdK

]
(7.2.59)

and to the semidiscrete continuity equation:

SC (ψh ;uh , ph) := ∑
K∈Kh

∫
K
τK

M (uh)rM (uh , ph) ·∇ψhdK . (7.2.60)

These stabilization terms are evaluated and added element-wise over the computational mesh

Kh . τK
M and τK

C represent stabilization parameters. In order to evaluate these parameters, we

consider the quantities:

Ḡi j =
d∑

k=1

∂ξk

∂Xi

∂ξk

∂X j
for i = 1, . . . ,d , j = 1, . . . ,d , (7.2.61)

and

ḡi =
d∑

j=1

∂ξ j

∂Xi
, for i = 1, . . . ,d , (7.2.62)

where X is the NURBS geometrical mapping representing Θ and ξi , for i = 1, . . . ,d , refers to

the i -th parametric direction. Then, the parameter τK
M is calculated as [95]:

τK
M =
[

C 2
t

Δt 2 +uh · Ḡuh +CI
1

Re2 Ḡ : Ḡ+C 2
Rh
δ2
ε

]− 1
2

, (7.2.63)

where CI ∈R is a constant independent of the mesh size but dependent on the degree p of the

NURBS basis functions, which can be obtained from an element-wise inverse estimate [94,

179]:

CI = 60 ·2p−2, (7.2.64)

and, in anticipation of the discretization in time that will be introduced in Section 7.2.7, Δt ∈R

is the time step size and Ct ∈ R is equal to the order of the time discretization chosen. We

highlight the dependence of the stabilization parameter τK
M in Eq. (7.2.63) on the resistive

constant and the smoothed indicator function δε, stemming from the RIS approach [92].

Finally, the stabilization parameter τK
C reads [95]:

τK
C (uh) = 1

τK
M (uh) ḡ · ḡ

. (7.2.65)

We remark that the stabilization parameters in the limit of Δt → 0 may become degenerate [95].
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7.2.7 Time discretization of the fluid equations

Regarding the time discretization of Eqs. (7.2.55) stabilized with the SUPG terms (7.2.59)

and (7.2.60), we employ, as introduced in Chapter 5, a BDF scheme of order k. We adopt a

semi-implicit formulation: as in [92, 159] we extrapolate in time the convective term as well as

the stabilization parameters of the SUPG stabilization, with an extrapolation compatible with

the BDF scheme adopted (see Section 5.2).

Let the interval (0,T ) be divided into N time steps of size Δt , with time instances ti = iΔt , for

i = 0, . . . , N ∈N, so that t0 = 0 and tN = T . The fully discrete Navier–Stokes problem, discretized

in space with NURBS-based IGA and in time with BDF schemes, then reads:

for n = k, . . . , N −1, find un+1
h ∈VR,h and pn+1

h ∈Wh such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Θ

α0

Δt
un+1

h ·ϕh dΘ+
∫
Θ

u∗
h ·∇un+1

h ·ϕh dΘ+
∫
Θ

2

Re
D(un+1

h ) : ∇ϕh dΘ

−
∫
Θ

pn+1
h ∇·ϕh dΘ+

∫
Θ

CRhδε
(
un+1

h − ṽh
) ·ϕh dΘ

+
∑

K∈Kh

∫
K
τK

M (u∗
h)r̃M (un+1

h , pn+1
h ) · (u∗

h ·∇ϕh

)
dK

+ ∑
K∈Kh

∫
K
τK

C (u∗
h)rC (un+1

h )∇·ϕhdK

=
∫
Θ

α0

Δt
ubd f ,n

h ·ϕh dΘ+
∫
ΓN

hh ·ϕh dΓN ∀ϕh ∈V0,h ,∫
Θ
ψh∇·un+1

h + ∑
K∈Kh

[∫
K
τK

M (u∗
h)rM (un+1

h , pn+1
h ) ·∇ψhdK

]
= 0 ∀ψh ∈Wh ,

(7.2.66)

where the residual r̃M of the fully discrete momentum equation reads:

r̃M := α0

Δt

(
un+1

h −ubd f ,n
h

)
+u∗

h ·∇un+1
h −2∇·

(
1

Re
D
(
un+1

h

))+∇pn+1
h +CRhδε

(
un+1

h − ṽh
)

(7.2.67)

The system of Eq. (7.2.66) needs appropriate initial conditions, reflected in the term ubd f ,0
0,h .

since the BDF schemes of order k > 1 are multi-step methods, k initial conditions are formally

required:

un
h = ũn in Θ, for n = 0, . . . ,k −1, (7.2.68)

where ũn is the L2-projection of the initial data un onto the NURBS function space VR,h , for

n = 0, . . . ,k −1; then, ubd f ,0
0,h is obtained by using Eq. (5.2.7). Finally, we remark that, due to the

semi-implicit approach, one linear system has to be solved at each time step.
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1.0

1.0

Θ

ΓU

Figure 7.4 – Lid-driven cavity case. Sketch of the setup.

7.2.8 Numerical results: lid-driven cavity

As a test for the numerical approximation of the fluid equations, we consider the lid-driven

cavity problem [180]. It is a well known test case used for testing discretization methods and

numerical schemes for solving the Navier–Stokes equations. Several authors have reported

results obtained with different numerical approaches [180, 181, 182, 183]; for results obtained

with IGA-based discretizations, we refer to [40, 184].

The setup is sketched in Figure 7.4. The problem is defined in the two-dimensional quadran-

gular cavity domain of size L = 1, i.e. Θ= (0,1)2. The topmost wall moves with a prescribed

velocity equal to U = 1 in the direction highlighted by the arrow, which reflects in a condition

on the velocity of the fluid. On the other walls, no-slip conditions are considered. Thus, the

following conditions are imposed:

u =−U ex on ΓU , t ∈ (0,T ),

u = 0 on ∂Θ\ΓU , t ∈ (0,T ).
(7.2.69)

The Reynolds number is set to Re = 1000. We are interested in the results at steady state.

Since we approximate the unsteady Navier–Stokes problem, we let the simulation go from an

initial condition of u = 0 everywhere to a final time of T = 100. The computational domain

is represented by means of NURBS of degree p = 2 and C 1-continuous in a 128×128 grid of

elements, yielding a total of 16,384 elements. The problem is discretized in time by employing

a BDF scheme of order k = 2 with a fixed time step size of Δt = 0.1. For each time step, the

resulting linear system is composed of 66,567 DOFs and is solved by using the GMRES method

with MUMPS preconditioner [185, 186].

We report in Figure 7.5 the approximated velocity field at t = 100. The solution obtained at final

time is compared against values reported in the literature in specified points of the domain.
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(a) Velocity magnitude (b) LIC

Figure 7.5 – Lid-driven cavity case. Approximated velocity field in (a) and its line integral
convolution (LIC) in (b), at t = 100.

Results [180] [181]
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(a) ux at vert. centerline

0 0.2 0.4 0.6 0.8 1
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(b) uy at horiz. centerline

Figure 7.6 – Lid-driven cavity case. Horizontal velocity at the vertical centerline (a) and vertical
velocity at the horizontal centerline (b), compared against [180] and [181].

As references, we consider the papers [180] and [181], where discretizations based on finite

differences and multigrid solvers are employed, and [182], where the authors used a spectral

Chebyshev collocation method. In particular, we extract the horizontal velocity ux and the

pressure p in 9 points on the vertical centerline (i.e. on x = 0.5) and compare them against the

values reported in the references in Table 7.1. We do the same with the vertical velocity uy and

the pressure p in 9 points on the horizontal centerline (i.e. on y = 0.5), reporting the values in

Table 7.2.
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Results [182] [181]

0 0.2 0.4 0.6 0.8 1
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(a) p at vert. center line
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0

2 ·10−2

4 ·10−2

6 ·10−2

8 ·10−2

0.1

(b) p at horiz. center line

Figure 7.7 – Lid-driven cavity case. Pressure at the vertical centerline (a) and at the horizontal
centerline (b), compared against [182] and [181].

By comparing the results, we find agreement with the references reported. The horizontal

velocity at the vertical center line and vertical velocity at the horizontal center line are shown

in Figure 7.6. The pressure, while still being comparable, presents higher differences with

the reference results. This could be due to different reasons. First of all, we highlight that

the mesh employed is uniform, thus not refined near the boundaries. Moreover, we consider

the classical weak formulation in Eq. (7.2.55) with the velocity u and pressure p as primitive

variables approximated using the pair of function spaces (7.2.53) and (7.2.54) which do not

satisfy the Babuška–Brezzi condition, as stated in Section (7.2.5), for which we add the SUPG

stabilization terms to the formulations. Finally, the imposed Dirichlet boundary conditions

on the velocity shows discontinuities in the top corners of the cavity, leading to the vorticity

and the pressure being singular in these two points [187]. In this work there is no special

treatment for controlling the impact of the singularities on the numerical results; if more accu-

racy is required, several approaches could be considered, from the simple smoothing of the

Dirichlet datum (see e.g. [188]), to the more complex singularity subtraction technique [183].

Nevertheless, with these considerations in mind, we consider the results to be sufficiently

accurate for our purposes. Our results are also in agreement with the ones reported for B-

splines IGA-based discretizations in the papers [40] and [184] based, respectively, on a scalar

streamfunction formulation and the use of divergence-conforming B-splines, which lead to

the mass being conserved by construction, for both the cases. Minimum and maximum values

of the velocity at the centerlines are reported in Table 7.3; we remark that, in order to perform

the comparison, these values refer to the numerical approximation of the lid-driven cavity

problem with reversed velocity of the top wall with regard to the setup in Figure 7.4, i.e. with

the condition u =U ex on ΓU , with U = 1.
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y ux [180] ux [182] ux [181] ux p [182] p [181] p
1.0000 −1.0000 −1.0000 −1.0000 −1.0000 0.0530 0.0530 0.0513
0.9688 −0.5749 −0.5808 −0.5803 −0.5738 0.0515 0.0515 0.0501
0.9531 −0.4660 −0.4723 −0.4724 −0.4666 0.0503 0.0503 0.0489
0.7344 −0.1872 −0.1887 −0.1886 −0.1860 0.0121 0.0121 0.0117
0.5000 0.0608 0.0621 0.0621 0.0620 0.0000 0.0000 0.0000
0.2813 0.2781 0.2804 0.2804 0.2782 0.0404 0.0404 0.0396
0.1016 0.2973 0.3004 0.3003 0.2925 0.1042 0.1044 0.1018
0.0625 0.2020 0.2023 0.2023 0.1956 0.1092 0.1092 0.1065
0.0000 0.0000 0.0000 0.0000 0.0000 0.1106 0.1106 0.1079

Table 7.1 – Lid-driven cavity case. Horizontal velocity and pressure values in points along the
vertical centerline.

x uy [180] uy [182] uy [181] uy p [182] p [181] p
0.0000 0.0000 0.0000 0.0000 0.0000 0.0775 0.0774 0.0761
0.0391 −0.2767 −0.2937 −0.2933 −0.2843 0.0787 0.0787 0.0766
0.0547 −0.3919 −0.4104 −0.4102 −0.3994 0.0772 0.0771 0.0752
0.1406 −0.4266 −0.4264 −0.4263 −0.4225 0.0490 0.0490 0.0478
0.5000 0.0253 0.0258 0.0258 0.0255 0.0000 0.0000 0.0000
0.7734 0.3307 0.3340 0.3340 0.3295 0.0473 0.0473 0.0462
0.9062 0.3263 0.3330 0.3329 0.3268 0.0844 0.0844 0.0824
0.9297 0.2901 0.2963 0.2962 0.2904 0.0877 0.0876 0.0855
1.0000 0.0000 0.0000 0.0000 0.0000 0.0905 0.0904 0.0884

Table 7.2 – Lid-driven cavity case. Vertical velocity and pressure values in points along the
horizontal centerline.

7.2.9 Numerical results: flow past cylinder

We now consider another benchmark problem: the flow past a cylinder at Re = 100 [189]. The

setup of the problem is sketched in Figure 7.8. The domain consists in a rectangular channel of

height H = 0.41 and length L = 2.2, with a cylindrical obstacle Ω of diameter D = 0.1 centered

in (xc , yc ) ∈R2, (xc , yc ) = (0.2,0.21). The fluid flows through the inlet ΓI at the left wall towards

the outlet ΓO at the right wall. At the inlet a parabolic velocity profile is prescribed:

g = 4

0.412 U y(0.41− y)ex y ∈ (0,0.41), (7.2.70)

where U is the mean inflow velocity. On the bottom and top walls no-slip conditions are

prescribed, while on the outlet a homogeneous natural condition is considered. Thus, the
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results [40] [184] [180]
minux −0.3824 −0.3903 −0.3902 −0.3829
minuy −0.5183 −0.5287 −0.5288 −0.5155
maxuy 0.3708 0.3787 0.3786 0.3710

Table 7.3 – Lid-driven cavity case. Velocity values computed at the centerlines of the cavity at
Re = 1000 and comparison against the results obtained with mesh size h = 1/128 in [40], using
B-splines of degree p = 2, and in [184], using B-splines of degree p = 1; the last column reports
the classical results of [180].

Inlet Outlet

0.2

0.21

0.2

2.2

0.41Θ

ΩΓI ΓO

Figure 7.8 – Flow past cylinder. Sketch of the setup.

following boundary conditions are enforced on the boundary of the fluid domain Θ:

u = g on ΓI , t ∈ (0,T ),

σn = 0 on ΓO , t ∈ (0,T ),

u = 0 on ∂Θ\ (ΓI ∪ΓO), t ∈ (0,T ),

(7.2.71)

where n is the outward pointing unit normal vector at the outlet ΓO . The fluid flowing into

the channel has density ρ = 1 and kinematic viscosity μ= 10−3. By considering the diameter

of the obstacle as characteristic length, the Reynolds number, defined for this problem as

Re = ρU D/μ, is chosen to be equal to Re = 100, with a characteristic velocity of U = 1 and

mean inflow velocity of U = 3
2U = 1.5.

This problem is widely used for assessing and comparing the performance of discretization

techniques and numerical solvers for the Navier–Stokes equations. For example, results

obtained with several numerical methods on boundary fitted discretizations are available

for comparison in [189, 190, 191]; in [177], the fictitious domain method has instead being

used. In the domain of IGA-based discretizations, we cite the work [192], where Taylor–Hood

B-spline elements are employed, and [193] for results obtained with NURBS-based IGA.

We consider two approaches for simulating the problem. In the first approach, a NURBS pa-

rametrization of the domain is considered such that it represents exactly the “boundary-fitted”

geometry with the hole. The computational domain is shown, at a coarse level of refinement,

in Figure 7.9b. The geometrical mapping is highly stretched and skewed, since we consider
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0 2.2
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0.41
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(a) Boundary fitted mesh (single NURBS patch)

0 2.2
0

0.41

x

y

(b) Mesh used with the resistive approach

Figure 7.9 – Flow past cylinder. Computational NURBS meshes considered in the boundary
fitted case (a) and with the resistive approach (b).

only single-patch NURBS mappings; nevertheless, it represents and fits the boundaries ex-

actly. We remark that, in order to represent exactly the circular hole, it is necessary to employ

NURBS basis functions of at least degree p = 2. For different parametrizations of this geometry,

involving multiple patches, see e.g. [193]. The considered boundary fitted mesh is composed

of 33,927 elements and NURBS basis functions of degree p = 2 and C 1-continuous everywhere

(even across the line from the hole to the outlet corresponding to the "folded" boundary of

the parametric domain, by using the same approach described in Section 3.3.1 for building

periodic function spaces). The amount of DOFs of the discrete system to solve at each time

step is 136,888.

The second approach is based on the RIS method described in Section 7.2.3. The fluid domain

consists in the rectangular channel Θ= (0,2.2)× (0,0.41) parametrized as a regular Cartesian

grid, as shown in Figure 7.9b. The circular obstacle is seen by the fluid as a resistive immersed

surface, described by the following signed distance function d : R2 →R:

d(x, y) =
√

(x −xc )2 + (y − yc )2 − D

2
for (x, y) ∈Θ. (7.2.72)

In this example, the resistive constant is set to CRh = 5000
h and ε= 2h. The Cartesian mesh is

built of 256×64 elements, for a total of 16,384 elements and 83,916 DOFs, with NURBS basis

functions of degree p = 2 and globally C 1-continuous. The PDEs are discretized in time by a

BDF scheme of order k = 2 with time step size set to Δt = 0.001. In both the cases, the velocity

profile at the inlet is prescribed via L2-projection of the data onto the NURBS function space.

We report in Figure 7.10 the velocity magnitude together with the pressure field at time t = 7
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(a) Velocity

(b) Pressure

Figure 7.10 – Flow past cylinder. Velocity (a) and pressure (b) fields at time t = 7 obtained on
the boundary fitted mesh.

(a) Velocity

(b) Pressure

Figure 7.11 – Flow past cylinder. Velocity (a) and pressure (b) fields at time t = 7 obtained with
the resistive approach.
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Boundary fitted RIS
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(b) Lift coefficient CL

Figure 7.12 – Flow past cylinder. Drag and lift coefficients obtained on the boundary fitted
mesh as well as using the resistive approach.

computed on the boundary fitted mesh. In Figure 7.11 the velocity magnitude and pressure

field at time t = 7 computed with the RIS approach on the Cartesian mesh are shown. The

two velocity profiles refer to the same time instance; they differ because the vortex shedding

approximated with the two approaches is not synchronized. In Tables 7.4 and 7.5 we report

the minimum value, maximum value, mean and amplitude of the oscillations of the drag

coefficient CD and lift coefficient CL , respectively. We compare the coefficients obtained on

the boundary fitted mesh and with the RIS approach on the Cartesian mesh as well as against

values reported in the literature, in particular from [192], where IGA with Taylor–Hood B-spline

elements has been employed, and from [194], based on a FE discretization with Q2/P disc
1

elements. The numerical approximation using the boundary fitted mesh is in agreement

with the sources considered for the comparison. We highlight that, by employing different

parametrizations of the geometry based on multi-patch NURBS, better accuracy could be

achieved; as stated also in [195] for scalar convection-diffusion equations, the parametrization

of the domain plays an important role with regard to the accuracy of the results, also confirmed

for the flow past cylinder benchmark problem in [193], where different NURBS-based multi-

patch parametrizations have been tested. Nevertheless, the results on the boundary fitted

mesh are a valid reference for the comparison against the results obtained with the RIS

approach.

In this regard, in Figures 7.12a and 7.12b the evolutions of the drag and lift coefficients

computed on the boundary fitted mesh as well as with the RIS method on the Cartesian mesh

are shown. It is evident how, with the RIS method, the qualitative behavior of the solution

is reproduced. Regarding the drag coefficient, we obtain an error of about 15% on the mean

value and 13% on the amplitude of the oscillations, while for the lift coefficient the mean value
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is particularly offset (of around 90%), but the error in the amplitude of the oscillations is 8%.

In contrast, we obtain a better approximation of the Strouhal number, reported in Table 7.6,

and being calculated as:

St = f D

U
, (7.2.73)

where f ∈ R is the frequency of the vortex shedding; the error on the Strouhal number is

below 0.1%.

In general, the forces and the drag and lift coefficients are very sensitive to the discretization of

the immersed interface and to the accuracy in enforcing the no-slip condition on the obstacle.

We remark that the computational mesh considered (shown in Figure 7.9b) is not refined

around the hole, as it should be when high accuracy is wanted [177, 192, 193]. The choice

of not refining the mesh around the obstacle stems from the fact that we aim at assessing

the behavior of the method with a coarse discretization. Indeed, when considering a vesicle

inside a containing domain, this is free to move and deform; therefore, a priori its location

and shape are unknown. This issue can be overcome by employing, for example, adaptive

discretizations using hierarchical basis functions [196, 197], or adaptive quadrature rules in

the mesh elements intersecting the boundary of the immersed object, as done in the Finite

Cell Method [198, 199].
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min. CD max. CD mean CD amp. CD

RIS 2.6636 2.7345 2.6955 0.0708
bound. fit. 3.1581 3.2207 3.1895 0.0626

[192] 3.1665 3.2300 3.1983 0.0635
[194] 3.1643 3.2274 3.1958 0.0631

Table 7.4 – Flow past cylinder. Minimum value, maximum value, mean, and amplitude of the
oscillations of the drag coefficient CD .

min CL max CL mean |CL | amp. CL

RIS −0.9908 0.8721 0.0298 1.8630
bound. fit. −1.0307 0.9945 0.0157 2.0252

[192] −1.0242 0.9893 0.0175 2.0135
[194] −1.0213 0.9866 0.0174 2.0079

Table 7.5 – Flow past cylinder. Minimum value, maximum value, mean, and amplitude of the
oscillations of the lift coefficient CL .

1\ f St
RIS 0.3220 0.3036

bound. fit. 0.3213 0.3033
[192] 0.3300 0.3030
[194] 0.3313 0.3019

Table 7.6 – Flow past cylinder. Computed period of the vortex shedding and Strouhal number.
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7.3 Signed distance and resistive method with NURBS

The penalization method introduced in Section 7.2.3 to weakly enforce the condition (7.2.20)

on the continuity of the velocities at an immersed interface relies on a signed distance function

d : Θ → R to define the immersed shape. For some geometries, defined through simple

expressions, the associated signed distance function can be expressed explicitly, e.g. for the

disk defined in Eq. (7.2.40). However, for more complex geometries the signed distance

functions cannot be written as closed expressions and the construction of such functions is

not a straightforward task. The problem of calculating the signed distance field d generated

by Ω on Θ consists in:

For all points p ∈Θ:

• Find the minimum distance between p and the interface Ω by solving the problem:

find dist(p) ∈R such that

dist(p) = inf
y∈Ω
∥∥y−p

∥∥ ,
(7.3.1)

where ‖ ·‖ refers to the Euclidean distance in Rd .

• Check if p is inside or outside the object whose Ω is boundary and change the sign of

the obtained distance accordingly:

d(p) =
{−dist(p) if inside,

dist(p) if outside.
(7.3.2)

Problem (7.3.1), also known as the minimum distance problem, is a very ubiquitous and

studied topic [200]. For instance, in the domain of computational geometry it appears when

considering curve and surface fitting [201]; for physics engines in videogames it represents a

core part of the collision detection algorithms [202]; it is also the main problem behind the

interactive selection of geometries in CAD software [200] and for ray-tracing [203, 204, 205, 206,

207]. While a common framework for the minimum distance computational problem can be

devised [200], the algorithms used to solve problem (7.3.1) are very specific and tailored to the

kind of geometry considered. Besides the simple geometrical shapes, usually two classes of

geometries are distinguished: polygonal models and parametric models. Polygonal models, for

example, represent a common way to describe or approximate complex geometries in realtime

computer graphics, in a manner that is numerically easy to handle and process, especially

with specialized acceleration hardware as GPUs [208]. Parametric models, as NURBS, are more

common in the realm of CAD design, for their capability of accurately representing complex

realistic shapes and their malleability and properties related to geometrical modeling [36].

Our focus in this thesis is restricted to parametric geometries, in particular described by

NURBS mappings. Let us consider a curve C : Ω̂→Rd , defined over the parametric domain

Ω̂⊂R. Given a point p ∈Rd , we seek the projection of the point onto the curve, i.e. we seek the

parametric coordinate ξ ∈ Ω̂ of the point q ∈ Rd such that q = C(ξ), i.e. lying on the curve C,
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that is perpendicular to the tangent vector of C in q [209]. The problem of projecting a given

point p ∈Rd onto the curve C reads:

find ξ ∈ Ω̂ such that

f (ξ) = (C(ξ)−p
) ·C′(ξ) = 0,

(7.3.3)

The function f can have multiple roots, each corresponding to a projection of p onto the

curve. Therefore, to find the minimum distance of p to the curve, the distance between p and

each of the projected points C(ξ), with ξ solution of problem (7.3.3), must be calculated and

the minimal distance selected. A formulation similar to (7.3.3) can be derived for parametric

surfaces [37].

To find the roots of f , the Newton–Raphson method is usually employed [202, 206, 209, 210].

However, this iterative method relies on an appropriate choice of initial value in order to

achieve convergence. This is even more crucial when projecting points onto self-intersecting

NURBS geometries [211] or when dealing with points near the boundaries of open sur-

faces [201]. To obtain suitable candidate points, several authors decompose the NURBS

geometries into rational Bézier subcurves or patches, to exploit the properties of the resulting

control polygons [211], or in a recursive subdivision process [201, 212], with special criteria

to accelerate the process by excluding non-necessary parts of the geometry [213, 214]. Alter-

natively, by using flattening procedures, based on adaptive subdivision or curvature-based

refinement [203, 204], it is possible to extract a small part of the geometry, in which the pro-

jected point lies, which is locally approximately flat; then, it can be approximated as a polygon

and standard ray-against-polygon methods can be employed [203].

Our approach in solving the projection problem (7.3.3) with NURBS geometries is based on

the Newton–Raphson method as in [37], with selection of the candidate points accelerated

by using a bounding volume hierarchy. We describe our approach in selecting the candidate

points in Section 7.3.1; in Sections 7.3.2 and 7.3.3 the algorithms to project a point onto NURBS

curves and surfaces are described; finally, in Sections 7.3.4 and 7.3.5 we apply this approach to

the penalization method described in Section 7.2.3.

7.3.1 Selection of candidate points

As already stated, the selection of good initial guesses is crucial for the Newton–Raphson

method to converge. Moreover, the iterative algorithm that refines the initial candidate

point towards the final projected point involves costly evaluations of the NURBS points and

derivatives. Therefore, an important aspect of the method for selecting the candidate points

is the efficiency, considering also that the signed distance (7.3.2) is evaluated in the whole

domain Θ when used to build the penalization term for the Navier–Stokes equations described

in Section 7.2.3.

Before describing our approach, we introduce the concept of bounding volume and bounding
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(a) AABB of the whole geometry (b) AABBs of the elements

Figure 7.13 – Axis aligned bounding boxes of an example NURBS closed curve in (a) and of its
elements in (b).

volume hierarchy. Given a set of np points
{

pi
}

, pi ∈Rd , a bounding volume V ⊂Rd is a region

of space such that pi ∈ V , for i = 1, . . . ,np , i.e. such that it encloses all the points of the set

considered. A bounding volume hierarchy is a hierarchy of bounding volumes organized in

a tree such that each node is a bounding volume which encloses completely the bounding

volumes of all its children. Bounding hierarchies are often used as space partitioning methods

to speed up geometrical algorithms [204]. Several choices for the kind of bounding volume to

adopt at each node of the hierarchy can be considered, the most adopted being, for instance,

spheres, axis aligned boxes, oriented boxes, trapezoidal prisms, or convex hulls. This choice

is driven by the trade-off between tightness of fit of the set of points and efficiency in the

construction of the hierarchy and in the intersection tests of points (or other geometric

primitives) against the tree.

We consider the use of axis aligned bounding boxes (AABB) [215]. An AABB is characterized by

two vectors bmi n ,bmax ∈Rd . Given the set of points
{

pi
}np−1

i=0
, the AABB is such that:

bmi n
j ≤ pi

j ≤ bmax
j for j = 1, . . . ,d , for i = 1, . . . ,np , (7.3.4)

i.e. the AABB describes the tightest region of Rd aligned with the Cartesian axes which encloses

the points
{

pi
}

. The choice of using AABBs as bounding volumes for the bounding hierarchy

stems from the efficiency in performing intersection tests and in building the hierarchy [204].

We remark also the strong convex hull property of B-spline and NURBS geometries [37] in

Property 1.

Property 1. Following the notation of Section 3.1, let us consider a NURBS curve C : Ω̂→Rd ,

Ω̂ ⊂ R, of degree p defined by the knot vector Ξ = {ξi }n
i=1 ∈ Rn, with n ∈ N, n ≥ 2, and by the

control points Pi ∈Rd , i = 1, . . . ,nb f , with nb f = n−p−1. By considering a given ξ ∈R such that

ξ ∈ [ξi ,ξi+1) then C(ξ) is contained by the convex hull defined by the control points Pi−p , . . . ,Pi .

Now, given a NURBS curve or surface Ω, let us consider the problem of finding, for each point

p ∈Θ, the minimum distance between p and Ω. Our approach is divided into a preprocessing

step and then a sequence of operations done for each point considered. In the preprocessing

step we do the following:
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1. Build the AABB of all the control points of the geometry (see Figure 7.13a).

2. For each element of the NURBS geometry, compute the AABB of the control points which

would form the convex hull containing the element by following the strong convex hull

property (see Figure 7.13b). These are the leaves of the bounding tree.

3. Build the bounding hierarchy by recursively unifying the AABBs of the nodes.

We remark that we choose to compute the AABB of the control points defining an element

instead of using directly their convex hull; while the latter would fit the element better, it is

also computationally more expensive to build and to test for intersections.

After the preprocessing step, for each point p ∈Θ in which we need to evaluate the minimum

distance with Ω we perform the following:

1. Calculate the distance between p and the AABB of the whole geometry Ω: if the dis-

tance is greater than a threshold, discard the point and consider the distance equal

to the threshold. The threshold τ must be chosen such that δ̃ε(τ) = 0 and H̃ε(τ) = 0,

i.e. such that the point is considered to be outside of Ω and external to the smoothing

region of the delta and Heaviside functions around Ω. This preliminary test is done

to avoid performing further checks in points distant from the immersed object. If the

complete distance field is required, then a large τ can be selected, effectively disabling

this preliminary check.

2. The distance between p and the AABBs of the nodes of the bounding hierarchy is

calculated, in a recursive fashion, from the root node towards the leaves. A list of

candidate elements is formed by selecting the elements whose AABB includes the point

p or by considering the element with smallest distance between its AABB and p. Since

the AABB of the convex hull of an element does not fit tightly the piece of geometry

spanned by the element itself (see for example Figure 7.14a), the candidate elements

selected through this step can be multiple.

3. For each candidate element, perform a sampling of the subdomain of the parameter

space spanned by the knots spans defining the element; for each parametric sampling

point, calculate the distance between the NURBS geometry evaluated in that point and

the point p and keep the one with minimum distance (see Figure 7.14b). We consider a

uniform sampling of the parametric element, as in [37].

After these steps, one obtains, for each p ∈Θ, a set of candidate points, one for each candidate

element. Then, each candidate point is used as initial guess for the iterative scheme described

in Section 7.3.2 for NURBS curves and in Section 7.3.3 for NURBS surfaces.
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(a) Selected element with its AABB
and boundaries (in red)

(b) Sampling points (in green)
and selected initial guess (in red)

(c) Projected point after 1 iteration

Figure 7.14 – Steps performed to project a point (in blue) onto an element of a NURBS curve:
in (a) the candidate element, delimited by the red points, with its AABB, is shown; in (b), after
a uniform sampling of the element (in the points in green), an initial guess (in red) is selected;
in (c), after one iteration of Newton–Raphson, the projection is found.

7.3.2 Point projection on NURBS curves

Let us consider a NURBS curve C : Ω̂⊂ R→ Rd . Our aim is to find the projection of a point

p ∈Rd onto C; by recalling Eq. (7.3.3), our problem reads:

find ξ ∈ Ω̂ such that

f (ξ) = C′(ξ) · (C(ξ)−p
)= 0.

(7.3.5)

In order to find the root of f , we consider the Newton–Raphson method, as employed in [37].

Let n ∈N indicate the current iteration. We consider an initial guess ξ0 ∈ Ω̂ obtained by the

algorithm described in Section 7.3.1, lying in the element defined by the knot span
[
ξ̃ j , ξ̃ j+1

]⊂
Ω̂. Then, at each iteration n the following steps are performed:

1. Check if the distance between the current estimated point on the curve and the target

point is below a tolerance:∥∥C(ξn)−p
∥∥≤ ε1, (7.3.6)

with ε1 ∈R; if this is the case, we consider C(ξn) to be coincident with p, thus we stop

the iterations.

2. Check if the segment between the point p and C(ξn) is approximatively perpendicular
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to the tangent of the the curve in ξn :∣∣C′(ξn) · (C(ξn)−p
)∣∣

‖C′(ξn)‖∥∥C(ξn)−p
∥∥ ≤ ε2, (7.3.7)

with ε2 ∈R being a tolerance. If Eq. (7.3.7) is satisfied then the point C(ξn) is a projection

of p onto C, thus the iterations are stopped.

3. Calculate the parametric coordinate of the new estimation:

ξn+1 = ξn − f (ξn)

f ′(ξn)
= ξn − C′(ξn) · (C(ξn)−p

)
C′′(ξn) · (C(ξn)−p

)+‖C′(ξn)‖2 . (7.3.8)

4. Ensure that the new iterate is within the knot span of the current element being consid-

ered:

if ξn+1 < ξ̃ j then set ξn+1 = ξ̃ j ,

if ξn+1 > ξ̃ j+1 then set ξn+1 = ξ̃ j+1.
(7.3.9)

If the current guess is outside the current element, most likely it will lead to parametric

points in one near element that would already be considered in the list of candidate

elements built with the procedure in Section 7.3.1. Nevertheless, we choose to not stop

the iterations and continue, by correcting the estimate ξn+1 to be inside the considered

knot span, in case the final projection point actually lies on the boundary of the element;

the iterations cannot get stuck on the boundary of the element because of the stopping

criterium in point 5.

5. Check if the new estimate is changing or if it is stationary:∥∥(ξn+1 −ξn)C′(ξn)
∥∥≤ ε1; (7.3.10)

if (7.3.10) is satisfied, then the iterations are stopped.

With this algorithm, performed for each candidate element selected in Section 7.3.1 from an

initial guess, a set of potential projections of the target point p onto the curve C is found. From

these points, the nearest point to p is selected, and the projection of p onto C is thus obtained.

7.3.3 Point projection on surfaces

Let us now consider a NURBS surface S : Ω̂⊂R2 →Rd . The procedure to find the projection of

p ∈Rd onto the surface S is similar to the algorithm described in Section 7.3.2. We consider
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the problem:

find ξ ∈ Ω̂ such that{(
S(ξ)−p

) ·Sξ1 (ξ) = 0,(
S(ξ)−p

) ·Sξ2 (ξ) = 0,

(7.3.11)

where Sξα(ξ) refers to the derivative of S evaluated in ξ along the α-th parametric direction.

To find solutions to problem (7.3.11), an approach based on the Newton–Raphson method is

considered, following [37].

With n ∈ N indicating the current iteration, ξ0 ∈ Ω̂ the initial guess lying in the paramet-

ric element
[
ξ̃1, j , ξ̃1, j+1

]× [ξ̃2,k , ξ̃2,k+1
] ⊂ Ω̂, then at each iteration n the following steps are

performed:

• Check the distance between p and the current approximation S(ξn):∥∥S(ξn)−p
∥∥≤ ε1 (7.3.12)

and stop the iterations if the points coincide within the given tolerance ε1 ∈R.

• Stop the iterations if the segment between p and S(ξn) is perpendicular to the tangent

plane in ξn , within a tolerance ε2 ∈R:∣∣Sξ1 (ξn) · (S(ξn)−p
)∣∣∥∥Sξ1 (ξn)

∥∥∥∥S(ξn)−p
∥∥ ≤ ε2 and

∣∣Sξ2 (ξn) · (S(ξn)−p
)∣∣∥∥Sξ2 (ξn)

∥∥∥∥S(ξn)−p
∥∥ ≤ ε2. (7.3.13)

• Solve the following linear system for the increment δξn+1:

Ji δξ
n+1 =−

[(
S(ξn)−p

) ·Sξ1 (ξn)(
S(ξn)−p

) ·Sξ2 (ξn)

]
, (7.3.14)

where

Ji =
[∥∥Sξ1 (ξn)

∥∥2 + (S(ξn)−p
) ·Sξ1ξ1 (ξn) Sξ1 (ξn) ·Sξ2 (ξn)+ (S(ξn)−p

) ·Sξ1ξ2 (ξn)

Sξ1 (ξn) ·Sξ2 (ξn)+ (S(ξn)−p
) ·Sξ2ξ1 (ξn)

∥∥Sξ2 (ξn)
∥∥2 + (S(ξn)−p

) ·Sξ2ξ2 (ξn)

]
.

(7.3.15)

Then, update the current guess:

ξn+1 = ξn +δξn+1. (7.3.16)
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(a) 64×64 elem., h = 1/64 (b) 128×128 elem., h = 1/128 (c) 256×256 elem., h = 1/256

Figure 7.15 – Smoothed delta function applied to a NURBS curve evaluated on a NURBS planar
quadrangular surface built of 642 elements (a), 1282 elements (b), and 2562 elements (c).

• Ensure that the new iterate is within the parametric element being considered:

if ξn+1
1 < ξ̃1, j then set ξn+1

1 = ξ̃1, j ,

if ξn+1
1 > ξ̃1, j+1 then set ξn+1

1 = ξ̃1, j+1,

if ξn+1
2 < ξ̃2, j then set ξn+1

2 = ξ̃2, j ,

if ξn+1
2 > ξ̃2, j+1 then set ξn+1

2 = ξ̃2, j+1.

(7.3.17)

• Stop the iterations if the new estimate does not change, within a given tolerance, from

the old estimate:∥∥(ξn+1
1 −ξn

1

)
Sξ1 (ξn)+ (ξn+1

2 −ξn
2

)
Sξ2 (ξn)

∥∥≤ ε1. (7.3.18)

After having obtained the set of points on S which are projections of the point p onto the

surface S, the point with minimum distance to p is selected.

7.3.4 Resistive NURBS immersed object

With the algorithms outlined in Sections 7.3.1, 7.3.2, and 7.3.3 it is possible to obtain, for an

arbitrary point p, the projected point q on a NURBS curve or surface which has minimum

distance to p among all the projections of p onto the considered geometry. In order to build a

smooth indicator function of the subspace enclosed by Ω, the signed distance between the

arbitrary point p and Ω is required. Let nq ∈Rd be the outward-pointing unit vector normal

to Ω in q, which is evaluated exactly on the NURBS geometry since we retrieve, by using the

described projection algorithms, the parametric coordinate corresponding to q on Ω. Then,

the signed distance between the arbitrary point p and Ω is obtained as:

d(p,Ω) =
{−∥∥p−q

∥∥ if
(
p−q

) ·nq ≤ 0,∥∥p−q
∥∥ otherwise.

(7.3.19)
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(a) 64×64 elem., h = 1/64 (b) 128×128 elem., h = 1/128 (c) 256×256 elem., h = 1/256

Figure 7.16 – Smoothed Heaviside function applied to a NURBS curve evaluated on a NURBS
planar quadrangular surface built of 642 elements (a), 1282 elements (b), and 2562 elements
(c).

In view of the resistive method described in Section 7.2.3, the signed distance function in

Eq. (7.3.19) is then combined with the smooth delta and Heaviside functions, as in Eqs. (7.2.35)

and (7.2.36), obtaining the smoothed indicator functions of Ω and of the enclosed subdomain

ΘI .

7.3.5 Numerical example: NURBS curves immersed in a 2D domain

As an example, we consider Ω⊂ R2 to be a curve resembling the biconcave shape of a bidi-

mensional vesicle membrane at equilibrium. The geometry Ω is immersed in a quadrangular

domain Θ⊂R2. Both Θ and Ω are represented by NURBS. Ω is a closed NURBS curve built of

basis functions of degree p = 3 and globally C 2-continuous, for a total of 137 elements. The

domain Θ is a NURBS planar surface built of p = 2 basis functions and C 1-continuous, for

which we consider several refinement levels with 2nr ×2nr elements, nr ∈N. In order to test

the construction of the indicator functions, we consider the L2-projection of the functions δε
and Hε onto the discrete NURBS function space defined by the basis functions which build

Θ. The resulting projected delta and Heaviside functions, for three levels of refinement, are

shown in Figures 7.15 and 7.16, respectively. The projected signed distance function, used

to obtain the delta and Heaviside functions on the mesh of 256×256 elements is shown in

Figure 7.17.

We then compare the area enclosed by Ω, calculated as:

A =
∫
Ω

x ·nΩ dΩ, (7.3.20)

with x being the identity function defined in Eq. (1.1.27) and nΩ the outward-pointing unit

vector normal to Ω, against the area calculated by integrating the projected Heaviside function
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on Θ, i.e.:

AR =
∫
Θ

Ph Hε dΘ, (7.3.21)

where the operator Ph refers to the L2-projection operator onto the NURBS function space on

Θ, for its different refinement levels. By considering the area obtained with Eq. (7.3.20) to be

the reference value, we compare A against AR by varying the refinement of Θ by calculating

the error e A = |A− AR |. We set the smoothing parameter ε = 4h. In Figure 7.18 the error

e A against the element size h is shown. The trend is quadratic, due to the smoothing of

Hε proportional to h, and shows how the signed distance function, calculated by using the

algorithms presented in Sections 7.3.1, 7.3.2, and 7.3.3, can effectively be used as an implicit

representation of an immersed NURBS object.

Finally, we briefly show an example of the RIS method employed with an immersed NURBS

geometry. We consider the benchmark case described in Section 7.2.9, for which the Navier–

Stokes equations are approximated to simulate the flow past an obstacle; in particular, we

consider, as fixed obstacle, the NURBS geometry Ω. The fluid properties and the discretization

of the channel are the same as described in Section 7.2.9, with the only difference being the

Reynolds number set to Re = 20. In Figure 7.19 the approximated velocity field at time t = 20 is

shown. We highlight that, if the extraction of the drag and lift on the obstacle is required, the

approach outlined in Section 7.2.4 remains valid, being independent from the procedure used

to build the signed distance function of the considered obstacle.
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Figure 7.17 – Signed distance field obtained from an example NURBS curve.
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Figure 7.18 – Error in the approximation of the area by integrating Hε.

Figure 7.19 – Flow past NURBS ostacle at Re = 20. Velocity at time t = 20.
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7.4 Fluid-membrane interaction

In Sections 7.2 and 7.3 we have considered the vesicle ΘI just as being a fixed obstacle. Now,

we take into consideration a further equation governing the evolution of the biomembrane as

well. As the biomembrane evolves, we now refer to it with Ωt , as in Chapter 6; similarly, we

adopt the notation ΘI ,t to indicate the subset of Θ bounded by Ωt .

The vesicle is subject to forces from the fluid, as well as to internal forces due to the bending

energy and the inextensibility of the membrane. The internal forces are obtained from the

shape derivative of the Canham–Helfrich energy (6.1.6), already considered in the formulation

by gradient flow for recovering the equilibrium shapes of vesicles, and read:

fI (x,ΠΩ,δp) =−
{

kc

[
ΔΩt H +H

(
1

2
H 2 − 1

2
H 2

0 −2K

)
−2H0K

]
+ΠΩH +δp

}
nΩ

in Ωt , t ∈ (0,T ).
(7.4.1)

We have considered the same notation as in Chapter 6, including the presence of the Lagrange

multipliers ΠΩ and δp. We remark that x refers to the identity map of the interface Ωt at

a given time t ∈ (0,T ), on which the curvatures and normals depend (in the notation, the

dependency is dropped). These forces are balanced by the forces applied by the fluid from

inside and outside of the biomembrane [52,216], which, given the fluid velocity u and pressure

p fields, read:

fE (x,u, p) = [[σ(u, p)
]]

nΩt in Ωt , t ∈ (0,T ), (7.4.2)

where σ refers to the (dimensional) fluid stress tensor defined in Eq. (7.2.2) and with the

notation [[·]] we refer to the jump across the membrane Ωt . The dependency of fE on x is

due to the dependency of nΩt on Ωt . Therefore, for a given (dimensional) fluid velocity and

pressure fields (respectively u and p), the following problem governing the dynamics of the

vesicle is considered, given the initial shape Ω0 ⊂Rd described by x0:

for a.e. t ∈ (0,T ), find Ωt ⊂Rd , ΠΩt ∈R, and δpt ∈R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρΩẍ−μΩ∇Ωt · (∇Ωt ẋ)− fI (x,ΠΩt ,δpt ) = fE (x,u, p) in Ωt , t ∈ (0,T ),

J A(Ωt ) = J A(Ω0), t ∈ (0,T ),

JV (Ωt ) = JV (Ω0), t ∈ (0,T ),

x(0) = x0 in Ω0,

ẋ(0) = v0 in Ω0,

(7.4.3)

with ρΩ ∈R+ being the density of the membrane, v0 : Ω→Rd the initial velocity of Ω0, and fI

and fE given in Eqs. (7.4.1) and (7.4.2), respectively.

With respect to the spontaneous curvature model employed in Chapter 6, we consider an

additional diffusive term for the velocity of the biomembrane [217], with diffusion coefficient
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μΩ ∈R+; this term resembles the diffusion term of the fluidic model for lipidic membranes [53,

79, 218], for which the lipid molecules of the membrane behave like a viscous superficial fluid,

an assumption experimentally verified [219, 220].

We proceed by writing problem (7.4.6) in dimensionless form. We use the same quantities and

notation introduced in Section 7.2.1 for the Navier–Stokes equations. Similarly to [88, 89], we

introduce the following parameters:

ρ̃ := 1

L

ρΩ

ρO
, μ̃ := 1

L

μΩ

μO
, Ca := μOL2U

kc
, and k̃c := 1

Ca Re
; (7.4.4)

in particular, Ca refers to the dimensionless capillarity number, characterizing the strength

of the flow with respect to the bending resistance of the biomembrane [88]. We then rewrite

problem (7.4.3) in dimensionless form:

for a.e. t ∈ (0,T ), find Ωt ⊂Rd , ΠΩt ∈R, and δpt ∈R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̃ ẍ− μ̃

Re
∇Ωt · (∇Ωt ẋ)+ k̃c

[
ΔΩt H +H

(
1

2
H 2 − 1

2
H 2

0 −2K

)
−2H0K

]
nΩt

+ΠΩt HnΩt +δpt nΩt =
[[
σ(u, p)

]]
nΩt in Ωt , t ∈ (0,T ),

J A(Ωt ) = J A(Ω0), t ∈ (0,T ),

JV (Ωt ) = JV (Ω0), t ∈ (0,T ),

x(0) = x0 in Ω0,

ẋ(0) = v0 in Ω0,

(7.4.5)

where only dimensionless quantities are now considered.

The interaction between the vesicle and the fluid is governed by two coupling conditions:

the continuity of the velocities of the fluid and the membrane, by the adherence condition

of Eq. (7.2.20), and the balances of forces between the ones due to the fluid and the internal

forces. To enforce the continuity of the velocities from the fluid problem at Ω, we consider the

RIS method described in Section 7.2.3. This leads to the following coupled problem governing
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the fluid-membrane interaction:

for a.e. t ∈ (0,T ), find u : Θ→Rd , p : Θ→R, Ωt ⊂Rd , ΠΩt ∈R, and δpt ∈R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+u ·∇u−2∇·

(
1

Re
D (u)

)
+∇p +CRδε (u− ẋ) = 0 in Θ, t ∈ (0,T ),

∇·u = 0 in Θ, t ∈ (0,T ),

u = g on ΓD , t ∈ (0,T ),

−pn+ 2

Re
D(u)n = h on ΓN , t ∈ (0,T ),

ρ̃ẍ− μ̃

Re
∇Ωt · (∇Ωt ẋ)+ k̃c

[
ΔΩt H +H

(
1

2
H 2 − 1

2
H 2

0 −2K

)
−2H0K

]
nΩt

+ΠΩt HnΩt +δpt nΩt =
[[
σ(u, p)

]]
ε nΩt in Ωt , t ∈ (0,T ),

J A(Ωt ) = J A(Ω0), t ∈ (0,T ),

JV (Ωt ) = JV (Ω0), t ∈ (0,T ),

u(0) = u0 in Θ,

x(0) = x0 in Ω0,

ẋ(0) = v0 in Ω0,

(7.4.6)

where u0 : Θ→Rd is a suitable initial condition for the fluid velocity. In Eq. (7.4.6) the volume

constraint on the biomembrane can optionally be dropped [52, 216], since one could rely on

the incompressibility of the fluid to keep the biomembrane volume conserved. We highlight

that we deal with the inextensibility of the membrane by imposing a Lagrange multiplier on the

total area, as we did in Chapter 6; alternatively, a more accurate treatment of the inextensibility

would be the introduction of an additional unknown, modeling the local surface tension

(see e.g. [216]). Moreover, at the length scale of the vesicles, the viscosity of the fluid is the

major factor of its rheology, leading to low values of the Reynolds number. This behavior

would justify removing the convection term from the fluid equations, leading thus to the fluid

being described by the Stokes equations, as considered for example in [87, 89]. However, in

this context we choose to keep the convection term, in order to maintain a more general

formulation.

In problem (7.4.11) the external forces exerted by the fluid on the biomembrane are obtained

by approximating the jump of forces between the inner and outer sides of the membrane.

This approximation, indicated with the notation [[·]]ε, relies on the fact that the smoothed

delta function, applied to the signed distance function generated by the vesicle, has support

in a narrow band around the membrane, of width 2ε; therefore, to fully evaluate the forces

acting on the vesicle we need to consider the stresses in the whole band, in agreement with

our discussion in Section 7.2.4. In order to do so, in each point q ∈Ωt we approximate the

jump of the forces by collecting the contributions to the forces lying on the segment of length
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2ε, centered in q, and directed along the normal to Ωt evaluated in q, i.e.:

[[
σ(u, p)

∣∣
q

]]
nΩt (q) ≈

[[
σ(u, p)

∣∣
q

]]
ε

nΩt (q) :=
∫+ε

−ε
σ(u, p)∇δε

∣∣
q+s nΩt (q) ds for q ∈Ωt .

(7.4.7)

Then, we follow the approaches outlined in Sections 6.1.1 and 7.2.2, regarding the problems

of the membrane and the fluid, respectively, to rewrite problem (7.4.6) in weak formulation,

obtaining the following coupled problem:

for a.e. t ∈ (0,T ), find u(t ) ∈VR , p(t ) ∈W , x(t ) ∈ Pt , f (t ) ∈Qt , ΠΩ(t ) ∈R,

and δp(t ) ∈R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Θ

∂u

∂t
·ϕdΘ+

∫
Θ

u ·∇u ·ϕdΘ+
∫
Θ

2

Re
D(u) : ∇ϕdΘ−

∫
Θ

p∇·ϕdΘ

+
∫
Θ

CRδε(u− ẋ) ·ϕdΘ=
∫
ΓN

h ·ϕdΓN ∀ϕ ∈V0,

∫
Θ
ψ∇·u = 0 ∀ψ ∈W,

∫
Ωt

ρ̃ẍ ·ηdΩt + μ̃

Re

∫
Ωt

∇Ωt ẋ : ∇Ωt ηdΩt

−
∫
Ωt

f nΩt ·ηdΩt =
∫
Ωt

[[
σ(u, p)

]]
ε nΩt ·ηdΩt ∀η ∈ Pt ,

∫
Ωt

f φdΩt − k̃c

∫
Ωt

(ΔΩt x ·nΩt )ΔΩt φdΩt +2k̃c

∫
Ωt

H0 K φdΩt

− k̃c

∫
Ωt

(ΔΩt x ·nΩt )

(
1

2
H 2 − 1

2
H 2

0 −2K

)
φdΩt

−ΠΩ

∫
Ωt

H φdΩt −δp
∫
Ωt

φdΩt = 0 ∀φ ∈Qt ,

∫
Ωt

H x ·nΩt dΩt = A0,

∫
Ωt

x ·nΩt dΩt =V0,

(7.4.8)

where, by introducing the unknown f , we have considered an approach similar to the Willmore

flow in Section 5.4 and the Canham–Helfrich flow in Section 6.1.1, where the normal velocity of

the surface is introduced as additional unknown. In problem (7.4.8) we consider the following
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function spaces:

V := [H 1(Θ)
]d

, VR := {ϕ ∈V : ϕ= g on ΓD
}

, V0 := {ϕ ∈V : ϕ= 0 on ΓD
}

,

W := L2(Θ),

Pt := [H 2(Ωt )
]d

, Qt := H 2(Ωt ),

(7.4.9)

and the initial conditions:

u(0) = u0 in Θ,

x(0) = x0 in Ω0,

ẋ(0) = v0 in Ω0,

(7.4.10)

with u0 ∈VR being divergence-free.

7.4.1 Space discretization of the coupled problem

Following Sections 6.2.1 and 7.2.5, we proceed by considering a Galerkin method using NURBS-

based IGA subspaces for the spatial discretization of problem (7.4.8). The fluid domain Θ

is represented by a NURBS volume, if d = 3, or surface, if d = 2, while the biomembrane is

represented by the family {Ωt }t∈(0,T ) of closed NURBS surfaces, if d = 3, or curves, if d = 2.

The two geometrical representations, of the fluid domain and the biomembrane domain, are

independent. We thus consider two different NURBS function spaces Nh and Mh , the first

associated with the fluid domain and the second with the biomembrane domain. Therefore,

function spaces related to the approximation of the fluid equations are Vh := V ∩ [Nh]d ,

VR,h := {ϕh ∈Vh : ϕh = gh on ΓD
}
, VR,h := {ϕh ∈Vh : ϕh = 0 on ΓD

}
, and Wh := W ∩Nh ; the

function spaces related to the biomembrane are instead Pt ,h := Pt∩[Mh]d and Qt ,h :=Qt∩Mh .
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Then, we discretize in space problem (7.4.8), obtaining the following semi-discrete problem:

for a.e. t ∈ (0,T ), find uh ∈VR,h , ph ∈Wh , xh ∈ Pt ,h , fh ∈Qt ,h , ΠΩt ∈R, and δpt ∈R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Θ

∂uh

∂t
·ϕh dΘ+

∫
Θ

uh ·∇uh ·ϕh dΘ+
∫
Θ

2

Re
D(uh) : ∇ϕh dΘ

−
∫
Θ

ph∇·ϕh dΘ+
∫
Θ

CRhδε (uh − ẋh) ·ϕh dΘ+SM (ϕh ;uh , ph)

=
∫
ΓN

hh ·ϕh dΓN ∀ϕh ∈V0,h ,

∫
Θ
ψh∇·uh +SC (ψh ;uh , ph) = 0 ∀ψh ∈Wh ,

∫
Ωt

ρ̃ẍh ·ηh dΩt + μ̃

Re

∫
Ωt

∇Ωt ẋh : ∇Ωt ηh dΩt

−
∫
Ωt

fh nΩt ·ηh dΩt =
∫
Ωt

[[
σ(uh , ph)

]]
ε nΩt ·ηh dΩt ∀ηh ∈ Pt ,

∫
Ωt

fhφh dΩt − k̃c

∫
Ωt

(ΔΩt xh ·nΩt )ΔΩt φh dΩt +2k̃c

∫
Ωt

H0 Kh φh dΩt

− k̃c

∫
Ωt

(ΔΩt xh ·nΩt )

(
1

2
H 2

h − 1

2
H 2

0 −2Kh

)
φh dΩt

−ΠΩt

∫
Ωt

Hh φh dΩt −δpt

∫
Ωt

φh dΩt = 0 ∀φh ∈Qt ,

∫
Ωt

Hh xh ·nΩt dΩt = A0,

∫
Ωt

xh ·nΩt dΩt =V0,

(7.4.11)

with initial conditions:

uh(0) = u0,h in Θ,

xh(0) = x0,h in Ω0,

ẋh(0) = v0,h in Ω0,

(7.4.12)

where u0,h is obtained as the L2-projection of the initial data u0 onto the NURBS function

space VR,h and x0,h and ẋ0,h represent the identity map and velocity associated to the initial

configuration Ω0 of the biomembrane. The terms SM and SC refer to the SUPG stabilization

for the Navier–Stokes equations and have been introduced in Section 7.2.6.
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7.4.2 Time discretization of the coupled problem

To solve the coupled problem, we consider a staggered approach, for which at each time step

the fluid and the biomembrane subproblems are solved in separate stages [96, 221]. Due to

the small thickness of the membrane and the type of coupling considered, we adopt a strongly

coupled strategy [98,222] to cope with the effects of the added mass [223,223]. The coupling in

problem (7.4.8) can be interpreted in analogy with the Dirichlet–Neumann coupling strategy

ubiquitous in the domain of fluid-structure interaction problems [221, 224, 225]; in fact, the

RIS term in the fluid equations plays the role of the Dirichlet condition (continuity of the

velocities at the interface), while the balance of forces on the membrane represents the

analog of the Neumann condition (continuity of stresses at the interface). To force a strong

coupling between the fluid and the biomembrane, at each time step an iterative scheme in

which the fluid and biomembrane subproblems are solved in sequence is considered, until

a convergence criterium is satisfied. Both subproblems are discretized in time by using a

BDF scheme of order k, as introduced in Chapter 5 and employed in Sections 6.2.2 and 7.2.7

for the time discretization of the biomembrane equilibrium problem and the Navier–Stokes

equations, respectively.

Let us consider the time interval (0,T ), divided into N time steps of size Δt , corresponding

to the time instances ti = iΔt , for i = 0, . . . , N ∈N, so that t0 = 0 and tN = T . We indicate with

the index j ∈N, j ≥ 0, the subiterations. Let us now consider a fixed time step index n ∈N,

0 ≤ n ≤ N −1, at a given subiteration j .

Fluid subproblem

With PF (xh ,vh) we refer to the discrete fluid subproblem, to be solved at time step index n

and subiteration j . The fluid subproblem depends on the identity map xh and velocity vh of

the biomembrane. During the solution of the fluid subproblem, these terms are fixed and

considered as given. The RIS term depends on xh due to the smooth delta and Heaviside func-

tions δε and Hε being constructed with the NURBS geometry defined by xh ; the construction

of the signed distance function, needed to evaluate the smooth delta and Heaviside functions,

follows the algorithms in Section 7.3. The velocity vh imposed with the RIS term consists in the

extension, to the fluid domain Θ, of the velocity of the membrane along the normal direction.

Therefore, given xh and vh , at each time instance tn and subiteration j the fluid subproblem
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reads:

find un+1, j
h ∈VR,h and pn+1, j

h ∈Wh such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Θ

α0

Δt
un+1, j

h ·ϕh dΘ+
∫
Θ

u∗
h ·∇un+1, j

h ·ϕh dΘ+
∫
Θ

2

Re
D(un+1, j

h ) : ∇ϕh dΘ

−
∫
Θ

pn+1, j
h ∇·ϕh dΘ+

∫
Θ

CRhδε

(
un+1, j

h −vh

)
·ϕh dΘ

+ ∑
K∈Kh

∫
K
τK

M (u∗
h)r̃M (un+1, j

h , pn+1, j
h ) · (u∗

h ·∇ϕh

)
dK

+ ∑
K∈Kh

∫
K
τK

C (u∗
h)rC (un+1, j

h )∇·ϕhdK

=
∫
Θ

α0

Δt
ubd f ,n

h ·ϕh dΘ+
∫
ΓN

hh ·ϕh dΓN ∀ϕh ∈V0,h ,

∫
Θ
ψh∇·un+1, j

h + ∑
K∈Kh

[∫
K
τK

M (u∗
h)rM (un+1, j

h , pn+1, j
h ) ·∇ψhdK

]
= 0 ∀ψh ∈Wh ;

(7.4.13)

we refer to Sections 7.2.6 and 7.2.7 for details about the SUPG stabilization terms for the

Navier–Stokes equations and the time discretization with BDF schemes and extrapolation.

Membrane subproblem

Regarding the membrane subproblem, we discretize in time both the velocity ẋh and the

acceleration ẍh by using the same BDF scheme and of the same order k as employed for the

fluid subproblem. We follow the same notation and procedure outlined in Section 5.2; in

particular, we highlight that we approximate the second time derivative in Eq. (7.4.11) at time

instance tn+1 and subiteration j , for n ≥ k −1, as:

ẍh(tn+1) �α0
vn+1, j

h −vbd f ,n
h

Δt
, (7.4.14)

where vbd f ,n
h : Ω∗ →Rd is defined as:

vbd f ,n
h :=

k∑
i+1

αi

α0

(
vn+1−i

h ◦Xn+1−i
h

)
◦ (X∗

h)−1 (7.4.15)

and we recall that:

vn+1, j
h :=α0

xn+1, j
h −xbd f ,n

h

Δt
. (7.4.16)
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We consider, at each time instance tn+1 and subiteration j , the velocity vn+1, j
h as unknown of

the problem; the new configuration Ω
j
n+1 of the biomembrane is then represented by:

xn+1, j
h = xbd f ,n

h + Δt

α0
vn+1, j

h , (7.4.17)

as in Eq. (5.2.9).

The biomembrane subproblem depends on the fluid velocity uh and pressure ph , employed

for evaluating the forces acting on the membrane due to the fluid. These quantities, during

the solution of the biomembrane subproblem, are considered fixed. Therefore, at fixed time

instance tn and subiteration j , considering a given fluid velocity uh and pressure ph , the

discrete membrane subproblem PM (uh , ph) reads:

find vn+1, j
h ∈ P∗

h , f n+1, j
h ∈Q∗

h , Πn+1, j
Ω ∈R, and δpn+1, j ∈R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω∗

ρ̃
α0

Δt
vn+1, j

h ·ηh dΩ∗ + μ̃

Re

∫
Ω∗

∇Ω∗vn+1, j
h : ∇Ω∗ηh dΩ∗

−
∫
Ω∗

f n+1, j
h nΩ∗ ·ηh dΩ∗

=
∫
Ω∗

ρ̃
α0

Δt
vbd f ,n

h ·ηh +
∫
Ω∗

[[
σ(uh , ph)

]]
ε nΩ∗ ·ηh dΩ∗ ∀ηh ∈ P∗

h ,

∫
Ω∗

f n+1, j
h ψh dΩ∗ − k̃c

Δt

α0

∫
Ω∗

(ΔΩ∗vn+1, j
h ·nΩ∗)ΔΩ∗ψh dΩ∗

− k̃c
Δt

α0

∫
Ω∗

[
1

2
(H∗

h )2 − 1

2
H 2

0 −2K ∗
h

]
(ΔΩ∗vn+1, j

h ·nΩ∗)ψh dΩ∗

−Π
n+1, j
Ω

∫
Ω∗

H∗
h ψh dΩ∗ −δpn+1, j

∫
Ω∗

ψh dΩ∗

=−2k̃c

∫
Ω∗

H0K ∗
h ψh dΩ∗ + k̃c

∫
Ω∗

(
ΔΩ∗xbd f ,n

h ·nΩ∗

)
ΔΩ∗ψh dΩ∗

+ k̃c

∫
Ω∗

[
1

2
(H∗

h )2 − 1

2
H 2

0 −2K ∗
h

](
ΔΩ∗xbd f ,n

h ·nΩ∗

)
ψh dΩ∗ ∀ψh ∈Q∗

h ,

∫
Ω

j
n+1

H n+1
h xn+1

h ·n
Ω

j
n+1

dΩ
j
n+1 = A0,

∫
Ω

j
n+1

xn+1
h ·n

Ω
j
n+1

dΩ
j
n+1 =V0,

(7.4.18)

where P∗
h and Q∗

h correspond to the function spaces Pt ,h and Qt ,h built on Ω∗, respectively.

To enforce the constraints, the two schemes described in Section 6.2.3 can be employed

equivalently.
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Coupling strategy

We now describe the strong coupling strategy adopted in this chapter. With this aim, we first

introduce the following additional quantities:

• the relaxation parameter γ j ∈R+,

• the displacements of the biomembrane dn, j
h : Ω∗ →Rd ,

• the relaxed displacements of the biomembrane d̃n, j
h : Ω∗ →Rd ,

• the relaxed velocity of the biomembrane ṽn+1, j
h : Ω∗ →Rd ,

• the relaxed biomembrane geometry Ω̃
j
n ⊂Rd , defined by the map x̃n+1, j

h : Ω∗ →Rd ,

with j and n being the subiteration and time step indexes, respectively. Then, at each time

instance tn , with n = k, . . . , N −1, k being the order of the BDF scheme employed for the time

discretization of the two subproblems, we consider the following procedure:

1. We initialize the subiterations by setting j = 0 and:

un+1,0
h = u

n, jmax,n−1

h ,

d̃n+1,−1
h = d̃n+1,−2

h = d
n, jmax,n−1

h ,

x̃n+1,0
h = x

n, jmax,n−1

h ,

ṽn+1,0
h = v

n, jmax,n−1

h ,

(7.4.19)

where jmax,n−1 indicates number of the subiterations performed at time instance tn−1.

The initial value of the relaxation parameter can be either set to the value calculated in

the last subiteration of the previous time step, or reset to a given fixed initial value.

2. Given x̃n+1, j
h and ṽn+1, j

h , we solve the fluid subproblem PF (x̃n+1, j
h , ṽn+1, j

h ), obtaining the

new approximations of un+1, j
h and pn+1, j

h ; the distance function, needed by the resistive

term, is computed on Ω̃
j
n+1.

3. Given un+1, j
h and pn+1, j

h , we solve the membrane subproblem PM (un+1, j
h , pn+1, j

h ), ob-

taining the new approximations of vn+1, j
h , f n+1, j

h , Πn+1, j
Ω , and δpn+1, j .

4. We perform a relaxation of the displacements of the biomembrane by employing the

Aitken acceleration [98, 225]. In particular, the parameter γ j is updated as:

γ j = γ j−1 + (γ j−1 −1)

(
δdn+1, j−1

h −δdn+1, j
h

)
·δdn+1, j

h∥∥∥δdn+1, j−1
h −δdn+1, j

h

∥∥∥2 , (7.4.20)
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where:

δdn+1, j
h = d̃n+1, j−1

h −dn+1, j
h ,

δdn+1, j−1
h = d̃n+1, j−2

h −dn+1, j−1
h .

(7.4.21)

Then, the new relaxed displacements d̃n+1, j
h are obtained as:

d̃n+1, j
h = (1−γ j )dn+1, j

h +γ j d̃n+1, j−1
h . (7.4.22)

The relaxed displacements are used to build the relaxed biomembrane Ω̃
j+1
n+1 defined

through the relaxed map x̃n+1, j+1
h ; the biomembrane relaxed velocity ṽn+1, j+1

h is obtained

by approximation with the considered BDF formula applied to the relaxed displacements

d̃n+1, j
h together with the approximated displacements at the previous time steps, in line

with Eq. (5.2.5).

5. The relaxed displacements are also used as stopping criterium for the subiterations. If

the following condition is satisfied:∥∥∥dn+1, j
h − d̃n+1, j−1

h

∥∥∥2 ≤ εd , (7.4.23)

with a given tolerance εd ∈ R+, then convergence of the subiterations is reached and

we proceed with the next time step. Otherwise, j is incremented and we continue from

point 2.

7.4.3 Numerical results

We apply the proposed strategy to solve the fluid-membrane interaction problem in three

cases: a vesicle under parabolic flow, under parabolic flow with an obstruction, and under

shear flow. All problems are setup in the two-dimensional space, i.e. d = 2. Nevertheless, the

approach proposed is formulated to be compatible both with the three-dimensional case,

with the biomembrane being represented as a surface and the fluid domain as a volume, as

well as the two-dimensional case, with the biomembrane being a curve and the fluid domain

a 2D domain. While the formulations described in Chapter 5 and 6 are developed for surface

geometric PDEs, they can be generalized to curves without any modification. The schemes for

enforcing the geometric constraints outlined in Section 6.2.3 remain in place when dealing

with curves as well; the constraint on the surface area becomes a constraint on the curve

perimeter, while the constraint on the volume internal to the surface becomes a constraint on

the curve inner area. Moreover, the two-dimensional equivalent of the reduced volume VR ,

defined in Eq. (6.3.6) for three-dimensional vesicles, is the reduced area, defined as ( [88]):

AR := 4πV

A2 , (7.4.24)
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Inlet Outlet
Θ

ΩΓ1 Γ3

Γ2

Γ4

Figure 7.20 – Vesicle in parabolic flow. Sketch of the setup.

where V and A, in two-dimensions, indicate the area and perimeter of the vesicle, respectively.

Vesicle in parabolic flow

We consider a vesicle immersed in a rectangular channel with fluid flowing with a parabolic

velocity profile. The case is sketched in Figure 7.20. The fluid domain Θ consists in the

rectangle (0,3)× (0,1) ⊂ R2, with boundaries represented by Γ1, Γ2, Γ3, and Γ4. A vesicle,

represented by the curve Ω ∈ R2, lies initially with center in (0.75,0.5) ∈ R2. At the inlet Γ1 a

parabolic velocity profile is prescribed:

g1 = 4y(1− y)ex y ∈ [0,1]. (7.4.25)

This profile is applied gradually over an initial period of time. In general, starting from time

t0 with the velocity profile g0, we change the velocities towards the wanted profile g1 with a

smooth ramp until time t1 is reached:

g =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g0 if t < t0,

g0 +θ

(
t − t0

t1 − t0

)
(g1 −g0) if t0 ≤ t ≤ t1,

g1 if t > t1,

on Γ1, t ∈ [0,T ), (7.4.26)

where θ : [0,1] → [0,1] is a smooth ramp function from 0 to 1, e.g.:

θ(t ) = 3t 2 −2t 3 t ∈ [0,1]. (7.4.27)

For this problem, we consider g0 = 0, t0 = 0, and t1 = 0.1; therefore, the fluid is initially at

rest. On Γ2 and Γ4 we apply no-slip conditions, while Γ3 represents the outlet from which the

flow exits the domain. Therefore, we apply the following boundary conditions on the fluid

subproblem:

u = g on Γ1, t ∈ (0,T ),

σn = 0 on Γ3, t ∈ (0,T ),

u = 0 on Γ2 ∪Γ4, t ∈ (0,T ),

(7.4.28)
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Figure 7.21 – Vesicle in parabolic flow. Numer of subiterations performed by the coupled solver
(zoom for t ∈ (0,0.6)).

where n is the outward pointing unit normal vector at the outlet ΓO . By referring to the

height of the channel as characteristic length, we impose a flow characterized by Re = 10−4; we

consider the same fluid properties for the vesicle internal and external fluid. The biomembrane

has perimeter equal to 0.86010, area 0.03142, resulting in a reduced area equal to 0.53380;

moreover, we consider ρ̃ = 102, μ̃= 10−3, and k̃c = 10−4. The biomembrane is initialized with

ellipsoidal shape. We let it evolve by Canham–Helfrich flow, without interaction with the fluid,

towards the biconcave equilibrium configuration. The equilibrium shape is then used as

initial condition for the solution of the coupled problem. The initial velocity of the membrane

is set to zero.

The fluid domain is represented by a NURBS planar surface made of 240×80 elements and

basis functions of degree p = 2 and globally C 1-continuous, for a total of 19,200 elements.

The biomembrane is represented by a NURBS curve of 137 elements with basis functions

of degree p = 3 and globally C 2-continuous. The resulting linear system associated to the

fluid subproblem is composed by 78,168 DOFs, while the membrane subproblem results in

560 DOFs. The equations are discretized in time with a BDF scheme of order k = 2 and time

step size Δt = 0.0025. The iterative scheme C-1, described in Section 6.2.3, is employed for

enforcing the geometric constraints on the membrane. The resistive constant CRh is set to

10−6/h. The meshes are divided using METIS [226] into 4 subdomains; the linear systems

are assembled in parallel and solved by using the GMRES method with additive-Schwarz

preconditioner, provided by IFPACK [227], and MUMPS [185] as local solver.

In Figure 7.22 we show the approximated fluid velocity and pressure at several time instances.

The biomembrane is initially at rest. When the fluid velocity starts to rise, an high fluid

pressure around the vesicle is developed, resulting in forces aligned with the flow acting

on the biomembrane. The vesicle then starts moving, increasing its velocity towards the

velocity of the fluid, until it reaches the same velocity. Then, the outlet touches the vesicle

at approximately t = 2.6975. We remark that the iterative scheme C-1, adopted for these test
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Fluid velocity at t = 0.063 Fluid pressure at t = 0.063

Fluid velocity at t = 0.125 Fluid pressure at t = 0.125

Fluid velocity at t = 0.375 Fluid pressure at t = 0.375

Fluid velocity at t = 0.500 Fluid pressure at t = 0.500

Figure 7.22 – Vesicle in parabolic flow. Fluid velocity and pressure at several time instances.
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Fluid velocity at t = 0.625 Fluid pressure at t = 0.625

Fluid velocity at t = 0.938 Fluid pressure at t = 0.938

Fluid velocity at t = 1.563 Fluid pressure at t = 1.563

Fluid velocity at t = 2.250 Fluid pressure at t = 2.250

Figure 7.22 – Vesicle in parabolic flow. Fluid velocity and pressure at several time instances.
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Figure 7.23 – Vesicle in parabolic flow with obstruction. Sketch of the setup.

cases, enforces the geometric constraints within a selectable tolerance; therefore, conservation,

within the tolerance, of the perimeter and area of the vesicle is observed throughout the whole

simulation.

We used a tolerance of εd = 5 ·10−4 for the stopping criterium of the fluid-membrane subitera-

tions, with a minimum of 2 subiterations to perform (since we observed an increased stability).

In Figure 7.21 we report the number of subiterations performed at each time instance for

t ∈ (0,0.6). Starting at 2 subiterations per time step, when the biomembrane is at rest, it then

reaches a maximum of 8 subiterations per time step when the pressure gradient is strong and

the biomembrane starts moving. While the velocities of the fluid and the membrane slowly

become constant, the amount of subiterations performed is lowered, until a stable value of 3

is reached and kept constant till the end of the simulation.

The behavior shown by the vesicle is qualitatively in agreement with experimental data [228,

229]. The biomembrane is deformed to cope with the parabolic flow exerted by the fluid:

in particular, it assumes a parachute-like shape, typical of vesicles flowing in small capillar-

ies [229]. However, the end of the parachute shape is not straight, but slightly presents tail

flaps [228]; this is due to the small value of reduced area of the biomembrane, which is thus

subject to larger deformations if compared to vesicles with higher reduced area [230].

Vesicle in parabolic flow with obstruction

We now consider the dynamics of a vesicle immersed in a channel with an obstruction. In

particular, we take the same setup of the case with a vesicle under parabolic flow, shown in

Figure 7.20, and in addition we consider a zone where the channel is narrowed. The modified

setup is sketched in Figure 7.23. In particular, we consider two different obstructions: in the

first case, the obstruction has size equal to S = 0.5, while in the second case it is smaller and

equal to S = 0.4. All the parameters of the problem are the same as for the case of parabolic

flow without obstruction, with the exception of k̃c = 10−3. The meshes and discretization

parameters are the same. The obstructions are handled by considering two additional resistive

immersed rectangular objects, one near the top wall and the other near the bottom wall, in

which a null velocity is imposed weakly. In practice, the three resistive terms (stemming from

the two rectangles and the vesicle) are treated together and result in a single resistive term
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Fluid velocity at t = 0.05 Fluid pressure at t = 0.05

Fluid velocity at t = 0.20 Fluid pressure at t = 0.20

Fluid velocity at t = 0.45 Fluid pressure at t = 0.45

Fluid velocity at t = 0.80 Fluid pressure at t = 0.80

Figure 7.24 – Vesicle in parabolic flow with obstruction S = 0.5. Fluid velocity and pressure at
several time instances.
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Fluid velocity at t = 0.95 Fluid pressure at t = 0.95

Fluid velocity at t = 1.20 Fluid pressure at t = 1.20

Fluid velocity at t = 1.65 Fluid pressure at t = 1.65

Fluid velocity at t = 2.10 Fluid pressure at t = 2.10

Figure 7.24 – Vesicle in parabolic flow with obstruction S = 0.5. Fluid velocity and pressure at
several time instances.
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Fluid velocity at t = 0.05 Fluid pressure at t = 0.05

Fluid velocity at t = 0.20 Fluid pressure at t = 0.20

Fluid velocity at t = 0.30 Fluid pressure at t = 0.30

Fluid velocity at t = 0.55 Fluid pressure at t = 0.55

Figure 7.25 – Vesicle in parabolic flow with obstruction S = 0.4. Fluid velocity and pressure at
several time instances.
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Fluid velocity at t = 0.80 Fluid pressure at t = 0.80

Fluid velocity at t = 1.05 Fluid pressure at t = 1.05

Fluid velocity at t = 1.35 Fluid pressure at t = 1.35

Fluid velocity at t = 1.85 Fluid pressure at t = 1.85

Figure 7.25 – Vesicle in parabolic flow with obstruction S = 0.4. Fluid velocity and pressure at
several time instances.
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t = 0 t = 0.20 t = 0.30 t = 0.55

t = 0.90 t = 1.20 t = 1.9 t = 2.25

Figure 7.26 – Vesicle in parabolic flow with obstruction S = 0.5. Shape of the biomembrane at
several time instances.

considered in the equations (since the penalizations cannot overlap). This represents an

effective way for shaping the domain Θ “in a weak sense”.

We show in Figure 7.24 the approximated fluid velocity and pressure obtained simulating

the coupled problem in the case with obstruction S = 0.5. Results regarding the case with

obstruction S = 0.4 are shown in Figure 7.25. In both the situations, the vesicle at the beginning

deforms in the opposite way with respect to the case without obstructions: the upper and

lower parts tends slightly to deform under the action of the fluid flowing around the vesicle

at rest, while the center is kept behind due to the presence of the narrowing. Soon after, the

whole biomembrane starts moving, subject to the forces exerted by the fluid, and tend to

assume the parachute shape.

In the case with obstruction S = 0.5, with respect to the case without narrowing, the vesicle

presents more accentuated tail flaps, due also to the higher fluid velocity caused by the

presence of the obstruction [229]. Details about the evolution of the biomembrane shape are

shown in Figure 7.26.

In the case with obstruction S = 0.4, the deformations of the vesicle at the initial time instances

are higher, since the smaller passage obstructs the vesicle from moving until a smaller profile

is achieved; in the meanwhile, the fluid bends the extremities of the biomembrane, which

then start pushing the frontal part of the vesicle toward the obstruction, leaving behind a

little deformation in the rear part which is carried along with the biomembrane. In fact, when
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the fluid slows down after the narrowing, the vesicle tends to return to the normal parachute

shape.

We remark that, having used the same parameters and tolerances also for the fluid-membrane

interaction solver, the profile of the number of subiterations performed at each time step

is similar between the cases of vesicle under parabolic flow with and without obstruction:

the peak of number of subiterations corresponds to the high pressure gradients and the first

movements of the vesicle, then it is lowered till a stable value of 3 iterations per time step is

reached and kept till the vesicle reaches the end of the channel.

Vesicle in shear flow

We now consider the case of a vesicle immersed in shear flow. The fluid domain Θ is repre-

sented by the quadrangular planar surface (0,1)× (0,1) ⊂R2, sketched in Figure 7.27. A vesicle,

represented by the curve Ω ∈ R2, lies in the center of the domain. On the walls Γ2 and Γ4

velocities with opposite sign are imposed on the fluid. In particular, we consider the following

boundary conditions for the fluid subproblem:

u = ex on Γ4, t ∈ (0,T ),

u =−ex on Γ2, t ∈ (0,T ),

σn = 0 on Γ1 ∪Γ3, t ∈ (0,T );

(7.4.29)

the conditions on Γ2 and Γ4 are applied gradually, by employing the smooth ramping function

in Eq. (7.4.26) for t0 = 0 and t1 = 0.1. The fluid is initially at rest. By referring to the side of the

channel as characteristic length, we consider a flow in the exterior part of the membrane such

that Re = 10−4; however, the viscosity inside Ω is set to 1
10 of the external viscosity. The vesicle

has perimeter equal to 1.07513 and area 0.04910, with a reduced area equal to 0.53380. As for

the other cases considered, the equilibrium shape of the vesicle is approximated initially with

the schemes considered in Chapter 6 and then used as initial configuration, at rest, for the

approximation of the coupled problem. Additionally, we set ρ̃ = 102, μ̃= 10−3, and k̃c = 10−4.

The fluid domain is represented by a NURBS planar surface built of 128×128 elements, for

a total of 16,384 elements, and basis functions of degree p = 2 and globally C 1-continuous.

The biomembrane is represented by a NURBS curve with basis functions of degree p = 3 and

globally C 2-continuous, for a total of 137 elements. The linear system associated with the

fluid subproblem is composed by 66,824 DOFs, while the linear system which stems from the

membrane subproblem is composed by 560 DOFs. A BDF scheme of order k = 2 is employed

for the time discretization of both subproblems, with time step size Δt = 0.001. To enforce

the geometric constraints on the membrane the scheme C-1/ is employed. The resistive term

is imposed with constant set to CRh = 10−6/h. The same partitioning approach and linear

solvers employed for the parabolic flow case are considered.

In Figure 7.29 we show the approximated fluid velocity and pressure fields at several time
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Figure 7.27 – Vesicle in shear flow. Sketch of the setup.

instances, together with the approximated velocity of the membrane. The biomembrane, as

soon as the fluid start flowing, is subject to high pressure gradients which impose a rotational

movement to the vesicle. This, up to the time interval considered, is in agreement with the

behaviors reported in the literature (see e.g. [87, 88]). However, we highlight that the linear

solver for the fluid problem starts to underperform in the parallel setting. This behavior is

due to a drawback of the resistive method together with the partitioning considered for the

fluid domain: if the profile of the smoothed delta function associated with the immersed

biomembrane, employed in the resistive term, is such that it overlaps the boundary of a

partition, especially when parallel to the boundary, then the local condition number increases

drastically; in this cases, the preconditioner becomes less effective and the GMRES struggles to

solve the linear system. This aspect merits further investigation, regardless of the application

at hand.

Finally, in Figure 7.28 the number of subiterations per time step are reported. These amounts

are higher if compared to the number of subiterations employed in the cases with parabolic

flow, reported in Figure 7.21. This is mainly due both to the fact that we consider in this case

different parameters for the internal and external fluid, which induces a harder convergence at

the interface, as well as the more complex dynamics stemming from the shear forces exerted

by the fluid, with respect to the pushing forces in the case of parabolic flow.
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Figure 7.28 – Vesicle in shear flow. Numer of subiterations performed by the coupled solver
(zoom for t ∈ (0,0.7)).
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Fluid velocity at t = 0.058 Fluid pressure at t = 0.058

Fluid velocity at t = 0.098 Fluid pressure at t = 0.098

Fluid velocity at t = 0.238 Fluid pressure at t = 0.238

Figure 7.29 – Vesicle under shear flow. Approximated fluid velocity and pressure at several
time instances.
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Fluid velocity at t = 0.378 Fluid pressure at t = 0.378

Fluid velocity at t = 0.518 Fluid pressure at t = 0.518

Fluid velocity at t = 0.678 Fluid pressure at t = 0.678

Figure 7.29 – Vesicle under shear flow. Approximated fluid velocity, pressure, and membrane
velocity at several time instances.
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Conclusions

In this thesis, we have considered the numerical approximation of high order and geometric

PDEs defined on surfaces, by means of NURBS-based IGA in the framework of the Galerkin

method.

We introduced the mathematical formulation of high order PDEs on surfaces, highlighting

the dependence of the differential operator on the underlying features of the manifold. In

order to avoid approximating the geometry of the domain, and thus introducing an error in

the approximation of the solution due to the geometry, we considered domains represented

by NURBS surfaces, in particular single-patch mappings. The choice of NURBS is beneficial

both for the exactness of the geometrical representation of geometries of interest, as conic

sections, even with a low amount of DOFs, and for the flexibility in tuning the continuity of

the basis functions across the computational domain. In this regard, we highlighted how

periodic NURBS function spaces can be constructed such that they hold basis functions with

high degree of global continuity on closed surfaces. Then, we described a formulation for the

spatial discretization of surface high order PDEs using NURBS-based IGA. We highlighted the

benefits of employing the same basis functions for both representing the geometry and for

approximating the solution, according to the isogeometric concept behind IGA. We considered

the numerical approximation of the fourth and sixth order Laplace–Beltrami problems, both

on open and closed surfaces, showing numerical results in accordance with the expected

theoretical error convergence rates under h-refinement, for different polynomial degrees of the

NURBS basis functions, even with singular points in the geometrical mappings. A comparison

against the results obtained with the standard isoparametric FEM in mixed formulation has

been performed, showing a clear advantage of NURBS-based IGA in terms of number of

DOFs required for obtaining a given level of accuracy of the approximation, for this kind

of problems. This was highlighted in a further comparison between the NURBS-based IGA

and isoparametric FEM discretizations of the Laplace–Beltrami eigenvalue problems of the

fourth and sixth orders on the sphere. In this case, the global continuity of the basis functions,

together with the exactness of the geometrical representation, played a fundamental role in

the accuracy of the approximation. The numerical approximation of two time-dependent

phase field models was then considered: firstly the Cahn–Hilliard equation, a nonlinear, fourth

order problem modeling the spinodal decomposition of a binary fluid; then the phase field

crystal equation, a nonlinear, sixth order model used for studying, for example, the growth
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of crystals in pure supercooled liquid. Both problems, defined on surfaces, involve high

order Laplace–Beltrami operators. The approximation with NURBS-based IGA permitted

the direct discretization of the PDEs using globally high order continuous NURBS function

spaces, without resorting to mixed formulations. Results have been provided both on open

and closed surfaces, showing a dependency of the solution on the underlying geometry. In

general, the reported results, regarding the approximation of high order PDEs defined on

surfaces, highlighted how NURBS-based IGA is an optimal tool and significantly more efficient

than the standard isoparametric FEM for these kind of problems.

Then we considered the numerical approximation of geometric PDEs defined on surfaces,

arising from the minimization of shape energy functionals through L2-gradient flows. In par-

ticular, we considered two problems: the mean curvature flow, minimizing the area functional,

and the Willmore flow, minimizing the Willmore energy. Both lead to nonlinear geometric

PDEs, the first of the second order and the latter of the fourth order. These problems involve

high order surface differential operators and the evaluation of geometrical quantities, such

as the normal and the curvature. Therefore, the geometrical representation employed to

describe the domain is crucial. In this regard, we considered surface domains described by

NURBS mappings and spatially discretized the geometric PDEs by means of NURBS-based

IGA. This brought several advantages in comparison to standard approaches based on the

FEM, due to the exact representation of the geometry, which allowed a formulation where the

geometric quantities are directly evaluated, and the possibility to employ NURBS function

spaces with basis function featuring the degree of global continuity required for the direct

treatment of the high order surface differential operators. In order to fully benefit from the

accuracy of the spatial discretization, we proposed a time discretization based on high order

BDF schemes. A semi-implicit formulation was adopted, by employing an extrapolation in

time, compatible with the BDF scheme, of the geometry and the derived quantities; this was

feasible again due to the accurate representation of the geometry. Then we considered the

numerical approximation of the mean curvature flow of a sphere, for which the analytical

solution is available. We analyzed the effects of the numerical integration and the choice of

polynomial degree of the basis functions on the accuracy of the solution: we showed that

incrementing the number of quadrature nodes results in a smoothing effect on the behavior

of the error, which in general remains small. Moreover, we reported the errors obtained with

different orders of the BDF time discretization, showing the expected convergence rates driven

by the choice of BDF scheme adopted. The errors corresponding to the spatial discretization

were significantly smaller than the errors introduced by the time discretization: this supports

the choice of adopting high order time discretization schemes to fully exploit the high spa-

tial accuracy. Results regarding the approximation of the mean curvature flow on tori and

cylinders have also been reported and critically discussed, with the final approximated shapes

being dependent on the aspect ratio of the initial geometries, as expected. Then we showed

results on the numerical approximation of the Willmore flow on an ellipsoid and a torus, for

which the final shape at convergence is known; we highlighted again the role of the polynomial

degree and continuity of the NURBS basis functions employed for the approximation on the
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accuracy of the solution. Moreover, an analysis of the linear systems associated with the

considered discretizations showed that the condition numbers increase with the polynomial

degree of the NURBS basis functions and the amount of DOFs involved, especially when

the geometrical mapping presents singularities or the surface degenerates; nevertheless, the

accuracy of the solutions is already high enough when coarse discretizations are considered,

for which the condition number remains limited. Overall, these numerical tests support the

choice of NURBS-based IGA as an accurate and efficient framework for the spatial discretiza-

tion of geometric PDEs. In this context, the exactness of the geometrical representation and

the accurate evaluation of the geometric properties turn out to be advantageous, both from

the computational point of view, as a small amounts of DOFs are employed, and for the high

accuracy of the approximated solutions.

The approaches proposed for the numerical treatment of the mean curvature and Willmore

flow had then been extended in the context of approximating the shapes of lipid biomem-

branes at equilibrium. In particular, we considered the spontaneous curvature model and

formulated the problem as the L2-gradient flow of the Canham–Helfrich energy, subject to

the conservation of total area and volume. We proposed a formulation inline with the Will-

more flow with the addition of the two geometric constraints, treated by means of Lagrange

multipliers, and then discretized the PDEs by means of NURBS-based IGA and BDF schemes.

Regarding the enforcement of the constraints, we proposed two approaches: one based on the

iterative scheme to enforce the constraints at discrete level described in [49] and adapted to our

discretization approach; the other one relying instead on the enforcement of the constraints

on the extrapolated surface. We showed numerical results obtained on initial ellipsoids of

different aspect ratio, highlighting the dependence of the numerical solution on the choice

of NURBS function space employed for the approximation. The two constraint enforcement

schemes were then compared. The iterative scheme ensured, as expected, the conservation of

the area and volume within a selected tolerance. The other approach, while being computa-

tionally less demanding, introduced a conservation error, since the constraints are applied on

the extrapolated surface; nevertheless, thanks to the accuracy of the geometrical description

guaranteed by the adoption of NURBS, these errors remain relatively small. A comparison with

the existing literature showed that, with the proposed formulations, the equilibrium shapes of

lipid biomembranes of different area and volume are accurately achieved as expected by the

Canham–Helfrich model, even using a small amount of DOFs.

We considered then a vesicle immersed in a fluid, as e.g. a red blood cell immersed in the

plasma, and the corresponding fluid-membrane coupling. In this regard, an incompress-

ible Newtonian fluid, governed by the Navier–Stokes equations, has been considered. We

described the resistive method employed for modeling the presence of the vesicle inside the

fluid domain. We tested the IGA-based discretization of the Navier–Stokes equations with

resistive term and SUPG stabilization in two benchmark cases: considering a lid-driven cavity,

we showed agreement in the obtained approximation of the velocity and pressure against

reference values; then, in a simulation of the flow past a cylindrical obstacle, we compared the

drag and lift obtained with the resistive method against an approximation on a boundary fitted
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mesh, showing qualitative and quantitative agreement of the forces, with errors on the drag

being of about 15% and on the Strouhal number of about 0.1%. Then we proposed algorithms

for calculating the signed distance field generated by a NURBS geometry inside a containing

domain; this allowed the extension of the resistive method to handle immersed NURBS geome-

tries. Finally, we introduced the coupling of the fluid equations with an equation governing

the biomembrane, driven by the forces exerted by the fluid and the internal forces coming

from the Canham–Helfrich bending energy. Both the fluid and membrane equations were

discretized in space by NURBS-based IGA and in time with BDF schemes, with the coupled

system solved by means of a strongly coupled staggered approach. We reported numerical

results regarding a vesicle immersed in a fluid, in different flow conditions; the behaviors

showed by the biomembrane were in agreement with results reported in the literature.

Overall, this thesis describes a framework for the numerical approximation of high order

surface PDEs and geometric PDEs which, relying extensively on the NURBS representation

of the geometry and IGA-based spatial discretization, with simple formulations delivers

approximations of high accuracy with limited computational costs.

This work can be extended in several ways. First of all, extension to multi-patch NURBS

mappings would allow the treatment of more complex geometries, even if particular care

would be needed for the construction of multi-patch periodic NURBS function spaces suitable

for the discretization of high order operators. Moreover, regarding the approximation of

high order geometric PDEs, time step adaptation techniques would be beneficial, as we

observed that the speed with which the approximated solution evolves towards the equilibrium

may vary significantly over time and could be improved. In the context of the modeling of

biomembranes, a development would be the systematic approximation of the equilibrium

shapes of vesicles with several values of spontaneous curvature: this is feasible by directly

employing the provided formulation, but was not carried on for the inclusion in this thesis.

Regarding the coupling with the fluid, an obvious development would be extending the

analysis to three-dimensional cases; while the provided results are in 2D, the formulation

and the algorithms are already compatible with the extension to the three dimensions. The

provided coupled formulation could also be improved both from the point of view of the

model, e.g. by introducing the local surface tension or considering a fully fluidic model for the

biomembrane, as well as by employing different coupling schemes, or different treatment of

the immersed vesicle from the fluid side. Moreover, an in-depth analysis of the behavior of

the biomembrane, performed by applying different physical parameters and varying the flow

conditions, should be interesting to carry on. Extension to multi-vesicle simulations, within

the current framework, could also be a potentially interesting development.
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École Polytechnique Fédérale de Lausanne, Switzerland

Bachelor degree in Mathematical Engineering 2007 – 2010
Politecnico di Milano, Italy
Thesis: “Cardiovascular mathematics: Mathematical models of mass transport across vascular walls”.
Supervisor: Prof. P. Zunino. Final mark: 107/110.

High school scientific diploma 2007
at Liceo Scientifico Statale A. Volta, Milano, Italy

211



Andrea Bartezzaghi - Curriculum Vitae

WORK EXPERIENCE

Part-time software development 2009 – 2011
Last Second Ticketing London, UK

Development of the administrative portal (in PHP) and the interface with the database (PostgreSQL).

Web site development 2008 – 2011

· Web site design and programming (mainly in PHP, with MySQL database and CSS styles).

· Development of custom content management systems for companies and privates.

LANGUAGE SKILLS

Italian Mother tongue.

English Excellent written and oral skills.
TOEIC took in 2011, with final mark 975/990. First Certificate in English in 2007.

French Basic reading, writing and speaking skills.

COMPUTER SKILLS

Operating systems

Excellent knowledge of Linux, Microsoft Windows and Mac OS.

Programming languages

Excellent knowledge of C/C++, Matlab, PHP.
Mobile applications development on Android with Java and JNI.
Parallel programming with MPI and OpenMP, GPU programming with CUDA and OpenCL.
Development of highly optimized parallel applications for scientific calculus. Game development and
graphics engine programming with OpenGL and GPU shaders. Programming of low–level operating
system components and device drivers. Good knowledge of network protocols, with focus on security.
Web development with backend programming in PHP and SQL databases.

Other software

Optimal knowledge of Microsoft Office suite, Microsoft Visual Studio and GNU GCC development
environments, MySQL and PostgreSQL databases, Matlab and OpenFOAM scientific calculus software.

Electronics

Low-level hardware programming with PIC, SX, AVR and ARM microprocessors. Good knowledge and
experience with the Arduino, ST Nucleo and other platforms. Good experience in RFID technologies
and communication protocols. FPGA digital logic programming with VHDL.

TEACHING

· Teaching assistant for the bachelor/master course “Introduction to the Finite Element Method” at
EPFL, held by Prof. A. Quarteroni (autumn semesters 2013–2014, 2014–2015, 2015–2016, and 2016–
2017).

212



Andrea Bartezzaghi - Curriculum Vitae

· Teaching assistant for the bachelor course “Analyse numérique” at EPFL, held by Prof. A. Quarteroni
at EPFL (spring semesters 2013–2014, 2014–2015 and 2015–2016).

PUBLICATIONS
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· A. Bartezzaghi, L. Dedè, and A. Quarteroni. “Isogeometric Analysis of Geometric Partial Differential
Equations: modeling of Red Blood Cells”. IGA 2016, La Jolla CA, USA, October 10–12, 2016.
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