18 research outputs found

    Numerical Implementation of the QuEST Function

    Full text link
    This paper deals with certain estimation problems involving the covariance matrix in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory when the dimension is not negligible with respect to the sample size, it is necessary to resort to an alternative framework known as large-dimensional asymptotics. Recently, Ledoit and Wolf (2015) have proposed an estimator of the eigenvalues of the population covariance matrix that is consistent according to a mean-square criterion under large-dimensional asymptotics. It requires numerical inversion of a multivariate nonrandom function which they call the QuEST function. The present paper explains how to numerically implement the QuEST function in practice through a series of six successive steps. It also provides an algorithm to compute the Jacobian analytically, which is necessary for numerical inversion by a nonlinear optimizer. Monte Carlo simulations document the effectiveness of the code.Comment: 35 pages, 8 figure

    Bootstrapping spectral statistics in high dimensions

    Get PDF
    Statistics derived from the eigenvalues of sample covariance matrices are called spectral statistics, and they play a central role in multivariate testing. Although bootstrap methods are an established approach to approximating the laws of spectral statistics in low-dimensional problems, these methods are relatively unexplored in the high-dimensional setting. The aim of this paper is to focus on linear spectral statistics as a class of prototypes for developing a new bootstrap in high-dimensions --- and we refer to this method as the Spectral Bootstrap. In essence, the method originates from the parametric bootstrap, and is motivated by the notion that, in high dimensions, it is difficult to obtain a non-parametric approximation to the full data-generating distribution. From a practical standpoint, the method is easy to use, and allows the user to circumvent the difficulties of complex asymptotic formulas for linear spectral statistics. In addition to proving the consistency of the proposed method, we provide encouraging empirical results in a variety of settings. Lastly, and perhaps most interestingly, we show through simulations that the method can be applied successfully to statistics outside the class of linear spectral statistics, such as the largest sample eigenvalue and others.Comment: 42 page

    Comparing Forecasts of Extremely Large Conditional Covariance Matrices

    Get PDF
    Modelling and forecasting high dimensional covariance matrices is a key challenge in data-richenvironments involving even thousands of time series since most of the available models sufferfrom the curse of dimensionality. In this paper, we challenge some popular multivariate GARCH(MGARCH) and Stochastic Volatility (MSV) models by fitting them to forecast the conditionalcovariance matrices of financial portfolios with dimension up to 1000 assets observed daily over a30-year time span. The time evolution of the conditional variances and covariances estimated bythe different models is compared and evaluated in the context of a portfolio selection exercise. Weconclude that, in a realistic context in which transaction costs are taken into account, modelling thecovariance matrices as latent Wishart processes delivers more stable optimal portfolio compositionsand, consequently, higher Sharpe ratios.Guilherme V. Moura is supported by the Brazilian Government through grants number 424942- 2016-0 (CNPQ) and 302865-2016-0 (CNPQ). André A.P. Santos is supported by the Brazilian Government through grants number 303688-2016-5 (CNPQ) and 420038-2018-3 (CNPQ). Esther Ruiz is supported by the Spanish Government through grant number ECO2015-70331-C2-2-R (MINECO/FEDER)

    MIXANDMIX: numerical techniques for the computation of empirical spectral distributions of population mixtures

    Get PDF
    The MIXANDMIX (mixtures by Anderson mixing) tool for the computation of the empirical spectral distribution of random matrices generated by mixtures of populations is described. Within the population mixture model the mapping between the population distributions and the limiting spectral distribution can be obtained by solving a set of systems of non-linear equations, for which an efficient implementation is provided. The contributions include a method for accelerated fixed point convergence, a homotopy continuation strategy to prevent convergence to non-admissible solutions, a blind non-uniform grid construction for effective distribution support detection and approximation, and a parallel computing architecture. Comparisons are performed with available packages for the single population case and with results obtained by simulation for the more general model implemented here. Results show competitive performance and improved flexibility.Comment: 17 pages, 6 figure

    Complex diffusion-weighted image estimation via matrix recovery under general noise models

    Get PDF
    We propose a patch-based singular value shrinkage method for diffusion magnetic resonance image estimation targeted at low signal to noise ratio and accelerated acquisitions. It operates on the complex data resulting from a sensitivity encoding reconstruction, where asymptotically optimal signal recovery guarantees can be attained by modeling the noise propagation in the reconstruction and subsequently simulating or calculating the limit singular value spectrum. Simple strategies are presented to deal with phase inconsistencies and optimize patch construction. The pertinence of our contributions is quantitatively validated on synthetic data, an in vivo adult example, and challenging neonatal and fetal cohorts. Our methodology is compared with related approaches, which generally operate on magnitude-only data and use data-based noise level estimation and singular value truncation. Visual examples are provided to illustrate effectiveness in generating denoised and debiased diffusion estimates with well preserved spatial and diffusion detail.Comment: 26 pages, 9 figure

    Predicting the global minimum variance portfolio

    Get PDF
    We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP). The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss function from which we can infer the optimal GMVP weights without imposing any distributional assumptions on the returns. In order to capture time variation in the returns’ conditional covariance structure, we model the portfolio weights through a recursive least squares (RLS) scheme as well as by generalized autoregressive score (GAS) type dynamics. Sparse parameterizations combined with targeting towards nonlinear shrinkage estimates of the long-run GMVP weights ensure scalability with respect to the number of assets. An empirical analysis of daily and monthly financial returns shows that the proposed models perform well in- and out-of-sample in comparison to existing approaches
    corecore