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Abstract

Modelling and forecasting high dimensional covariance matrices is a key challenge in data-rich

environments involving even thousands of time series since most of the available models suffer

from the curse of dimensionality. In this paper, we challenge some popular multivariate GARCH

(MGARCH) and Stochastic Volatility (MSV) models by fitting them to forecast the conditional

covariance matrices of financial portfolios with dimension up to 1000 assets observed daily over a

30-year time span. The time evolution of the conditional variances and covariances estimated by

the different models is compared and evaluated in the context of a portfolio selection exercise. We

conclude that, in a realistic context in which transaction costs are taken into account, modelling the

covariance matrices as latent Wishart processes delivers more stable optimal portfolio compositions

and, consequently, higher Sharpe ratios.
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1. Introduction

Conditional covariance matrices are a fundamental ingredient in many financial problems that

require modelling and forecasting the covariation among financial returns. However, the number

of off-diagonal elements of the covariance matrices increases exponentially with the number of

assets and, consequently, modeling and forecasting the covariation among financial returns becomes

challenging when the number of assets involved is large, say in the order of hundreds or even

thousands. Most of the available econometric specifications for dynamic covariance matrices suffer

from the curse of dimensionality, having difficulties in the estimation of the model parameters.

Moreover, it is important to keep in mind that conditional covariance matrices should be defined

on the manifold of symmetric positive-definite matrices, therefore raising further problems when

dealing with financial systems with a large number of variables.

Most models for conditional covariance matrices can be classified within one of two main fam-

ilies: multivariate GARCH (MGARCH) and multivariate Stochastic Volatility (MSV). The most

popular family of models for conditional covariance matrices is the MGARCH family. Since the

seminal contribution of Bollerslev, Engle and Wooldridge (1988), a variety of MGARCH speci-

fications have been proposed in the literature; see Bauwens, Laurent and Rombouts (2006) and

Silvennoinen and Teräsvirta (2009) for excellent surveys and Engle (2009) and Francq and Zakoian

(2019) for complete texts about the topic. Recently, Almeida, Hotta and Ruiz (2018) and Boudt,

Galanos, Payseur and Zivot (2019) survey feasible MGARCH models for large-scale applications

and discuss the trade-off between feasibility and flexibility. However, the systems considered in

these surveys only contain 10 assets. In any case, Almeida, Hotta and Ruiz (2018) conclude that

the most flexible MGARCH parameterization is the popular Dynamic Conditional Correlation

(DCC) model originally proposed by Engle (2002). Note that the positivity of conditional covari-

ance matrices can be easily guaranteed in the context of the DCC model. Very recently, Engle,

Ledoit and Wolf (2019) robustify the DCC model with correlation targeting by estimating the

unconditional correlation matrix using the nonlinear shrinkage (NLS) approach of Ledoit and Wolf

(2012) and estimating the dynamic parameters using the composite likelihood method of Pakel,

Shephard, Sheppard and Engle (2019). Engle, Ledoit and Wolf (2019) implement their robustified
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DCC model in a large-scale portfolio selection problem with up to 1000 assets without taking into

account transaction costs.

Alternatively, prompted by the flexibility and success of univariate stochastic volatility (Carnero,

Peña and Ruiz, 2004), generalizations of the univariate state-space model for variances to a multi-

variate setting have received a great deal of attention since the original proposal of Harvey, Ruiz

and Shephard (1994); see, for example, Asai, McAleer and Yu (2006), Yu and Meyer (2006), Chib,

Omori and Asai (2009) and Kastner (2019). As with any multivariate specification of conditional

covariances, it is important to guarantee positive definiteness of MSV models. One attractive

specification of MSV models, originally proposed by Uhlig (1994, 1997), which guarantees positive

definiteness of conditional covariance matrices, is based on treating unobserved dynamic precision

matrices as Wishart processes. However, some of the Wishart MSV (WMSV) specifications suffer

from the course of dimensionality and can only be implemented to systems with relatively small

cross-sectional dimensions. For example, Philipov and Glickman (2006a) consider a system with

12 series while Philipov and Glickman (2006b) deal with 88 series. Asai and McAleer (2009) and

Gouriéroux, Jasiak and Sufana (2009) have empirical applications with systems of 3 variables and,

finally, Golosnoy, Gribisch and Liesenfeld (2012) analyze 5 series. The original WMSV specifica-

tion proposed by Uhlig (1994, 1997) is interesting when dealing with very large systems of returns

because the dynamic dependence of the covariance matrices is controlled by just one single param-

eter that can be estimated by Maximum Likelihood (ML); see Kim (2014) and Moura and Noriller

(2019).

The main contribution of this paper is to compare the robustified DCC model of Engle, Ledoit

and Wolf (2019) and the WMSV model of Uhlig (1994, 1997) in the context of the same portfolio

selection exercise considered by the former authors. The portfolios are constructed in the context of

the entire universe of NYSE, NASDAQ and AMEX stock returns observed daily from 1970 to 2016.

We consider investment universes of N ∈ {100, 500, 1000} assets and obtain optimal minimum vari-

ance portfolios re-balanced on a monthly basis. Conditional covariance matrices are also computed

using the popular RiskMetrics’ approach (see J.P.Morgan/Reuters (1996), Mina and Xiao (2001),

Zumbach (2007b,a) and Alexander (2008)) as well as the standard sample unconditional covariance
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estimator based on a rolling window scheme; see Adams, Füss and Glück (2017). We show that the

correlations estimated by the WMSV model are smaller, smoother and have less dispersion than

those estimated by any of the other three specifications of the conditional covariance matrices. We

also conduct a detailed out-of-sample evaluation of the resulting minimum variance optimal port-

folios considering not only their portfolio risk but also the portfolio risk-adjusted return measured

by the Sharpe ratio. Similar as in DeMiguel, Garlappi and Uppal (2009) and Kirby and Ostdiek

(2012), the exercise is carried out not only by comparing the variances of the portfolios but also

their turnover ratios as well as the impact of the presence of transaction costs when evaluating

the Sharpe ratio. We conclude that, in concordance with the results in Engle, Ledoit and Wolf

(2019), optimal portfolios based on conditional covariances obtained with the robustified DCC

model outperform all competitors in terms of standard deviation of portfolio returns. However,

these portfolios have a larger turnover and, consequently, when transaction costs are taken into

account, they have a lower Sharpe ratio in comparison to those obtained with the WMSV model.

As a consequence of the smoother correlations, the portfolios selected using the WMSV specifica-

tion of the conditional covariance matrices have smaller turnover and, consequently, large Sharpe

ratios.

Other horse races among forecasts of conditional covariance matrices for financial returns have

been carried out in the literature; see Laurent, Rombouts and Violante (2012, 2013) and Almeida,

Hotta and Ruiz (2018). However, Laurent, Rombouts and Violante (2012, 2013) consider N = 10

and N = 3, respectively, and compare the MGARCH models in terms of predictive ability. Also,

Almeida, Hotta and Ruiz (2018) only consider systems with up to N = 10 assets and compare the

forecast performance of MGARCH specifications. Therefore, our main contribution with respect

to these comparisons is to compare the models in the context of truly large portfolios based not

only on forecasts but also on the portfolio performance using models from both MGARCH and

MSV families.

The rest of the paper is organized as follows. Section 2 describes the alternative specifications

considered to forecast conditional covariances. In Sections 3 and 4, we fit the models for the con-

ditional covariances considered and compare portfolio performance, respectively. Finally, Section
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5 concludes.

2. Covariance matrix specifications

Consider that the N × 1 vector of returns observed at time t, t = 1, . . . , T is given by

rt = H
1/2
t εt (1)

where εt is an N × 1 Gaussian white noise vector with covariance IN , the N ×N identity matrix,

and Ht is the N × N positive definite conditional covariance matrix of rt at time t. Next, we

brieftly describe the alternative specifications to forecast covariance matrices of large systems of

returns considered in this paper.

2.1. DCC model

We consider the DCC specification proposed by Engle, Ledoit and Wolf (2019) that merges

the original DCC model of Engle (2002) with the shrinkage principle, which is largely applied to

portfolio optimization problems in order to obtain covariance matrices less prone to estimation

error, specially in high dimensional problems; see, for instance, Ledoit and Wolf (2004a, 2017a).

In the DCC model, Ht is decomposed as the product of Dt and Ψt as follows

Ht = DtΨtDt, (2)

where Dt is an N × N diagonal matrix with its i-th diagonal element, hi,t, being the con-

ditional standard deviation of the i-th asset. We assume that each h2
i,t follows a univariate

GARCH(1,1) process although a variety of univariate conditional variance specifications could be

used for this purpose. Finally, Ψt is the conditional correlation matrix of the devolatized residuals,

st = (r1,t/h1,t, . . . , rN,t/hN,t)
′, which is governed by the following correlation targeting dynamics

Ψt = (1− α− β)C + αst−1s
′
t−1 + βΨt−1, (3)
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where α and β are scalar parameters that guide the dynamics of all correlations and C is the

unconditional covariance matrix of the vector of devolatized residuals, st.

Estimation of the DCC model is carried out in three steps. In the first step, QML estimates of

the parameters of the univariate GARCH(1,1) models for each asset are obtained. The estimated

volatilities are used to devolatize the return series.

In the second step, the unconditional covariance matrix, C, is estimated. Engle (2002) proposes

estimating C by the sample covariance matrix of the devolatized residuals, st. It is known, however,

that the standard sample covariance estimator is prone to estimation error. To circumvent this

problem, Engle, Ledoit and Wolf (2019) propose estimating C by using the nonlinear shrinkage

(NLS) approach of Ledoit and Wolf (2012), denoted by Ĉ. Although Engle, Ledoit and Wolf (2019)

estimate Ĉ using the QuEST function described in Ledoit and Wolf (2017b), we obtain Ĉ using the

analytical nonlinear shrinkage approach of Ledoit and Wolf (2019) which is much faster and has

similar accuracy. Note that, in spite of the fact that devolatized returns are used as inputs and,

regardless of the estimator of C implemented, the diagonal elements of the estimated C matrix

tend to slightly deviate from one. Therefore, every column and every row of the estimated C

matrix has to be divided by the square root of the corresponding diagonal entry, so as to produce

a proper correlation matrix. From now on, the DCC model, in which C is estimated by Ĉ, will be

denoted as DCC-NLS model.

Finally, in the third step, once the unconditional covariance matrix, C, is estimated, the param-

eters α and β of the correlation-targeting dynamics in (3) are estimated by the composite likelihood

(CL) method of Pakel, Shephard, Sheppard and Engle (2019). We compute the log-likelihood by

summing up the log-likelihood of all contiguous pairs of assets. Therefore, only N − 1 bivariate

log-likelihoods should be computed.1

We discuss in Section ?? of the Supplementary Material two variants for the estimation of the

DCC model, namely i) the original DCC proposal of Engle (2002) in which C is estimated by the

sample covariance matrix of devolatized residuals, denoted by DCC-Sample, and ii) the estimator

1In order to estimate the DCC-NLS model, we use and adapt some of the Matlab codes of the MFE Toolbox
developed by Professor Kevin Sheppard from Oxford University and available in his web page.
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of C considered in Engle, Ledoit and Wolf (2019) in which C is estimated by the linear shrinkage

(LS) approach of Ledoit and Wolf (2004b), denoted as DCC-LS.

2.2. Wishart Multivariate Stochastic Volatility

Consider that returns are given by equation (1). In the WMSV model proposed by Uhlig

(1994), the precision matrix is given by

H−1
t =

d+ 1

d
U(H−1

t−1)
′Θt U(H

−1
t−1), (4)

where U(H−1
t ) is the upper triangular matrix obtained from the Cholesky decomposition ofH−1

t and

Θt are random iid draws from an N -dimensional singular multivariate beta distribution, BN(
d
2
, 1
2
),

as defined by Uhlig (1994), with d > N−1 being a scalar parameter defining its degrees of freedom.

The initial condition for the covariance matrix is given by

H−1
1 ∼ WN(d+ 1, [(d+ 1)S0]

−1), (5)

where WN denotes the N -dimensional Wishart distribution and S0 = E[H−1
0 ]. We follow Uhlig

(1997) and Kim (2014) and set S0 to a diagonal matrix whose elements are given by the inverse in-

sample variance of each series.2 Uhlig (1997) shows that, according to equation (4), the dynamics

of the inverse covariance matrices are very similar to those of random walks.

The dynamics of the precision matrix are governed by a unique parameter, d, that can be

estimated by Maximum Likelihood (ML); see Kim (2014) and Moura and Noriller (2019). We refer

the reader to Section ?? of the Supplementary Material that brings additional details regarding

filtering and ML estimation of the WMSV model considered in this paper.

2.3. RiskMetrics

One of the most popular specifications of the conditional covariance matrix, Ht, in equation

(1) is based on the RiskMetrics 1994 (hereafter RM-1994) methodology; see J.P.Morgan/Reuters

2We have also considered alternative initial conditional covariance matrices with correlations different from zero.
The results were always worse in terms of portfolio performance.
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(1996), Mina and Xiao (2001) and Alexander (2008). In short, according to RM-1994, one-step-

ahead conditional covariance matrices are obtained as an exponential weighted moving average

(EWMA) of quadratic forms of past returns with the weighting designed to give more weight to

more recent observations as follows

Ht = (1− λ)
t−1∑

i=1

λirt−ir
′
t−i. (6)

where λ = 0.94 for daily data. Note that, given that λ = 0.94, the weight placed in older

observations is decreasing. This could be an important limitation of RM-1994 when trying to invert

large covariance matrices making the “effective window” considered in the EWMA specification in

(6) to be small depending of the cross-section dimension of rt. In spite of this limitation, EWMA

is prominent in the industry and among market participants.3

The RM-1994 approach is extended to the RM-2006 approach by Zumbach (2007b,a) in order

to incorporate additional stylized facts such as long memory of the volatility process. We follow

Engle, Ledoit and Wolf (2019) and specify Ht according to the RM-2006 approach as one of the

benchmark covariance specifications.4

2.4. Unconditional Covariance matrix

Finally, we also specify Ht as the unconditional covariance matrix of asset returns that is

estimated by the sample covariance of returns.

As a robustness check, the unconditional covariance matrix is also estimated by the linear

shrinkage (LS) method of Ledoit and Wolf (2004b) and by the analytical nonlinear shrinkage

(NLS) method of Ledoit and Wolf (2019).

3The EWMA filter is a particular case of the filter obtained if the Kalman filter were implemented when the
parametric model for conditional covariance matrices is the MSV of Harvey, Ruiz and Shephard (1994) with all
variances and covariances restricted to have the same variances of the transition noise and such that the smoothing
parameter is 0.94. The only difference is that in the model proposed by Harvey, Ruiz and Shephard (1994), the
specification is for log-variances while in the RiskMetrics methodology variances are modeled directly.

4We use the Matlab routine riskmetrics2006 available in the MFE Toolbox provided by Kevin Sheppard.

8



3. Fitting and forecasting large covariance matrices

In this section, we fit the conditional covariance models described in Section 2 to a large cross-

section dimension system with up to 1000 assets traded in the US stock market. The data set

consists of prices of all NYSE, AMEX and NASDAQ stocks observed daily from 01/01/1970 to

12/31/2016.

The models are recursively estimated using a rolling window scheme based on investment

universes with N ∈ {100, 500, 1000} assets starting using data observed from 01/01/1970 to

12/11/1974 with T = 1250 observations. The investment universes are obtained as follows. We

find the set of stocks that have a complete return history over the most recent T = 1250 days

as well as a complete return “future” over the next 21 days. We then look for possible pairs of

highly correlated stocks, that is, pairs of stocks with returns with a sample correlation exceeding

0.95 over the past 1250 days. With such pairs, if they should exist, we remove the stock with

the lower volume on investment date h. Of the remaining set of stocks, we then pick the largest

N stocks (as measured by their market capitalization on investment date h) as our investment

universe. In this way, the investment universe changes slowly from one investment date to the

next. In line with Brandt, Santa-Clara and Valkanov (2009), we do not include the risk-free asset

in the investment opportunity set as including this asset boils down to a change in the scale of the

stock portfolio weights and is not interesting per se. The parameters are re-estimated every month

(we adopt the common convention that 21 consecutive days constitute one month). Therefore,

for each model and investment universe, N , we perform a total of 505 rolling window estimations.

Using these estimates, at each day from 12/12/1974 to 12/31/2016, we obtain the corresponding

one-step-ahead predictions of the covariance matrices, with a total of 10,605 predictions.

Figure 1 plots the time series evolution of the out-of-sample 25th, 50th and 75th percentiles

of the one-step-ahead pairwise correlations when N = 500 for each of the four specifications of

the conditional covariance matrices described in Section 2.5 To compute these quantities, at each

moment of time t, we vectorize the lower triangular part of the one-step-ahead covariance matrix

5The results obtained with N = 100 and N = 1000 are qualitatively similar.
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obtained with each of the models and compute the percentiles of the (vectorized) correlations. The

first conclusion from Figure 1 is that the median level of the correlations estimated by the WMSV

model is clearly lower than those obtained when the correlations are estimated by any of the other

three alternative specifications considered. Note that the median level of the WMSV correlations

is around 0.1 while the level is around 0.3 for any of the other specifications.

Figure 1 also shows that both the DCC-NLS and RM-2006 models yield correlations that

are highly time-varying and noisy. This finding corroborates those obtained both analytically and

empirically in Adams, Füss and Glück (2017) who suggest that some popular conditional correlation

models such as the DCC can generate spurious fluctuations in correlations. In contrast, the median

correlations implied by the WMSV model evolve in a much more smooth way. They only jump to a

higher value between 1991 and 1995 and between 2004 and 2008; see Adams, Füss and Glück (2017)

who argue that financial correlations are mostly constant over time with financial shocks leading

to breaks that shift the level of correlations. The median correlations obtained when estimating

the unconditional covariance matrix are also rather smooth.

Finally, the 25th and 75th percentiles of the pairwise correlations plooted in Figure 1 give a sense

of the dispersion of these pairwise correlations at each moment of time. We can observe that the

dispersion of the pairwise estimated correlations is much smaller when the WMSV specification is

implemented supporting the Dynamic Equicorrelation (DECO) model proposed by Engle and Kelly

(2012). Note that, as pointed out by Engle and Kelly (2012), the assumption of equicorrelation

makes it possible to estimate arbitrarily large covariance matrices with ease. They also show

that DECO models can improve portfolio selection compared to unrestricted dynamic correlation

structure as in the DCC model.

According to the results in this section, the WMSV model generates one-step-ahead correlations

that are close to the equicorrelation assumption and that simultaneously evolve smoothly, only

jumping at particular moments of time. However, given the extremely large dimension of the

returns, it is difficult to carry out a forecasting evaluation based on these one-step-ahead pairwise

correlations. Consequently, in the next section, we evaluate the performance of the DCC, WMSV,

RM-2006 and unconditional one-step-ahead pairwise correlations in an economically meaningful
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way by using them to construct minimum variance portfolios. We will see that the differences in

the estimated pairwise conditional correlations have important implications for the performance

of the optimal portfolios.

4. Large scale portfolio selection

In this section, we perform a large scale portfolio selection exercise to compare the specifica-

tions of the conditional covariance matrices described in Section 2 based on a long out-of-sample

evaluation period. We discuss the portfolio policy considered in the paper and the methodology

for evaluating the portfolio performance. A superior covariance forecasting model should provide

portfolios with lower variance and larger Sharpe ratios. Finally, we discuss the empirical results.

Our approach to portfolio construction is largely inspired by Engle, Ledoit and Wolf (2019) and

it is reproduced here for the sake of completeness. Portfolio weights are updated on a monthly basis

in order to avoid excessive turnover levels associated to daily re-balancing. During a month, we

assume that there are no transactions. Denote investment dates by h = 1, . . . , 505. As explained

in Section 3, at any investment date h, each of the specifications for the conditional covariance

Ht considered are estimated using the most recent T = 1250 daily returns and the corresponding

one-step-ahead forecasts are obtained considering investment universes with N ∈ {100, 500, 1000}

assets.

The portfolio policy considered is based on an investor who adopts the minimum variance

criterion in order to decide her portfolio allocations. A very large body of literature in portfolio

optimization considers this particular policy. For instance, Clarke, De Silva and Thorley (2006,

2011) are extensive practitioner-oriented studies on the performance and on the composition of

minimum variance portfolios. Engle and Kelly (2012) also evaluate whether equicorrelation is

better than different correlations using minimum variance portfolios. Finally, Kastner (2019)

compares alternative covariance matrices when N = 300 in terms of minimum variance portfolios.
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The minimum variance portfolio problem is defined as follows

min
wt∈ℜN

w′
tHtwt

subject to wti
′ι = 1,

(7)

where wt is the vector of portfolio weights for time t chosen at time t − 1, Ht is the conditional

covariance matrix of asset returns at time t, and ι is an appropriately sized vector of ones. The

solution to (7) is given by

wt =
ι′Ht

−1

ι′Ht
−1ι

. (8)

In practice, however, feasible portfolio weights, ŵt are obtained by replacing the unknown covari-

ance matrix, Ht, in equation (8) by an estimate, Ĥt, which, in our case, is obtained at time t− 1

using each of the specifications described above.

As a robustness check, we discuss in Section ?? of the Supplementary Material the imple-

mentation of alternative portfolio policies. In particular, as in Engle, Ledoit and Wolf (2019), we

consider the mean-variance policy with a momentum signal. We also consider the equally-weighted

and value-weighted policies, and two alternative versions of the volatility timing policy proposed

in Kirby and Ostdiek (2012). The results of the robustness checks are reported in Section ?? of

the Supplementary Material.

To take into account the impact of transaction costs on the performance of optimal portfolios

(Han, 2006), we follow Della Corte, Sarno and Thornton (2008), Kirby and Ostdiek (2012), and

Thornton and Valente (2012) and compute the portfolio return net of transaction costs as follows

RP
t = (1− c · turnovert) (1 + ŵ′

trt+1)− 1, (9)

where turnovert =
N∑
j=1

(|ŵj,t+1 − ŵj,t|) is the portfolio turnover at time t, defined as the fraction of

wealth traded between periods t and t+ 1, and c is the fee that must be paid for each transaction

that is measured in terms of basis points (b.p.). French (2008) estimates the trading cost in 2006,

based on stocks traded on NYSE, AMEX, and NASDAQ, including “total commissions, bid-ask
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spreads, and other costs investors pay for trading services”, and finds that this cost has dropped

significantly over time going “from 146 basis points in 1980 to a tiny 11 basis points in 2006.”

In order to take into account the impact of proportional transaction costs, we consider the cases

in which c = 0 and 10 b.p.. We believe that setting c = 10 b.p. is an accurate description of

the proportional cost paid in order to trade stocks of large firms, and that professional trading

firms should be able to trade at even lower transaction costs; see Kirby and Ostdiek (2012) and

Ledoit and Wolf (2017a) for a discussion. We also compute the risk-adjusted portfolio return net

of transaction costs measured by the SR, which is defined as follows

SR =
R̄P

σP
, (10)

where R̄P and σP are the average and the standard deviation of portfolio returns net of transaction

costs, respectively.6

Table 1 reports the average turnover and the average and the standard deviation of the minimum

variance portfolio return net of transaction costs, R̄P and σP , respectively, as well as the average SR,

computed over the out-of-sample period under the two scenarios of proportional transaction costs

considered, namely, c = 0 and c = 10 b.p. and under the different covariance matrix specifications

considered. Panel A brings results for portfolios with N = 100 assets, whereas Panels B and

C report results for portfolios with N = 500 and N = 1000 assets, respectively. Table 1 also

reports the Sharpe ratios (SR) and turnovers obtained in monthly terms using only out-of-sample

observations.

The first important result we observe in Table 1 is that, regardless of the dimension of the

portfolio, N , and of whether transactions costs are considered or not, the minimum variance

portfolios obtained with the correlations estimated by RM-2006 have more risk (measured in terms

6As suggested in Ledoit and Wolf (2008), we could test the statistical significance of the differences between the
portfolio variances and Sharpe ratios of the portfolios derived from the alternative conditional covariance matrix
specifications using tests based on the stationary bootstrap procedure of Politis and Romano (1994), which allows to
formally compare optimal portfolios obtained with alternative conditional covariance specifications in terms of their
sample characteristics. However, given that we are obtaining L = 10605 out-of-sample one-step-ahead portfolio
returns, even tiny differences between the variances and Sharpe ratios will be significant. Consequently, we do not
report the results of these tests.
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of standard deviations) and smaller Sharpe ratios than when the portfolios are obtained by any of

the other three specifications of the conditional covariances considered.

Second, we observe that the differences between porfolios based on different covariance matrices

are larger as the number of assets in the portfolio, N , is larger. The standard deviations and Sharpe

ratios of the portfolios constructed using the unconditional, DCC-NLS and WMSV specifications

are rather similar when N = 100. However, if N = 500 or 1000, the standard deviations of the

unconditional portfolios are much larger than those of the portfolios computed using either the

DCC-NLS or the WMSV covariance matrices. The conclusions are similar with respect to Sharpe

Ratios. If N = 100, the Sharpe Ratios of the portfolios constructed using the unconditional, DCC-

NLS and WMSV covariance matrices are very similar. However, if N = 500 or 1000, the Sharpe

Ratios of the portfolios constructed using the unconditional covariances are smaller than those of

the DCC-NLS and WMSV portfolios.

Third, if N = 500 or 1000, taking into account transaction costs is important to compare the

performance of DCC-NLS and WMSV portfolios. If there are no transaction costs, i.e. c = 0, and

N = 100, the performance of DCC-NLS and WMSV portfolios, both in terms of risk and risk-

adjusted returns, is similar. If N = 500 or 1000, the portfolios based on DCC-NLS covariances

have slightly smaller standard deviations than those based on WMSV covariances while the former

have slightly larger Sharpe ratios. On the other hand, if transaction costs are considered, i.e.

c = 10, the conclusions are the same with respect to standard deviations. However, the picture is

very different when looking at the Sharpe ratios. Given that DCC-NLS based portfolios have large

turnovers, their Sharpe ratios are smaller than those of portfolios based on WMSV covariances.

According to the modern portfolio theory, portfolio re-balancing occurs in response to changes in

the correlations among asset returns. In other words, when the correlation among assets change,

so does the optimal portfolio composition. In this sense, higher levels of portfolio turnovers can

be a consequence of frequent and/or abrupt changes in the correlations implied by an underlying

covariance model. We observe in Figure 1 that the correlation implied by the WMSV model evolve

in a smoother way in comparison to those obtained with DCC-NLS and RM-2006 covariance

models. This helps understanding why the WMSV model leads to optimal portfolios that demand
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less re-balancing, which attenuates the impact of trading costs and leads to higher after-fee risk-

adjusted returns measured by the Sharpe ratio. The large turnovers of DCC-NLS based portfolios

are related to the variability of the correlations, forcing ŵt to vary through time implying larger

transaction costs.

In order to provide a visual inspection of this particular result, we plot in Figure 2 the out-

of-sample monthly turnovers of the minimum variance portfolios with N = 1000 assets obtained

with the WMSV and the DCC-NLS specifications. We observe that the turnovers associated to

the WMSV specification are consistently much lower than those obtained with the DCC-NLS

covariance matrix throughout the whole out-of-sample period.

One remarkable aspect of the results reported in Table 1 is that the turnover of the minimum

variance portfolios are substantially different among alternative covariance specifications. We find

that the WMSV specification consistently outperforms all competitors as it delivers minimum

variance portfolios with a much lower turnover. For instance, the results in Panel C shows that

the turnover of portfolios with N = 1000 assets is 0.26, whereas the same figure for the DCC-NLS

specification is 2.15. The RM-2006 specification achieved the worst results in terms of turnover

(7.30).

Taken together, the results reported in Table 1 point to the WMSV specification outperforms

competing specifications specially in terms of risk-adjusted performance net of transaction costs.

The turnovers of the WMSV portfolios are clearly smaller and, consequently, the Sharpe ratios are

larger than those of DCC-NLS portfolios. For instance, the results in Panel C indicate that when

N = 1000, the SR obtained with the WMSV model in the presence of transactions costs is 0.56

and this figure is substantially smaller in comparison to all other specifications considered.

Summarizing, in concordance with the results reported by Engle, Ledoit andWolf (2019), we can

conclude that portfolios based on the DCC-NLS specification of the conditional covariance matrices

achieve the lowest standard deviation of returns in all cases considered. However, we observe that

the risk-adjusted returns, measured by the Sharpe ratio, reveal that the WMSV specification

outperformed all competitors and that the differences in performance are more pronounced as we

move to portfolios with higher dimensions and take into account the presence of transaction costs.
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The documented outperformance net of transaction costs returns of the portfolios obtained with the

WMSV model vis-a-vis those obtained with the alternative covariance specifications is intimately

related to the lower level of turnover achieved with the WMSV specification, which helps avoiding

an excessive deterioration of portfolio performance due to the presence of transaction costs.

Looking at the robustness checks reported in the Supplementary Material accompanying this

paper, related to the implementation of alternative covariance specifications and additional port-

folio policies, we show that the results are reassuring. We observe that even though the portfolios

obtained with the volatility timing policy delivered lower turnover in comparison to those obtained

with the WMSV model, the former performed worse in terms of risk and risk-adjusted returns. Fur-

thermore, the results point to the outperformance of the optimal portfolios obtained with WMSV

in terms of risk-adjusted returns net of transaction costs when additional covariance specifications

and portfolio policies are taken into account. We also observe that the DCC-NLS specification

delivers less risky mean-variance portfolios in all instances, therefore corroborating the previous

results for the minimum variance portfolios reported in Table 1 as well as the results reported in

Engle, Ledoit and Wolf (2019). It is worth noting, however, that the turnover of the mean-variance

portfolios are, in the vast majority of the cases, higher with respect to those obtained with the

minimum variance portfolios. This is due to the fact that the mean-variance problem is known to

be very sensitive to estimation of the mean returns (e.g. Jagannathan and Ma, 2003). Very often,

the estimation error in the mean returns degrades the overall portfolio performance and introduces

an undesirable level of portfolio turnover. In fact, existing evidence suggests that the performance

of optimal portfolios that do not rely on estimated mean returns is better; see DeMiguel, Gar-

lappi and Uppal (2009). As expected, the results reported in the Supplementary Material reveal

that the risk-adjusted performance of mean-variance portfolios is, in fact, substantially affected by

the presence of transaction costs. When transaction costs are taken into account, the SR of the

mean-variance portfolios obtained with the DCC-NLS model decreases from 0.54 to 0.42. The best

performance in terms of SR is obtained with the WMSV model (0.50). Additionally, the WMSV

model is the only specification able to generate portfolios with higher Sharpe ratio with respect

to the equally-weighted and value-weighted portfolios both in the absence and in the presence of
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transaction costs. Finally, when comparing among alternative unconditional estimators, we observe

that the LS outperforms the unconditional, and the NLS outperforms both. This result suggests

that the nonlinear shrinkage developed in Ledoit and Wolf (2012, 2019) is in fact an improvement

with respect to the linear shrinkage as well as with respect to the traditional sample covariance

estimator. A similar finding is observed when comparing among alternative DCC specifications.

We observe that the DCC-LS outperforms the DCC-Sample, and the DCC-NLS outperforms both.

5. Concluding remarks

Modeling and forecasting high dimensional conditional covariance matrices in a data-rich en-

vironment is challenging. Most models for dynamic covariance matrices suffer from the curse

of dimensionality, which creates difficulties in the estimation process when considering applica-

tions involving hundreds or thousands of time series. We compare the one-step-ahead correlations

obtained from the DCC WMSV, RM-2006 and unconditional covariance models in an empirical

application based on daily returns of NYSE, NASDAQ and AMEX stocks, with up to 1000 assets.

We show that the pairwise correlations obtained using the WMSV model are more stable over time

and have less cross-sectional dispersion than those obtained by any of the other three specifications

considered. We evaluate the performance of the correlations using them to select minimun vari-

ance portfolios. The WMSV correlations deliver more stable optimal portfolios weights, implying

a lower turnover in comparison to the alternative conditional covariance specifications considered.

We find that the risk-adjusted performance of the WMSV model is consistently superior to that

of alternative specifications, mainly when considering trading costs.
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Tables and Figures

Table 1: Performance of minimum variance portfolios

The Table reports performance statistics for minimum variance portfolios with N ∈ {100, 500, 1000} assets obtained
with a set of covariance models. Sharpe ratios are computed using returns net of transaction costs of 0 and 10 b.p. All
figures are reported in monthly terms and are based on out-of-sample observations. The out-of-sample period goes from
12/12/1974 to 12/31/2016 (10,605 daily observations) resulting in a total of 505 months. Portfolio weights are updated
on a monthly basis.

No transaction costs Transaction costs = 10 b.p.

Mean ret. (%) Std. dev. (%) Sharpe ratio Turnover Mean ret. (%) Std. dev. (%) Sharpe ratio
Panel A: N=100 assets

Unconditional 1.09 3.43 0.32 0.63 1.02 3.43 0.30
RM-2006 0.82 3.70 0.22 2.80 0.54 3.72 0.14
DCC-NLS 0.99 3.27 0.30 2.23 0.77 3.28 0.23
WMSV 0.99 3.29 0.30 0.75 0.91 3.29 0.28

Panel B: N=500 assets

Unconditional 1.04 2.69 0.39 1.78 0.86 2.70 0.32
RM-2006 0.98 3.13 0.31 3.71 0.61 3.15 0.19
DCC-NLS 1.04 2.25 0.46 2.41 0.80 2.27 0.35
WMSV 1.18 2.46 0.48 0.38 1.15 2.46 0.47

Panel C: N=1000 assets

Unconditional 0.98 3.29 0.30 5.97 0.39 3.35 0.12
RM-2006 0.94 3.68 0.25 7.30 0.21 3.75 0.06
DCC-NLS 1.06 1.91 0.56 2.15 0.84 1.92 0.44
WMSV 1.28 2.26 0.57 0.26 1.26 2.26 0.56
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Figure 1: Median pairwise correlations

The Figure plots the evolution of the out-of-sample one-step-ahead median pairwise correlations (solid blue line) along with the 25th and 75th percentiles (dashed
lines) when N = 500 obtained with different specifications of the conditional covariance matrices.
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Figure 2: Monthly portfolio turnover

The Figure plots out-of-sample monthly turnover of the minimum variance with N = 1000 assets obtained with the
WMSV and the DCC-NLS specifications.
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