3,882 research outputs found

    Switching Diffusions: Applications To Ecological Models, And Numerical Methods For Games In Insurance

    Get PDF
    Recently, a class of dynamic systems called ``hybrid systems containing both continuous dynamics and discrete events has been adapted to treat a wide variety of situations arising in many real-world situations. Motivated by such development, this dissertation is devoted to the study of dynamical systems involving a Markov chain as the randomly switching process. The systems studied include hybrid competitive Lotka-Volterra ecosystems and non-zero-sum stochastic differential games between two insurance companies with regime-switching. The first part is concerned with competitive Lotka-Volterra model with Markov switching. A novelty of the contribution is that the Markov chain has a countable state space. Our main objective is to reduce the computational complexity by using the two-time-scale formulation. Because the existence and uniqueness as well as continuity of solutions for Lotka-Volterra ecosystems with Markovian switching in which the switching takes place in a countable set are not available, such properties are studied first. The two-time scale feature is highlighted by introducing a small parameter into the generator of the Markov chain. When the small parameter goes to 0, there is a limit system or reduced system. It is established in this work that if the reduced system possesses certain properties such as permanence and extinction, etc., then the complex original system also has the same properties when the parameter is sufficiently small. These results are obtained by using the perturbed Lyapunov function methods. The second part develops an approximation procedure for a class of non-zero-sum stochastic differential games for investment and reinsurance between two insurance companies. Both proportional reinsurance and excess-of-loss reinsurance policies are considered. We develop numerical algorithms to obtain the approximation to the Nash equilibrium by adopting the Markov chain approximation methodology. We establish the convergence of the approximation sequences and the approximation to the value functions. Numerical examples are presented to illustrate the applicability of the algorithms

    Mean Field Control for Efficient Mixing of Energy Loads

    Full text link
    We pose an engineering challenge of controlling an Ensemble of Energy Devices via coordinated, implementation-light and randomized on/off switching as a problem in Non-Equilibrium Statistical Mechanics. We show that Mean Field Control} with nonlinear feedback on the cumulative consumption, assumed available to the aggregator via direct physical measurements of the energy flow, allows the ensemble to recover from its use in the Demand Response regime, i.e. transition to a statistical steady state, significantly faster than in the case of the fixed feedback. Moreover when the nonlinearity is sufficiently strong, one observes the phenomenon of "super-relaxation" -- where the total instantaneous energy consumption of the ensemble transitions to the steady state much faster than the underlying probability distribution of the devices over their state space, while also leaving almost no devices outside of the comfort zone.Comment: 7 pages, 5 figure

    Pathogen evolution in switching environments: a hybrid dynamical system approach

    Full text link
    We propose a hybrid dynamical system approach to model the evolution of a pathogen that experiences different selective pressures according to a stochastic process. In every environment, the evolution of the pathogen is described by a version of the Fisher-Haldane-Wright equation while the switching between environments follows a Markov jump process. We investigate how the qualitative behavior of a simple single-host deterministic system changes when the stochastic switching process is added. In particular, we study the stability in probability of monomorphic equilibria. We prove that in a "constantly" fluctuating environment, the genotype with the highest mean fitness is asymptotically stable in probability. However, if the probability of host switching depends on the genotype composition of the population, polymorphism can be stably maintained. This is a corrected version of the paper that appeared in Mathematical Biosciences 240 (2012), p. 70-75. A corrigendum has appeared in the same journal.Comment: 15 pages, 4 figure

    Controlled diffusion processes

    Full text link
    This article gives an overview of the developments in controlled diffusion processes, emphasizing key results regarding existence of optimal controls and their characterization via dynamic programming for a variety of cost criteria and structural assumptions. Stochastic maximum principle and control under partial observations (equivalently, control of nonlinear filters) are also discussed. Several other related topics are briefly sketched.Comment: Published at http://dx.doi.org/10.1214/154957805100000131 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDE

    Full text link
    We aim to provide a Feynman-Kac type representation for Hamilton-Jacobi-Bellman equation, in terms of forward backward stochastic differential equation (FBSDE) with a simulatable forward process. For this purpose, we introduce a class of BSDE where the jumps component of the solution is subject to a partial nonpositive constraint. Existence and approximation of a unique minimal solution is proved by a penalization method under mild assumptions. We then show how minimal solution to this BSDE class provides a new probabilistic representation for nonlinear integro-partial differential equations (IPDEs) of Hamilton-Jacobi-Bellman (HJB) type, when considering a regime switching forward SDE in a Markovian framework, and importantly we do not make any ellipticity condition. Moreover, we state a dual formula of this BSDE minimal solution involving equivalent change of probability measures. This gives in particular an original representation for value functions of stochastic control problems including controlled diffusion coefficient.Comment: Published at http://dx.doi.org/10.1214/14-AOP920 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore