
Wayne State University Wayne State University 

Wayne State University Dissertations 

January 2019 

Switching Diffusions: Applications To Ecological Models, And Switching Diffusions: Applications To Ecological Models, And 

Numerical Methods For Games In Insurance Numerical Methods For Games In Insurance 

Trang Thi-Huyen Bui 
Wayne State University, buihtrang@gmail.com 

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations 

 Part of the Applied Mathematics Commons 

Recommended Citation Recommended Citation 
Bui, Trang Thi-Huyen, "Switching Diffusions: Applications To Ecological Models, And Numerical Methods 
For Games In Insurance" (2019). Wayne State University Dissertations. 2235. 
https://digitalcommons.wayne.edu/oa_dissertations/2235 

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has 
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of 
DigitalCommons@WayneState. 

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/2235?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2235&utm_medium=PDF&utm_campaign=PDFCoverPages


SWITCHING DIFFUSIONS: APPLICATIONS TO ECOLOGICAL MODELS,

AND NUMERICAL METHODS FOR GAMES IN INSURANCE

by

TRANG THI-HUYEN BUI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2019

MAJOR: MATHEMATICS

Approved By:

———————————————————–
Advisor Date

———————————————————–

———————————————————–

———————————————————–

———————————————————–



DEDICATION

To my family and teachers

ii



ACKNOWLEDGEMENTS

It is a great pleasure to acknowledge those whose help and support have made this

dissertation possible.

First and foremost, I would like to express my deepest gratitude and appreciation to my

advisor, Professor George Yin, who offered me the opportunity and the privilege to work

under his supervision. He has brought me to the beautiful world of mathematics and given

me a lot of thoughtful advice to follow this academic journey.

I am taking this opportunity to thank Professor Pei-Yong Wang, Professor Kazuhiko

Shinki, and Professor Wen Chen for serving on my committee.

I am thankful to Professor Daniel Frohardt, Professor Pei-Yong Wang, Professor Kazuhiko

Shinki, and Professor Rohini Kumar for contributing to my development in mathematics by

their time, lectures and discussions.

I appreciate Ms. Mary Klamo, Ms. Barbara Malicke, Ms. Doris King, Mr. Christopher

Leirstein, and Mr. Richard Pineau who have trained me and supported me on teaching and

many other aspects. I will always remember that all the faculty and staff of the Mathematics

Department treated me warmly during my graduate study. I am also grateful to all of my

friends in Detroit for making my life here more colorful and joyful.

During my years of graduate study at Wayne State University, at different periods, I was

partially supported by the National Science Foundation and Air Force Office of Scientific

Research. I was also supported by the Thomas C. Rumble University Graduate Fellowships,

a competitive fellowship, provided by Wayne State University. These financial supports are

greatly appreciated.

Finally, I thank my parents for not only encouraging me to pursue higher education but

also providing me with their best support. They taught me patience and perseverance to

achieve my goals. I would like to share this special moment with my family and teachers. I

am indebted to them for their endless care, guidance, and patience.

iii



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Regime-Switching Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Lotka-Volterra Ecosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Optimal Control in Insurance and Risk Management . . . . . . . . . . . . . 3

1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2: HYBRID COMPETITIVE LOTKA-VOLTERRA ECOSYS-
TEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Existence, Uniqueness, and Continuity of Solutions . . . . . . . . . . . . . . 9

2.3 Two-Time-Scale Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 3: NUMERICAL METHODS FOR GAMES IN INSURANCE 35

3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Numerical Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Convergence of Numerical Approximation . . . . . . . . . . . . . . . . . . . 49

3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

CHAPTER 4: CONCLUDING REMARKS AND FUTURE DIRECTIONS 64

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Abstract 72

Autobiographical Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

iv



LIST OF FIGURES

Figure 1: Controls for varying X1 with T = 0.08, Z = 1.01, and X2 = 0. . . . . . . . 62

Figure 2: Controls for varying X2 with T = 0.08, Z = 1.01, and X1 = 1. . . . . . . . 63

v



1

CHAPTER 1 INTRODUCTION

1.1 Regime-Switching Systems

After World War II, significant contributions have been made in the realm of probabil-

ity theory and stochastic processes. Beside the investigation of specific stochastic processes

like random walks, Lévy processes, mathematicians have developed the field of stochastic

calculus that has been applied widely to build more realistic dynamic system models. How-

ever, continuous processes given by differential equations and stochastic differential equations

alone are inadequate to improve modeling accuracy. A class of dynamic systems called “hy-

brid systems” containing both continuous dynamics and discrete events has been adapted to

treat a wide variety of situations arising in many real-world situations. Motivated by such

development, in this dissertation, we analyze properties of multi-scale stochastic processes

and design numerical algorithms for hybrid dynamic systems.

In 1982, Engle considered time series models that exhibit time-varying volatility clus-

tering; see [15]. In [17], the authors treated time series models that are subject to random

switching. Such models have been much extended to various ARCH (autoregressive condi-

tional heteroskedasticity) and GARCH (generalized autoregressive conditional heteroskedas-

ticity) models [11] with many applications in finance; see related work in [9] and references

therein for real options. The main ingredient is that in lieu of a fixed configuration, one

considers a model in which the configuration is changing in accordance with an additional

randomly switching process. In a wide range of applications, especially those in control and

optimization, there is a major demand for using such models that at different configura-

tions, the behaviors of the systems are drastically different. In recent years, much effort has

been devoted to the study of various hybrid systems with stochastic disturbances [42]. In

view of the literature, this dissertation has been focusing on dynamical systems involving a

Markov chain as the randomly switching process: hybrid competitive Lotka-Volterra ecosys-
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tems in [12], and non-zero-sum stochastic differential game between two insurance companies

with regime-switching in [13].

1.2 Lotka-Volterra Ecosystems

Introduced by Lotka [25] and Volterra [36], the well-known Lotka-Volterra models have

been investigated extensively in the literature and used widely in ecological and population

dynamics, among others. When two or more species live in close proximity and share the

same basic requirements, they usually compete for resources, food, habitat, or territory.

Recent effort on the so-called hybrid systems has much enlarged the applicability of

Lotka-Volterra systems. One class of such hybrid systems uses a continuous-time Markov

chain to model environmental changes and other random factors not represented in the usual

stochastic differential equations; see [42] for a comprehensive study of switching diffusions,

and see [14, 27, 34, 44, 45] for the stochastic Lotka-Volterra with regime-switching. Random

perturbations to the Lotka-Volterra model were considered in the literature; see for example

[3, 20] and many references therein, and also [18, 21] for up-to-dated progress on stochastic

replicator dynamics. However, most recent works focus on Markov chain with a finite state

space. To take into consideration of various factors, it is also natural to consider the Markov

chain with a countable state space, which is the effort in the first part of this dissertation.

We focus on the study of hybrid Lotka-Volterra systems with a multiple number of

species where the species competing against each other. These systems involve a two-time-

scale Markov chain with the help of the study of asymptotic properties of two-time-scale

Markov chains [40]. Mathematically, the time scale separation is obtained by introducing a

small parameter ε. As ε → 0, we obtain a limit system. We then show if the limit system

has certain properties, then the complex original system also preserves the same property

for sufficient small ε.

In contrast to the existing results, our contributions are as follows. (i) We model the
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Lotka-Volterra ecosystems using hybrid systems in which continuous states (diffusion) and

discrete events (switching) coexist and interact. A distinct feature of the modeling point is

that the random discrete events take values in a countably infinite set. (ii) Prior to this work,

existence and uniqueness of solution, continuity of sample paths, and stochastic boundedness

of regime-switching Lotka-Volterra system with random switching taking values in a count-

able state space were not available. My dissertation establishes these properties. Although

general regime-switching diffusions were considered in [32], the spatial variable x there lives

in the whole space Rn, whereas for the Lotka-Volterra systems considered here, x ∈ Rn
+. It

needs to be established that the solution is in Rn
+ as well. (iii) This work provides a sub-

stantial reduction of complexity. The two-time scale system is a system involving countably

infinitely many equations, whereas the limit system is a single diffusion. Using the limit sys-

tem as a bridge, we then obtain for example, if the limit system is stochastically bounded,

or permanent, or going to extinction, then the much more complex original system with

switching also preserves such properties as long as the parameter ε > 0 is small enough.

The complexity reduction is achieved by using two-time-scale formulation and perturbed

Lyapunov function methods. This line of thinking goes back to the work of [10], which has

been much expanded to more general setting in [22]; see also [40].

1.3 Optimal Control in Insurance and Risk Management

Insurers tend to accumulate relatively large amount of cash or cash equivalents through

the written insurance portfolio. Investing the surplus in a financial market in order to pay

future claims and to avoid financial ruin becomes a natural choice. In terms of financial

performance the investment income allows significant pricing flexibility in underwriting to

the insurers. The surplus is allowed to be invested in a financial market in continuous time.

On the other hand, reinsurance has been considered as an effective risk management tool

for insurance companies to transfer their risk exposure to another commercial institution.
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The primary insurer pays the reinsurer a certain portion of the premiums. In return, the

reinsurer is obliged to share the risk of large claims with the primary insurer. Proportional

reinsurance and excess-of-loss reinsurance are two major types of reinsurance strategies.

With proportional reinsurance, the reinsurance company covers a fixed percentage of losses.

The fraction of risk shared by the reinsurance company is determined when the reinsurance

contract is sold. The other type of reinsurance policy is nonproportional reinsurance. The

most common nonproportional reinsurance policy is excess-of-loss reinsurance, where the

primary insurance carrier (called cedent) will pay all of the claims up to a predetermined

amount (termed retention level).

The optimal risk controls for an insurance corporation has been studied extensively since

the classical collective risk model was introduced in [26]. The insurance companies can reduce

or eliminate the risk of loss by involving in a reinsurance program and reinvesting in the

stock market. Recently, the extension of optimal investment and reinsurance problem (Nash

equilibrium) in the context of stochastic differential games including zero-sum games and

non-zero-sum games has been developed rapidly; see the existence of the Nash equilibrium of

non-zero-sum stochastic differential game with N players over an infinite time horizon in [6].

The existence of the Nash equilibrium of a non-zero-sum stochastic differential game between

two insurance companies in [43]. [24] studied a zero-sum stochastic differential reinsurance

and investment game between two competing insurance companies under VaR constraints

for the purpose of risk management. [8] investigated a class of non-zero sum stochastic

differential game between two insurers by using the objectives of relative performance and

obtained explicit solutions for optimal reinsurance and investment strategies.

Furthermore, people have realized that stochastic hybrid models have advantages to

capture discrete movements (such as random environment, market trends, interest rates,

business cycles, etc.) in the insurance market. The hybrid systems enable the consideration

of the coexistence of continuous dynamics and discrete events in the systems. To reflect the
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hybrid feature, one of the recent trends is to use a finite state Markov process to describe the

transitions among different regimes. The Markov-modulated switching systems are known

as regime-switching systems. The formulation of regime-switching models is a more general

and versatile framework to describe the complicated financial markets and their inherent

uncertainty and randomness. Because the control strategies are affected by the asset prices on

the stock market and economic trends change quickly, Markovian regime-switching processes

were introduced widely to capture movements of random environment. A comprehensive

study of switching diffusions with “state-dependent” switching is in [42]. [8] provided closed-

form Nash equilibria for a mixed regime-switching Cramér-Lundberg diffusion approximation

process; see also related works [9] and [7] for regime-switching models of real options and

real options with competition.

In this work, we are concerned with an insurance market including two insurance com-

panies. The two competing insurance companies adopt optimal investment and reinsurance

strategies to manage the insurance portfolios. The surplus process of each insurance com-

pany is subject to the randomness of the market. Following the work of [8], the randomness

of the market is modelled by a continuous-time finite-state Markov chain and an indepen-

dent market-index process. Nevertheless, we model the surplus process as a regime-switching

jump-diffusion process, in lieu of a mixed regime-switching Cramér-Lundberg diffusion ap-

proximation process. This allows us to work with both proportional and excess-of-loss rein-

surance policies. Equilibrium strategies are given by solutions of a system of Hamilton-Jacobi-

Isaacs (HJI) equations for the value functions of various players, derived from the principle

of dynamic programming. Owing to the inclusion of the random switching environment and

jump processes, the system of HJI equations becomes more complicated and closed-form

solutions are virtually impossible to obtain. Starting by assuming the existence and unique-

ness of the Nash equilibrium, we adopt the Markov chain approximation method (MCAM)

developed in [23] to deal with a system of HJI (HJI) equations arising from the associated
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game problems. One of the advantageous is that no regularity of the system of equations is

needed since we are using a probabilistic approach. The convergence of the approximation

sequence to the jump process and the convergence of the value function will be established.

In the actual computation, we will use our approximation schemes for constant absolute risk

aversion (CARA) insurers.

1.4 Outline of the Dissertation

The remainder of the dissertation is arranged as follows. In Chapter 2, we first propose the

hybrid competitive Lotka-Volterra ecosystems with countable switching states. Section 2.2

studies existence, uniqueness, and continuity of solutions of the competitive Lotka-Volterra

systems associated with a continuous-time Markov chains with a countable state space. We

then introduce the Lotka-Volterra systems with two-time scales with the use of a singularly

perturbed Markov chain and illustrate the properties or their solutions in Section 2.3. We

further provide the permanence and extinction of the systems with two-time-scale Markov

chains through their limit systems in 2.3.5 and 2.3.6.

Chapter 3 focuses on a class of non-zero-sum investment and reinsurance games for

regime-switching jump-diffusion models. A generalized formulation for surplus processes and

the associated game problem are presented in Section 3.1. We design the numerical algorithm

based on MCAM in Section 3.2. A discrete approximating Markov chain is constructed and

is proved to be locally consistent with the original processes. Section 3.3 deals with the

convergence of the approximation process and the value functions. Numerical examples are

reported in Section 3.4 to illustrate the performance of the method.

Finally, in Chapter 4, we provide further discussions. We summarize the central theme

of the dissertation, provide further remarks, and present some directions for future work.

Before proceeding further, it is important to mention that we may use the same notation

index with different meaning in different chapters. However, we will use K as a generic
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constant throughout the dissertation, whose value may change for different appearances.
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CHAPTER 2 HYBRID COMPETITIVE LOTKA-VOLTERRA
ECOSYSTEMS: COUNTABLE SWITCHING
STATES AND TWO-TIME-SCALE MODELS

2.1 Formulation

We model the random environments (e.g., different seasons, changes in nutrition and

food resources, and other random factors) in the ecological system by a continuous-time

Markov chain α(t) with a countable state space Z+ = {1, 2, . . . } and a generator Q = (qαβ)

satisfying qαβ ≥ 0 for α ∈ Z+ and β 6= α, and
∑∞

β=1 qαβ = 0 for each α ∈ Z+. A stochastic

Lotka-Volterra system in random environments can be described by the following stochastic

differential equation (in the Stratonovich sense) with regime switching

dxi(t) = xi(t)

{[
bi(α(t))−

n∑
j=1

aij(α(t))xj(t)

]
dt+ σi(α(t)) ◦ dwi(t)

}
, i = 1, . . . , n,

where w(·) = (w1(·), . . . , wn(·))′ is an n-dimensional standard Brownian motion, b(α) =

(b1(α), . . . , bn(α))′, A(α) = (aij(α)), and Σ(α) = diag(σ1(α), . . . , σn(α)) with α ∈ M repre-

sent intrinsic growth rates, the community matrices, and noise intensities in different external

environments, respectively. It is well known that the above stochastic differential equation

in the Stratonovich sense is equivalent to the system in the Itô sense

dxi(t) = xi(t)

{[
ri(α(t))−

n∑
j=1

aij(α(t))xj(t)

]
dt+ σi(α(t))dwi(t)

}
, i = 1, . . . , n, (2.1)

where ri(α) := bi(α)+ 1
2
σ2
i (α) for each i = 1, 2, . . . , n. In ecology and biology, one prefers to

start the formulation of stochastic Lotka-Volterra systems using calculus in the Stratonovich

sense because each term has its clear ecological meaning. However, for the analysis, the Itô

calculus should be used. Assume throughout the chapter that the Markov chain α(·) and the

Brownian motion w(·) are independent. Without loss of generality, we also assume that the

initial conditions x(0) and α(0) are non-random.

Note that (x(t), α(t)) is a Markov process, whose generator L is given as follows (see [42,

Chapter 2] and also [44, 45] for a definition of the generator of a Markov process). For any
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V : Rn × Z+ 7→ R with V (·, α) being twice continuously differentiable with respect to the

variable x for each α ∈ Z+, we define

LV (x, α) :=
n∑
i=1

∂

∂xi
V (x, α)xi

(
ri(α)−

n∑
j=1

aij(α)xj

)
+

1

2

n∑
i=1

∂2

∂x2
i

V (x, α)x2
iσ

2
i (α)

+
∑

β∈Z+,β 6=α

qαβ[V (x, β)− V (x, α)].

(2.2)

Comparing to [44,45], the Markov chain takes values in a countably infinite set.

2.2 Existence, Uniqueness, and Continuity of Solutions

Before getting to the two-time-scale systems, we first examine systems without the time

scale separation. Existence, uniqueness, and continuity of solutions of the regime-switching

Lotka-Volterra systems when Z+ is countably infinite are not available. So we present these

results first in what follows. Denote

Ξ(x, α) := diag(x1, . . . , xn)[r(α)− A(α)x],

ξi(x, α) = xi(ri(α)−
n∑
j=1

aij(α)xj),

si(x, α) = xiσi(α)

S(x, α) = diag(si(x, α)).

(2.3)

By a competitive system, we mean that all values in the community matrix A(α) are

non-negative (aij(α) ≥ 0 for all α ∈ Z+ and i, j = 1, 2, . . . , n). It is reasonable to assume

that the competitions among the same species are strictly positive. Therefore, we assume

the following condition holds.

(A1) For each α ∈ Z+ = {1, 2, . . . }, aii(α) > 0 and aij(α) ≥ 0 for i, j = 1, 2, . . . , n and j 6= i.

In [44], the existence and uniqueness for the switching diffusion model was obtained when

the state space of the switching is finite. However, the state space of the Markov chain in our

study is countable but not finite. If α(t−) := lims→t− α(s) = α, then it can switch to β at t
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with intensity qαβ. Denote for each α, qα =
∑

β∈Z+,β 6=α qαβ. Note that α(t) may be written as

the solution to a stochastic differential equation with respect to a Poisson random measure.

To be more precisely, let p(dt, dz) be a Poisson random measure with intensity dt × m(dz)

and m be the Lebesgue measure on R such that p(·, ·) is independent of the Brownian motion

w(t). Using this fact, for each α ∈ Z, we can construct disjoint sets {∆αβ, β 6= α} on the real

line as follows

∆12 = [0, q12),

∆13 = [q12, q12 + q13),

. . .

∆21 = [q1, q1 + q21),

∆23 = [q1 + q21, q1 + q21 + q23),

. . .

Define h : Z+×R 7→ R by h(α, z) =
∞∑

β∈Z+,β 6=α

(β−α)11{z∈∆αβ}, where 11{z∈∆αβ} = 1 if z ∈ ∆αβ

and 11{z∈∆αβ} = 0, is the indicator function. The process α(t) can be defined as a solution to

dα(t) =

∫
R
h(α(t−), z)p(dt, dz),

where p(dt, dz) is a Poisson measure with intensity dt×m(dz) and m is the Lebesgue measure

on R. We assume the following condition holds.

(A2) The Markov chain having generator Q is strongly exponentially ergodic (see [1]) in

that there exist a K > 0 and a λ0 > 0 such that

∞∑
β=1

|pαβ(t)− νβ| ≤ K exp(−λ0t) (2.4)

for any positive integer α and t > 0, where ν is the stationary distribution associated
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with the generator Q and pαβ(t) = P (α(t) = β|α(0) = α). Moreover,

M = sup
α
qα = sup

α

∑
β 6=α

qαβ <∞. (2.5)

To proceed, we obtain the global solution in Rn
+ for the system. Then we establish the

positivity of solution x(t), finite moments, and continuity. One of the main tools is to use an

appropriate Lyapunov functions.

Theorem 2.1. Assume (A1) and (A2). Then for any initial data x(0) = x0 ∈ Rn
+ and

α(0) = α ∈ Z+, there is a unique solution x(t) = (x1(t), . . . , xn(t))′ to (2.1) on t ≥ 0, and

the solution will remain in Rn
+ almost surely, i.e., x(t) ∈ Rn

+ a.s. for any t ≥ 0.

Proof. The proof consists of two parts. In the first part, we show that there is a unique

global solution, and in the second part, we show the solution lives in Rn
+.

Step 1: For any ι ∈ Z+, in view of [30, Theorem 2.1] there is a unique strong solution for

the following diffusion

dx(t) = Ξ(x(t), ι)dt+ S(x(t), ι)dw(t), x(0) = x0 ∈ Rn
+. (2.6)

The rest of the proof of this part is similar to that of [32, Theorem 3.1], so we will be brief.

For any stopping time τ and an Fτ -measurable Rn-valued random variable x(ρ), there exists

a strong solution to (2.6) in [ρ,∞); see [31, Remark 3.10]. We proceed to construct the

solution with any initial data (x0, i0) ∈ Rn
+×Z+ by the interlacing procedure [2, Chapter 5].

Denote by x̃(0)(t), t ≥ 0 the solution to

dx̃(0)(t) = Ξ(x̃(0)(t), i0)dt+ S(x̃(0)(t), i0)dw(t), x̃(0)(0) = x0.

Set ρ1 = inf{t > 0 :
∫ t

0

∫
R h(i0, z)p(ds, dz) 6= 0}, i1 = i0 +

∫ ρ1
0

∫
R h(i0, z)p(ds, dz), and let

x̃(1)(t), t ≤ ρ1 be the solution to

dx̃(1)(t) = Ξ(x̃(0)(t), i1)dt+ S(x̃(0)(t), i1)dw(t),



12

with initial data x̃(1)(ρ1) = x̃(0)(ρ1). Continuing this procedure, let ρ∞ = lim
k→∞

ρk and set

x(t) = x̃(k)(t), α(t) = ik, if ρk ≤ t < ρk+1. Then
x(t ∧ ρk) = x0 +

∫ t∧ρk

0

Ξ(x(s), α(s))ds+ S(x(s), α(s))dw(s),

α(t ∧ ρk) = i0 +

∫ t∧ρk

0

∫
R
h(α(s−), z)p(ds, dz),

where p(ds, dz) is a Poisson random measure as defined in [42, p. 29] with modification to

countable state space; see also [32]. To verify that x(t) is a global solution, we claim that

ρ∞ = ∞. In fact, it can be shown as in [32], for any T > 0,P (ρk ≤ T ) ≤
∞∑
l=k

e−MT (MT )l

l!
.

Thus P (ρk ≤ T ) → 0 as k → ∞ so ρ∞ = ∞ a.s. The uniqueness of x(t) follows from the

uniqueness of x̃(k)(t) on [ρk, ρk+1). Thus, we have shown that there is a unique global solution

to dx(t) = Ξ(x(t), α(t))dt+ S(x(t), α(t))dw(t) with arbitrary initial data (x0, i0).

Step 2: Show the solution x(t) obtained in Step 1 above remains in Rn
+. The proof is

similar to [44, Theorem 2.1] although the switching set is now countable. Let k0 ∈ N be

sufficiently large such that every component of x(0) is contained in ( 1
k0
, k0). For each k ≥ k0,

define

ζk := inf

{
t ∈ [0, ζ) : xi(t) /∈ (

1

k
, k) for some i = 1, 2, . . . , n

}
. (2.7)

The sequence ζk, k = 1, 2, . . . is monotone so there is a limit ζ∞ := limk→∞ ζk with ζ∞ ≤ ζ.

We are to show ζ∞ =∞ a.s. For suppose not, there would exist some T > 0 and ε > 0 such

that P{ζ∞ ≤ T} > ε. Therefore, we can find some k1 ≥ k0 such that

P{ζk ≤ T} > ε, for all k ≥ k1. (2.8)

Now, we consider the following Lyapunov function V (x, α) = V (x) independent of α given

by V (x) =
∑n

i=1[xγi − 1 − γ log xi] for x ∈ Rn
+ and 0 < γ < 1. Detailed calculation shows

that for all x ∈ Rn
+, V (x) ≥ 0 and LV (x) ≤ K <∞, where in the above, we used condition
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(A1). In view of Itô’s Lemma [33], for any k ≥ k1,

V (x(T ∧ ζk))− V (x(0)) =

∫ T∧ζk

0

LV (x(s))ds+
n∑
i=1

∫ T∧ζk

0

γσi(α(s))(xγi (s)− 1)dwi(s).

By virtue of Dynkin’s formula and the bound Lv(x) ≤ K, KT+V (x(0)) ≥ E[V (x(T∧ζk))] ≥

E[V (x(ζk))I{ζk≤T}]. By the definitions of ζk and V, we have V (x(ζk)) ≥ (kγ − 1− γ log k) ∧

( 1
kγ
− 1 + γ log k), and hence, it follows from (2.8) that

KT + V (x(0)) ≥ [(kγ − 1− γ log k) ∧ ( 1
kγ
− 1 + γ log k)]P{ζ ≤ T} → ∞, as k →∞.

This is a contradiction, so we must have limk→∞ ζk = ∞ a.s., so ζ = ∞ a.s. Thus, the

solution of (2.6) remains in Rn
+ almost surely.

We next consider the stochastic boundedness. First, we recall the definition.

Definition 2.2. The solution x(t) of (2.1) is stochastically bounded (or bounded in proba-

bility), if for any η > 0, there is a constant H = Hη such that for any x0 ∈ Rn
+,

lim sup
t→∞

P{|x(t)| ≤ H} ≤ 1− η. (2.9)

Theorem 2.3. Under the conditions of Theorem 2.1 and for any p > 0 satisfying

sup
α∈Z+

n∑
i=1

1 + pbi(α) + p2

2
σ2
i (α)

aii(α)
<∞, (2.10)

we have

sup
t≥0

E

[ n∑
i=1

xpi (t)

]
≤ K <∞. (2.11)

Proof. Let k0 ∈ N be sufficiently large such that every component of x(0) is contained in

the interval ( 1
k0
, k0). For each k ≥ k0, we define τk := inf{t ∈ [0,∞) : xi(t) /∈ ( 1

k
, k) for

some i = 1, 2, . . . , n}. Similar to the proof in Step 2 of Theorem 2.1, we can show that

limk→∞ τk =∞ a.s.
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Consider V (x) =
n∑
i=1

xpi . Then it follows that for x ∈ Rn
+, we have

LV (x) = p
∑
ι∈Z+

n∑
i=1

xpi

[
bi(ι) +

p

2
σ2
i (ι)−

n∑
j=1

aij(ι)xj

]
I{α=ι}

≤ p
∑
ι∈Z+

n∑
i=1

xpi

[
bi(ι) +

p

2
σ2
i (ι)− aii(ι)xi

]
I{α=ι},

(2.12)

where in the last step, we used condition (A1). By applying generalized Itô’s Lemma [33] to

etV (x(t)), we have

et∧τk
n∑
i=1

xpi (t ∧ τk)−
n∑
i=1

xpi (0)

=

∫ t∧τk

0

es(V (x(s)) + LV (x(s)))ds+ p
n∑
i=1

∫ t∧τk

0

esxp−1
i (s)σi(α(s))dwi(s),

where τk is the stopping time defined at the beginning of the proof. Thus taking expectations

on both sides and using the assumption (H1), we obtain from (2.12) that

E[et∧τk
n∑
i=1

xpi (t∧ τk)]−
n∑
i=1

xpi (0) = E

t∧τk∫
0

es(V (x(s)) +LV (x(s)))ds ≤ E

t∧τk∫
0

esKds. (2.13)

By (2.13), we have

E[et∧τk
n∑
i=1

xpi (t ∧ τk)]−
n∑
i=1

xpi (0) ≤ E

t∧τk∫
0

esKds ≤ K(et − 1).

Therefore, by virtue of Fatou’s Lemma and letting k →∞, we obtain that

E

[ n∑
i=1

xpi (t)

]
≤ e−t

n∑
i=1

xpi (0) +K(1− e−t) ≤ K <∞.

In view of the exponential dominance above, taking supt≥0, we obtain the desired result.

By virtue of Tchebychev’s inequality, a direct consequence of Theorem 2.3 is that the

solution x(t) is stochastically bounded. Next we obtain the sample path continuity.

Theorem 2.4. The solution x(t) to (2.1) is continuous a.s.



15

Proof. For any 0 ≤ t̃ ≤ t, we have

xi(t)− xi(t̃) =

∫ t

t̃

ξi(x(r), α(r))dr +

∫ t

t̃

si(x(r), α(r))dr,

and hence

|xi(t)− xi(t̃)|4 ≤ 8

∣∣∣∣ ∫ t

t̃

ξi(x(r), α(r))dr

∣∣∣∣4 + 8

∣∣∣∣ ∫ t

t̃

si(x(r), α(r))dr

∣∣∣∣4. (2.14)

Detailed computations in Theorem 2.3 and Hölder’s inequality lead to

E

∣∣∣∣ ∫ t

t̃

ξi(x(r), α(r))dr

∣∣∣∣4 ≤ (t− t̃)3E

∫ t

t̃

|ξi(x(r), α(r))|4dr ≤ K|t− t̃|4. (2.15)

Meanwhile, we can show that E

∣∣∣∣ ∫ tt̃ si(x(r), α(r))dr

∣∣∣∣4 ≤ K|t− t̃|2. Thus

E[|x(t)− x(t̃)|4] ≤ K|t− t̃|2. (2.16)

The desired result then follows from the well-known Kolmogorov continuity criterion.

Remark 2.5. In fact, almost all sample paths of the solutions (2.1) are Hölder continuous

with exponent γ < 1
4
. That is, except a null set N with probability 0, for all ω ∈ Ω\N , there

exists a random variable h(ω) > 0 satisfying

P

{
ω : sup

0≤s,t<∞,|t−s|<h(ω)

|x(t, ω)− x(s, ω)|
|t− s|γ

≤ 2

1− 2−γ

}
= 1. (2.17)

2.3 Two-Time-Scale Models

2.3.1 Two-Time-Scale Markov Chains

Recall that a generator Q or its corresponding Markov chain is said to be irreducible if

the system of equations

νQ = 0,
∞∑
α=1

να = 1 (2.18)

has a unique solution ν(ν1, ν2, . . . ) satisfying that να > 0 for α = 1, 2, . . . Such a solution

is termed a stationary distribution. Throughout the rest of the paper, we assume that the

Markov chain has a fast varying part and slowly varying part in that α(t) = αε(t), with
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generator

Qε =
Q

ε
+Q0, (2.19)

where Q is a generator of a Markov chain that is irreducible and Q0 is a generator of another

Markov chain. We do not have any restrictions on Q0. For simplicity, we use (2.19) in this

chapter. Although Q0 appears in (2.19), the asymptotic properties are dominated by Q. It

is possible to consider more complex models with more structure on Q. For the subsequent

study, we need a couple of preliminary results. The proofs of (i) and (ii) in Lemma 2.6 can

be found in [40, Theorem 4.5, Theorem 4.48, Lemma 5.1]. Denote pε(t) = (P (αε(t) = α) :

α = 1, 2, . . . ), pεαβ(t, t0) = P (αε(t) = β|αε(t0) = α), and P ε(t, t0) is the transition matrix

(pεαβ(t, t0)).

Lemma 2.6. Assume that for Q given in (2.19) satisfies (A2). Then there exists a positive

constant κ0 such that

(i) For the probability distribution vector pε(t) ∈ R1×∞

pε(t) = ν +O(ε+ e−κ0t/ε) (2.20)

uniformly in (0, t).

(ii) For the transition probability matrix P ε(t, t0), we have

P ε(t, t0) = P0(t) +O
(
ε+ e−κ0(t−t0)/ε

)
, (2.21)

uniformly in (t0, t), where P0(t) = 11ν. with 11 = (1, 1, . . . )′ being an infinite column vec-

tor having all entries 1, and ν = (ν1, ν2, . . . ) is the row vector of stationary distribution

associated with the Markov chain with generator Q.

Theorem 2.7. Assume (2.18). Then for each α = 1, 2, . . . ,

E

[∫ ∞
0

e−t(I{αε(t)=α} − να)dt

]2

= O(ε). (2.22)
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Proof. The proof here is similar to [5]. Direct calculations leads to

E

[∫ ∞
0

e−t(I{αε(t)=α} − να)dt

]2

=

∫ ∞
0

∫ t

0

e−t−sO(ε+ e−κ0(t−s)/εdsdt

+

∫ ∞
0

∫ s

0

e−t−sO(ε+ e−κ0(s−t)/εdsdt.

Furthermore, O(ε)
∫∞

0

∫ t
0
e−t−sdsdt = O(ε). In addition, for some K > 0,∫ ∞

0

∫ t

0

e−t−sO(e−κ0(t−s)/ε)dsdt ≤ K

∫ ∞
0

∫ t

0

e−t(κ0+ε)/εes(κ0−ε)/εdsdt ≤ K
ε

2(κ0 − ε)
= O(ε).

Thus,

∫ ∞
0

∫ t

0

e−t−sO(ε + e−κ0(t−s)/ε)dsdt = O(ε). Likewise, by symmetry, we also have∫ ∞
0

∫ s

0

e−t−sO(ε+ e−κ0(s−t)/ε)dtds = O(ε). The proof is complete.

Let xε(t) ∈ Rn for t ≥ 0 be given by

dxε(t) = diag(xε1(t), . . . , xεn(t))

[
(r(αε(t))− A(αε(t))xε(t)) dt+ Σ(αε(t))dw(t)

]
, (2.23)

with the initial conditions x(0) = x0 and αε(0) = α0 ∈ Z+. Under (A1) and (A2), we

can construct the solutions of the two-time-scale stochastic differential equations by using

similar method as in Theorem 2.1. The existence and uniqueness of solutions of the stochastic

differential equations (2.23) hold; 0 ∈ Rn is a stationary point for each equation in (2.23).

Remark 2.8. Note that existence and uniqueness of solutions, path continuity, and moment

bounds established in 2.2 hold for the two-time scale system (2.23). Our main effort below

is to show how we may reduce the computational complexity.

Lemma 2.9. Under (A1) and (A2), {xε(·)} given by (2.23) converges weakly to x(·) such

that x(·) satisfies

dx(t) = Ξ(x(t))dt+ Λ(x(t))dw(t), (2.24)

where Ξ(x) =
∑∞

α=1 Ξ(x, α)να, Λ(x)Λ
′
(x) =

∑∞
α=1 S(x, α)S ′(x, α)να.

Weak convergence of xε(·) to x(·) is a basic notion in stochastic processes. A definition
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can be found in [42, pp.371-376]. For convenience, we denote

ri =
∞∑
α=1

ri(α)να, bi =
∞∑
α=1

bi(α)να, aij =
∞∑
α=1

aij(α)να, σi =

√√√√ ∞∑
α=1

σ2
i (α)να and

ξi(x) =
∞∑
α=1

ξi(x, α)να, λi(x) = xiσi =

√√√√ ∞∑
α=1

s2
i (x, α)να,

(2.25)

where si(x, α), S(x, α) and Ξ(x, α) are defined in (2.3). The averaged system can be written

component-wise as

dxi(t) = xi(t)

{[
ri −

n∑
j=1

aijxj(t)

]
dt+ σidwi(t)

}
. (2.26)

Remark 2.10. Note the following facts.

• The proof of the above lemma is similar to the development in [40, Ch.8].

• The averaged system (2.24) is a Lotka-Volterra diffusion system, whose coefficients are

an average with respect to the stationary measure ν. Hence, under (A1) and (A2), we

can prove that the averaged system (2.24) has a unique solution that is continuous

together with moment bounds. This follows the way of treating nonlinear stochastic

differential equations. First, we show that there is a local solution and then extend the

solution to a global solution by using stopping time argument; see for example, [30,

Theorem 2.1].

In the study of stochastic population systems, we are interested in the permanence and

extinction of the population. We shall study this by means of the corresponding limit system.

Treating directly stability of dynamic systems containing two-time-scale Markov chains is

a complex matter. However, considering this problem using limit system is much simpler.

Some earlier work concerning the stability of those systems can be found in [5]. In this study,

our goal is to establish the permanence and extinction of (2.23) for sufficiently small ε. Here,

from a Lyapunov function V (x) of the averaged system, we construct a perturbed Lyapunov

function for the more complex original system containing the fast varying Markov chain.



19

The method we use is motivated by arguments in [22, pp. 148-149]. The averaged system is

a diffusion without switching, whereas in the original system, the switching states belong to

a countably infinite set. Using the limit system, we can examine the original system, which

is much easier than dealing with the original system directly. As a result, our approach leads

to a significant reduction of complexity.

2.3.2 Preliminary Calculations

To proceed, we first present some preliminary calculations using perturbed Lyapunov

function for preparation on study of various properties of the complex original system. Let

F εt = σ{xε(s), αε(s), s ≤ t}, and Eε
t be the expectation conditioned on F εt . For a suitable

function ζ(t), define the operator Lε by

Lεζ(t) = lim
δ↓0

1

δ
Eε
t [ζ(t+ δ)− ζ(t)]. (2.27)

The generator is as defined in (2.2) with the switching part given by (2.19). As a result, the

generator of the switching diffusion process is ε dependent. Let V (x) be a Lyapunov function

associated with the averaged system (2.24) independent of the discrete component. Using

(2.2) for V (xε(t)) where xε(t) is the solution of system (2.23), we obtain

LεV (xε(t)) =
n∑
i=1

Vxi(x
ε(t))ξi(x

ε(t), αε(t)) +
1

2

n∑
i=1

Vxixi(x
ε(t))s2

i (x
ε(t), αε(t)).

Define

V ε
1 (x, t) = Eε

t

∫ ∞
t

et−u
n∑
i=1

Vxi(x)[ξi(x, α
ε(u))− ξi(x)]du, (2.28)

and

V ε
2 (x, t) = Eε

t

∫ ∞
t

et−u
1

2

n∑
i=1

Vxixi(x)[s2
i (x, α

ε(u))− λ2

i (x)]du. (2.29)



20

This implies that with αε(t) = `,

V ε
1 (x, t) = Eε

t

∫ ∞
t

et−u
n∑
i=1

Vxi(x)
∞∑
k=1

ξi(x, k)[I{αε(u)=k} − νk]du

=

∫ ∞
t

et−u
n∑
i=1

Vxi(x)
∞∑
k=1

ξi(x, k)[p`k(u)− νk]du.

Hence,

V ε
1 (xε(t), t) = O(ε)[V (xε(t)) + 1]. (2.30)

To proceed, we use a notation

G(x, α) =
n∑
i=1

∞∑
k=1

Vxi(x)ξi(x, k)

[
I{α=k} − νk

]
. (2.31)

Using (2.27), (2.30), and (2.31),

LεV ε
1 (xε(t), t)

= lim
δ↓0

1
δ
Eε
t [V

ε
1 (xε(t+ δ), t+ δ)− V ε

1 (xε(t), t)]

=
∞∑
k=1

n∑
i=1

n∑
j=1

[Vxi(x
ε(t))ξi(x

ε(t), k)]xjξj(x
ε(t), αε(t))Eε

t

∫ ∞
t

et−u[I{αε(u)=k} − νk]du

+O(ε)(V (xε(t)) + 1)−
n∑
i=1

Vxi(x
ε(t))[ξi(x

ε(t), αε(t))− ξi(xε(t))]

= O(ε)(V (xε(t)) + 1)−
n∑
i=1

Vxi(x
ε(t))[ξi(x

ε(t), αε(t))− ξi(xε(t))].

(2.32)

Similar to the estimate of V ε
1 (x, t), it can be verified that

V ε
2 (xε(t), t) = O(ε)[V (xε(t)) + 1],

LεV ε
2 (xε(t), t) = O(ε)[V (xε(t)) + 1]− 1

2

n∑
i=1

Vxixi(x
ε(t))[s2

i (x
ε(t), αε(t))− λi

2
(xε(t))].

(2.33)

Define V ε(xε(t), t) = V (xε(t)) +V ε
1 (xε(t), t) +V ε

2 (xε(t), t) satisfying the following properties:

V ε(xε(t), t) = V (xε(t)) +O(ε)(V (xε(t)) + 1).

LεV ε(xε(t), αε(t), t) = O(ε)(V (xε(t)) + 1) + LV (xε(t), α),
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where

LV (xε(t), α) =
n∑
i=1

Vxi(x
ε(t))xεi (t)

(
ri −

n∑
j=1

aijx
ε
j(t)

)
+

1

2

n∑
i=1

Vxixi(x
ε(t))[xεi (t)]

2σ2
i .

2.3.3 Stochastic Boundedness

First, under suitable conditions, the averaged system is stochastically bounded. This

follows from a specialization of the proof of [44, Theorem 3.1] (for the case that the switching

set has only one element), which is a refinement of the arguments of moment bounds in [29].

Lemma 2.11. Assume that (A1), (A2), and (2.18) are satisfied. Then the following state-

ments hold for the solution x(t) of (2.24).

(1) For any p > 0,

sup
t≥0

E

[ n∑
i=1

xpi (t)

]
≤ K <∞. (2.34)

(2) For any p > 0,

lim sup
t→∞

E

[
|x(t)|p

]
≤ K <∞. (2.35)

(3) The solution of the averaged system (2.24), namely, x(t), is stochastically bounded, i.e.,

for any δ > 0, there is a constant H = H(δ) such that for any x0 ∈ Rn
+, we have

lim sup
t→∞

P{|x(t)| ≤ H} ≥ 1− δ. (2.36)

With the lemma above, we proceed to show that the solution of system (2.1) also has

the same boundedness property if ε is small enough. Note that the next theorem should be

compared with Theorem 2.3. Different from Theorem 2.3, the condition (2.10) is not needed

in the following theorem.

Theorem 2.12. Assume that (A1), (A2), and (2.18) are satisfied. Then the following state-

ments hold for the solution xε(t) of (2.23) for ε sufficiently small.
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(1) For any p > 0,

sup
t≥0

E

[ n∑
i=1

[xεi (t)]
p

]
≤ K <∞. (2.37)

(2) For any p > 0,

lim sup
t→∞

E

[
|xε(t)|p

]
≤ K <∞. (2.38)

(3) The process xε(t) is stochastically bounded. That is, for any δ > 0, there is a constant

H = H(ε, δ) such that for any xε0 ∈ Rn
+, we have

lim sup
t→∞

P{|xε(t)| ≤ H} ≥ 1− δ. (2.39)

Proof. We use perturbed Lyapunov function methods to prove this theorem. Consider

V (x) =
n∑
i=1

[xi]
p and Ṽ (x) =

n∑
i=1

[
[xi]

γ − 1− γ log xi

]
.

Similar to (2.28) and (2.29), we define

V ε
1 (x, t) = Eε

t

∫ ∞
t

et−u
n∑
i=1

Vxi(x)[ξi(x, α
ε(u))− ξi(x)]du,

V ε
2 (x, t) = Eε

t

∫ ∞
t

et−u
1

2

n∑
i=1

Vxixi(x)[s2
i (x, α

ε(u))− λ2

i (x)]du,

Ṽ ε
1 (x, t) = Eε

t

∫ ∞
t

et−u
n∑
i=1

Ṽxi(x)[ξi(x, α
ε(u))− ξi(x)]du,

Ṽ ε
2 (x, t) = Eε

t

∫ ∞
t

et−u
1

2

n∑
i=1

Ṽ xixi(x)[s2
i (x, α

ε(u))− λ2

i (x)]du,
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which have the following properties:

V ε
1 (xε(t), t) = O(ε)[V (xε(t)) + 1],

Ṽ ε
1 (xε(t), t) = O(ε)[Ṽ (xε(t)) + 1],

V ε
2 (xε(t), t) = O(ε)[V (xε(t)) + 1],

Ṽ ε
2 (xε(t), t) = O(ε)[Ṽ (xε(t)) + 1],

LεV ε
1 (xε(t), t) = O(ε)(V (xε(t)) + 1)−

n∑
i=1

Vxi(x
ε(t))[ξi(x

ε(t), αε(t))− ξi(xε(t))],

LεṼ ε
1 (xε(t), t) = O(ε)(Ṽ (xε(t)) + 1)−

n∑
i=1

Ṽxi(x
ε(t))[ξi(x

ε(t), αε(t))− ξi(xε(t))],

LεV ε
2 (xε(t), t) = O(ε)(V (xε(t)) + 1)−

n∑
i=1

Vxixi(x
ε(t))[s2

i (x
ε(t), αε(t))− λ2

i (x
ε(t))],

LεṼ ε
2 (xε(t), t) = O(ε)(Ṽ (xε(t)) + 1)−

n∑
i=1

Ṽxixi(x
ε(t))[s2

i (x
ε(t), αε(t))− λ2

i (x
ε(t))].

Define

V ε(xε(t), t) = V (xε(t)) + V ε
1 (xε(t), t) + V ε

2 (xε(t), t) and

Ṽ ε(xε(t), t) = Ṽ (xε(t)) + Ṽ ε
1 (xε(t), t) + Ṽ ε

2 (xε(t), t).

Then

LεṼ ε(xε(t), t) ≤ O(ε)(Ṽ (xε(t)) + 1) + γ
n∑
i=1

{
− aii[xεi (t)]γ+1 +

(
bi +

γ

2
σ2
i

)
[xεi (t)]

γ

+

( n∑
j=1

aji

)
xεi (t)− bi

}
≤ O(ε)Ṽ (xε(t)) +K as ε is small enough;

(2.40)

LεV ε(xε(t), t) = O(ε)(V (xε(t)) + 1) + p

n∑
i=1

[xεi (t)]
p

[
bi +

p

2
σ2
i −

n∑
j=1

aijx
ε
j(t)

]
≤ O(ε)(V (xε(t)) + 1) + p

n∑
i=1

[xεi (t)]
p

[
bi +

p

2
σ2
i − aiixεj(t)

]
,

(2.41)

where we used condition (A1).

Let k0 ∈ N be sufficiently large such that every component of xε(0) is contained within
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the interval
( 1

k0

, k0

)
. For each k ≥ k0, we define

τk := inf

{
t ∈ [0,∞) : xεi (t) /∈ (

1

k
, k) for some i = 1, 2, . . . , n

}
. (2.42)

Clearly, the sequence τk, k = 1, 2, . . . is monotonically increasing. Set τ∞ := limk→∞ τk. We

want to show that τ∞ = ∞ a.s. If this were false, there would exist some T > 0 and ε̃ > 0

such that P{τ∞ ≤ T} > ε̃. Therefore, we can find some k1 ≥ k0 such that

P{τk ≤ T} > ε̃, for all k ≥ k1. (2.43)

By (2.40), it can be verified that for any (x, α) ∈ Rn
+ × Z+,

LεṼ ε(xε(t), t) ≤ O(ε)Ṽ (xε(t)) +K

Using the generalized Itô’s Lemma and taking the expectation on both sides, for any k ≥ k1,

we have

EεṼ ε(xε(t ∧ τk), t ∧ τk)− Ṽ ε(xε(0), 0) ≤ Eε

∫ t∧τk

0

O(ε)Ṽ (xε(s))ds+Kt.

Thus,

(1 +O(ε))EεṼ (xε(t ∧ τk)) ≤ Ṽ ε(xε(0), αε(0), 0) +Kt+ Eε

∫ t∧τk

0

O(ε)Ṽ (xε(s))ds.

When ε is small enough, applying the generalized Gronwall’s inequality, we obtain

EεṼ (xε(t ∧ τk)) ≤
Ṽ ε(xε(0), αε(0), 0) +Kt

1 +O(ε)
e

O(ε)(t ∧ τk)
1 +O(ε) .

Letting t = T , we have EεṼ (xε(T ∧ τk)) <∞. On the other hand,

EεṼ (xε(T ∧ τk)) ≥ Eε[Ṽ (xε(τk))I{τk≤T}]

> ε̃[(kγ − 1− γ log k) ∧ ((1/k)γ − 1 + γ log k)]→∞,

as k →∞. This is a contradiction so we must have limk→∞ τk =∞ a.s.

By applying generalized Itô’s Lemma to etV ε(xε(t), αε(t), t) and taking the expectations
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of both sides, we have

(1 +O(ε))

{
Eε[et∧τk

n∑
i=1

[xεi (t ∧ τk)]p]−
n∑
i=1

[xεi (0)]p
}

= Eε

∫ t∧τk

0

es(V ε(xε(s), s) + LεV ε(xε(s), s)ds

≤ Eε

∫ t∧τk

0

[
pes

n∑
i=1

[xεi (s)]
p

(
1 +O(ε)

p
+ bi +

p

2
σ2
i − aiixεi (s)

)
+O(ε)es

]
ds

≤ Eε

∫ t∧τk

0

esK(ε)ds.

(2.44)

By (2.44), we have

E[et∧τk
n∑
i=1

[xεi (t ∧ τk)]p]−
n∑
i=1

[xεi (0)]p ≤ Eε

∫ t∧τk

0

esKds ≤ K(et − 1).

Therefore, by virtue of Fatou’s Lemma and letting k →∞, we obtain

E
[ n∑
i=1

[xεi (t)]
p
]
≤ e−t

n∑
i=1

[xεi (0)]p +K(1− e−t) ≤ K <∞.

In view of the exponential dominance above, taking supt≥0, we obtain the desired result. The

next two parts of the theorem can be obtained similar to Section 2.2.

2.3.4 Stability in Probability

Stability of dynamic systems with switching containing randomly perturbed processes has

been done recently; see [5]. In this study, our first goal is to establish the stability of (2.23)

with small ε via the stability of the averaged system (2.24). We first recall the definition of

stability for stochastic differential equations; see [19].

Definition 2.13. The equilibrium point x = 0 of the system (2.24) is said to be stable in

probability, if for any ε > 0 and any α ∈ Z+, lim
y→0

P{sup
t≥0
|xy,α(t)| > ε} = 0, where xy,α(t)

denotes the solution of (2.24) with initial data x(0) = y and α(0) = α.

Using similar argument as [19], we establish the following lemma.
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Lemma 2.14. Let D ∈ Rn be a neighborhood of 0. Suppose that for each i ∈ Z+, there exists

a non-negative function V (·, α) : D 7→ R such that

(i) V (·, α) is continuous in D and vanished only at x = 0;

(ii) V (·, α) is twice continuously differentiable in D\{0} and LV (x, α) ≤ 0, ∀x ∈ D\{0}.

Then the equilibrium point x = 0 is stable in probability.

Theorem 2.15. Assume that

(ri − aii)2 + 4aii(bi + σ2
i ) < 0, for all i = 1, 2, . . . , n. (2.45)

Then under assumptions (A1), (A2), and (2.18), the equilibrium point x = 0 is stable in

probability for the averaged system (2.24).

Proof. We consider the Lyapunov function

V (x) =
n∑
i=1

xi − log (xi + 1). (2.46)

It can be seen that V (x) satisfies condition (i) of Lemma 2.14.

For (2.24), we have

LV (x) =
n∑
i=1

x2
i

xi + 1

(
ri −

n∑
j=1

aijxj

)
+

1

2

n∑
i=1

1

(xi + 1)2
x2
iσ

2
i . (2.47)

By condition (A1), the property of solutions and the assumption, we have

LV (x) ≤
n∑
i=1

x2
i

(xi + 1)2

{
(xi + 1)(ri − aiixi) +

1

2
σ2
i

}

=
n∑
i=1

x2
i

(1 + xi)2

[
− aiix2

i + (ri − aii)xi + (bi + σ2
i )

]
< 0 for all x 6= 0.

(2.48)

Thus, by Lemma 2.14, the equilibrium point x = 0 of system (2.24) is stable in probability.

Theorem 2.16. Under conditions (A1), (A2), (2.18), and (2.45), the equilibrium point x = 0

is stable in probability for (2.23) for sufficiently small ε.
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Proof. With V (x) defined by (2.46), V ε
1 (x, t) defined by (2.28), V ε

2 (x, t) defined by (2.29)

and their corresponding estimates, it is easy to see that

V ε(t) = V (x) + V ε
1 (x, t) + V ε

2 (x, t)

satisfies condition (i) in Lemma 2.14. Note that V (x) is an increasing function and when ε is

small enough, by Theorem 2.12, the process xε(t) is stochastically bounded. Hence, V (xε(t))

is bounded for ε is small enough.

Furthermore,

LεV ε(t) = O(ε)

[
V (xε(t)) + 1

]
+

n∑
i=1

(xεi (t))
2

xεi (t) + 1

(
ri −

n∑
j=1

aijx
ε
j(t)
)

+
1

2

n∑
i=1

(xεi (t))
2

(xεi (t) + 1)2
σ2
i .

(2.49)

By virtue of (2.48), LεV ε(t) ≤ 0 for all xε(t) 6= 0 and ε small enough. This verifies the

theorem.

2.3.5 Extinction

In this section, we show if the averaged system (2.24) is extinct, then the more complex

switching system (2.23) is also extinct for sufficiently small ε.

Definition 2.17. The population is said to reach the extinction if limt→∞ |x(t)| = 0 a.s.,

i.e., limt→∞
∑n

i=1 |xi(t)| = 0 a.s.

Theorem 2.18. Assume that

ri −
1

2
σ2
i ≤ −c, for all i = 1, 2, . . . , n, (2.50)

where c is a positive number. Then under assumptions (A1), (A2), and (2.18), the population

of the averaged system (2.24) will become extinct exponentially a.s. for sufficiently small ε.

Proof. For each i = 1, 2 . . . , n, consider

Vi(x) = log (xi) . (2.51)
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where xi is the ith component of x. Using the definition of the generator, we have

LVi(x(t)) = ri −
n∑
j=1

aijxj(t)−
1

2
σ2
i .

Applying Itô’s Lemma, we obtain

log (xi(t)) = log (xi(0)) +

∫ t

0

(
ri −

n∑
j=1

aijxj(s)−
1

2
σ2
i

)
ds+

∫ t

0

σidwi(s)

≤ log (xi(0)) + t
(
ri − 1

2
σ2
i

)
+ σiwi(t).

wi(t) is a Brownian motion. Therefore, the strong law of large numbers for martingales

implies that lim
t→∞

wi(t)

t
= 0 a.s. It follows by

lim sup
t→∞

log (xi(t))

t
≤ ri −

1

2
σ2
i ≤ −c a.s.

Thus, the sample Lyapunov exponent of the solution is negative, and the population will

become extinct exponentially a.s.

Theorem 2.19. Under conditions (A1), (A2), (2.18), and (2.50), the population of the

system (2.23) will become extinct exponentially for sufficiently small ε.

Proof. With Vi(x) defined by (2.51), V ε
i,1(x, t) defined by (2.28), V ε

i,2(x, t) defined by (2.29)

and their corresponding estimates, V ε
i (x) = Vi(x)+V ε

i,1(x, t)+V ε
i,2(x, t) satisfies the following

properties:

V ε
i (xε(t)) = Vi(x

ε(t)) +O(ε)(Vi(x
ε(t)) + 1)

LεV ε
i (xε(t)) = O(ε)(Vi(x

ε(t)) + 1) + ri −
1

2
σ2
i −

n∑
j=1

aijx
ε
j(t).
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By the generalized Itô Lemma,

log (xεi (t)) = log (xεi (0)) +

∫ t

0

[
O(ε)(Vi(x

ε(s)) + 1) + ri −
1

2
σ2
i −

n∑
j=1

aijx
ε
j(s)

]
ds

+

∫ t

0

σi(α
ε(s))dwi(s)

≤ log (xεi (0)) + t

[
O(ε) + ri −

1

2
σ2
i

]
+O(ε)

∫ t

0

log (xεi (s)) ds

+

∫ t

0

σi(α
ε(s))dwi(s).

Denote M(t) =
∫ t

0
σi(α

ε(s))dwi(s) and M(t) is a martingale. Using the quadratic variation of

this martingale, we obtain that t−1〈M,M〉t = t−1
∫ t

0
σ2
i (α

ε(s))ds is bounded a.s. The strong

law of large numbers for martingales leads to limt→∞M(t)/t = 0 a.s. (see [28, Theorem

1.3.4]). In addition, lim
t→∞

1

t

∫ t

0

log (xεi (s)) ds = log(xi(t)) a.s, where xi(t) is the solution of

(2.24) (see [40, Chapter 8]).Then lim sup
t→∞

1

t

∫ t

0

log (xεi (s)) ds = log(xi(t)) a.s. Therefore,

lim sup
t→∞

log (xεi (t))

t
≤ O(ε) + ri −

1

2
σ2
i + lim sup

t→∞

O(ε)

t

∫ t

0

log (xεi (s)) ds

≤ O(ε) + ri −
1

2
σ2
i +O(ε) log(xi(t)) a.s.

When ε is small enough, under condition (2.50), lim sup
t→∞

log (xεi (t))

t
< 0 a.s. This results in

the exponential extinction of the population.

2.3.6 Stochastic Permanence

We first recall the definition of stochastic permanence.

Definition 2.20. The population system (2.24) is said to be stochastically permanent if for

any δ ∈ (0, 1), there exist positive constants H = H(δ) and K = K(δ) such that

lim inf
t→∞

P{|x(t)| ≥ H} ≥ 1− δ, lim inf
t→∞

P{|x(t)| ≤ K} ≥ 1− δ, (2.52)

where x(t) is the solution of the population system (2.24) with any initial condition x(0) ∈

Rn
+.
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Lemma 2.21. Assume that (A1), (A2), and (2.18) hold. Then population system (2.24) is

stochastically permanent when bi > 0 for i = 1, 2, . . . , n.

Proof. To obtain the stochastic permanence, we need to prove two inequalities in (2.52) and

the first part is followed by Theorem 2.12. Before working on the second part, we first set

the notation: r̃ := max ri, r̂ = min ri, b̂ = min bi, ã = max aij, σ̃ = σi. We begin to work

with some estimates for the averaged system (2.24), where x(t) is the solution. Let θ be a

positive constant such that θσ̃2 < 2b̂, and κ > 0 satisfying 0 <
2κ

θ
< 2b̂− θσ̃2. Consider

V (x) =
n∑
i=1

xi, U(x) =
1

V (x)
, and J(x) = eκt

(
1 + U(x)

)θ
.

By applying Itô’s Lemma, we have

dU(x(t)) =

[
− U2(x(t))

n∑
i=1

xi(t)(ri −
n∑
j=1

aijxj(t)) + U3(x(t))
n∑
i=1

σ2
ix

2
i (t)

]
dt

−U2(x(t))
n∑
i=1

σixi(t)dwi(t).

Note that

dJ(x(t)) = θeκt(1 + U(x(t)))θ−2

{[
κ

θ
(1 + U(x(t)))2 − (1 + U(x(t)))U2(x(t))

n∑
i=1

xi(t)

×(ri −
n∑
j=1

aijxj(t)) + U3(x(t))
n∑
i=1

σ2
ix

2
i (t) +

θ + 1

2
U4(x(t))

n∑
i=1

σ2
ix

2
i (t)

]
dt

−(1 + U(x(t)))U2(x(t))
n∑
i=1

σixi(t)dwi(t)

}
.

(2.53)

Therefore,

LJ(x) = θeκt(1 + U(x))θ−2

[
κ

θ
(1 + U(x))2 − (1 + U(x))U2(x)

n∑
i=1

xi(ri −
n∑
j=1

aijxj)

+U3(x)
n∑
i=1

σ2
ix

2
i +

θ + 1

2
U4(x)

n∑
i=1

σ2
ix

2
i

]
.

(2.54)
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We have

−(1 + U(x(t)))U2(x(t))
n∑
i=1

xi(t)(ri −
n∑
j=1

aijxj(t))

≤ −(1 + U(x(t)))U2(x(t))
n∑
i=1

xi(t)(ri − ã
n∑
j=1

xj(t))

= −(1 + U(x(t)))U2(x(t))

[ n∑
i=1

xi(t)(bi +
1

2
σ2
i )− ã(

n∑
i=1

xi(t))(
n∑
j=1

xj(t))

]
≤ −(1 + U(x(t)))U2(x(t))

n∑
i=1

xi(t)b̂− (1 + U(x(t)))U2(x(t))
n∑
i=1

1

2
xi(t)σ

2
i

+(1 + U(x(t)))ã

≤ −b̂(1 + U(x(t)))U(x(t))− U3(x(t))
n∑
i=1

xi(t)
σ2
i

2
+ (1 + U(x(t)))ã

≤ −b̂(1 + U(x(t)))U(x(t))− 1

2
U4(x(t))

n∑
i=1

x2
i (t)σ

2
i + (1 + U(x(t)))ã.

(2.55)

U3(x(t))
n∑
i=1

σ2
ix

2
i (t) ≤ U3(x(t))σ̃2

n∑
i=1

x2
i (t) ≤ U(x(t))σ̃2

n∑
i=1

x2
i (t)

(
n∑
i=1

xi(t))
2

≤ σ̃2U(x(t)). (2.56)

Thus,

LJ(x(t)) ≤ θeκt(1 + U(x(t)))θ−2

[
κ

θ
(1 + U(x(t)))2 − b̂(1 + U(x(t)))U(x(t))

−U
4(x(t))

2

n∑
i=1

x2
i (t)σ

2
i + (1 + U(x(t)))ã+ σ̃2U(x(t))+

θ + 1

2
U4(x(t))

n∑
i=1

σ2
ix

2
i (t)

]
≤ θeκt(1 + U(x(t)))θ−2

[
κ

θ
+

2κ

θ
U(x(t)) +

κ

θ
U2(x(t))− b̂U(x(t))− b̂U2(x(t)))

+ã+ ãU(x(t)) + σ̃2U(x(t)) +
θ

2
σ̃2U2(x(t))

]
≤ Kθeκt,

(2.57)

where K is a positive constant depending on κ, θ, and coefficients of the system. (This

inequality is resulted from the choice of θ and κ.)

Integrating and taking expectations on both sides of (2.53), we have: E[J(x(t))] −



32

J(x(0)) ≤ K
∫ t

0
θeκtds, i.e.,

E[(1 + U(x(t)))θ] ≤ e−κt(1 + U(x(0)))θ +
Kθ

κ
.

Note that for x ∈ Rn
+, (

n∑
i=1

xi)
θ ≤ nθ|x|θ. For any given δ ∈ (0, 1), choose H > 0 such that

HθnθKθ

κ
≤ δ. By Tchebychev’s inequality, we obtain

P (|x(t)| < H) ≤ P

(
U θ(x(t)) >

1

Hθnθ

)
≤ HθnθE[U(x(t))θ]

≤ HθnθE[(1 + U(x(t)))θ]

≤ Hθnθ
[
e−κt(1 + U(x(0)))θ + Kθ

κ

]
.

This implies that lim sup
t→∞

P (|x(t)| < H) ≤ HθnθKθ

κ
≤ δ, i.e. lim inf

t→∞
P (|x(t)| ≥ H) ≥ 1 − δ.

This completes the proof.

Theorem 2.22. Under conditions (A1), (A2), and (2.18), system (2.23) is stochastically

permanent when bi > 0 for each i = 1, 2, . . . , n and sufficiently small ε.

Proof. We apply the definition of the generator (3.1) and obtain the following for the

perturbed system (2.23), for each α,

LεJ(x) =
n∑
i=1

Jxi(x)ξi(x, α) +
1

2

n∑
i=1

Jxixi(x)s2
i (x, α).

Similar to (2.28) and (2.29), we define

Jε1(x, t) = Eε
t

∫ ∞
t

et−u
n∑
i=1

Jxi(x)[ξi(x, α
ε(u))− ξi(x)]du,

Jε2(x, t) = Eε
t

∫ ∞
t

et−u
1

2

n∑
i=1

Jxixi(x)[s2
i (x, α

ε(u))− λ2

i (x)]du.
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Then

Jε1(xε(t), t) = O(ε)[J(xε(t)) + 1],

Jε2(xε(t), t) = O(ε)[J(xε(t)) + 1],

LεJε1(xε(t), t) = O(ε)(J(xε(t), t) + 1)

−
n∑
i=1

Jxi(x
ε(t))[ξi(x

ε(t), αε(t))− ξi(xε(t))],

LεJε2(xε(t), t) = O(ε)(J(xε(t), t) + 1)

−
n∑
i=1

Jxixi(x
ε(t))[s2

i (x
ε(t), αε(t))− λ2

i (x
ε(t))].

Define

Jε(x, t) = J(x) + Jε1(x, t) + Jε2(x, t).

The functions satisfy

Jε(xε(t), t) = J(xε(t)) +O(ε)(J(xε(t)) + 1)

LεJε(xε(t), t) = O(ε)(J(xε(t)) + 1) + θeκt(1 + U(xε(t)))θ−2

[
κ

θ
(1 + U(xε(t)))2

−(1 + U(xε(t)))U2(xε(t))
n∑
i=1

xεi (t)(ri −
n∑
j=1

aijx
ε
j(t))

+U3(xε(t))
n∑
i=1

σ2
i (x

ε
i (t))

2 +
θ + 1

2
U4(xε(t))

n∑
i=1

σ2
i (x

ε
i (t))

2

]
= O(ε)(J(xε(t)) + 1) + θeκtK.

(2.58)

Integrating on both sides of (2.58) and taking expectation, we have

Eε
t [J

ε(xε(t), t)]− Jε(xε(0), 0) ≤ O(ε)Eε
t [J(xε(t))] +O(ε) +

θK

κ
eκt.

Denote Jε0 = Jε(xε(0), 0). Then

(1−O(ε))Eε
t [J(xε(t))] ≤ O(ε) + Jε0 +

θK

κ
eκt,
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i.e., when ε > 0 is small enough, 1−O(ε) > 0 and

Eε
t [(1 + U(xε(t)))θ] ≤ O(ε) + Jε0

1−O(ε)
e−κt +

θK

κ
.

For any given δ ∈ (0, 1), choose H > 0 such that
HθnθKθ

κ
≤ δ, by using Tchebychev’s

inequality, we can obtain the first inequality in (2.52). The second inequality in (2.52) is

obtained from Theorem 2.12. This completes the proof.
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CHAPTER 3 NUMERICAL METHODS FOR GAMES IN IN-
SURANCE

3.1 Formulation

Let (Ω,F ,Ft, P ) be a complete filtered probability space, where the filtration {Ft}t≥0 sat-

isfies the usual condition and Ft = Fαt ∨FWt ∨FNt . We work with a finite horizon [0, T ], where

T < ∞ is a positive real number. The processes {α(t)}t≥0, {W (t)}t≥0 = {WZ(t),WS(t)}t≥0

and {N(t, ·)}t≥0 = {N1(t, ·), N2(t, ·)}t≥0 are Brownian motions and jump processes, respec-

tively, whose details will be given in the formulation of the next subsection.

3.1.1 Insurance Models

We are considering an insurance market consisting of two competing insurance compa-

nies. Each of them adopts optimal investment and reinsurance strategies to manage the

insurance portfolios. The surplus process of each insurance company is subject to the ran-

dom fluctuation of the market. Following the work of [8], the randomness of the market is

modelled by a continuous-time finite-state Markov chain and an independent market-index

process.

To delineate the random economy environment and other random economic factors, we

use a continuous-time Markov chain α(t) taking values in a finite space M = {1, . . . ,m}.

The states of economy are represented by the Markov chain α(t). Let the continuous-time

Markov chain α(t) be generated by Q = (qij) ∈ Rm×m. That is,

P{α(t+ δ) = j|α(t) = i, α(s), s ≤ t} =


qijδ + o(δ), if j 6= i,

1 + qiiδ + o(δ), if j = i,

(3.1)

where qij ≥ 0 for i, j = 1, 2, . . . ,m with j 6= i and
∑

j∈M qij = 0 for each i ∈M.

Furthermore, we are considering the insurance portfolios in a financial market with a
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market index Z(t), whose price satisfies

dZ(t) = µZ(t, Z(t))dt+ σZ(t, Z(t))dWZ(t), (3.2)

where WZ(t) is a standard Brownian motion. Denote by {FWZ
t } the filtration generated by

the Brownian motion {WZ(t)}t≥0. We note that Z(t) captures the dynamics of the financial

market. The cash flows of the insurance companies such as the premiums of insurance policies,

claims, and expenses, are subject to the performance of financial market. Hence, the key

parameters of the surplus process are defined as functionals of both the finite-state Markov

chain α(t) and market index Z(t).

Following the classical Cramér-Lundberg process, we assume that X̂k(t), k ∈ {1, 2}, the

surplus of insurance company k without investment and reinsurance satisfies

X̂k(t) = x̂k +

∫ t

0

ck(α(s), Z(s))ds− Yk(t), t ≥ 0, (3.3)

where X̂k(0) := x̂k is the initial surplus, ck(α(t), Z(t)) is the rate of premium, and Yk(t) =
Nk(t)∑
i=1

Aki is a compound Poisson process with the claim size Aki with {Aki : i > 1} being a

sequence of positive, independent and identically distributed random variables.

In this work, we consider a Poisson measure in lieu of the traditionally used Poisson

process. Suppose Θ ⊂ R+ is a compact set and the function qk(·) is the magnitude of the

claim sizes.

Nk(t,H) = number of claims on [0, t] with claim size taking values in H ⊂ Θ, (3.4)

counts the number of claims up to time t, which is a Poisson counting process. For k = 1, 2,

Yk(t) is a jump process representing claims for each company with arrival rate λk. Note

that claim frequencies depend on the economy and financial market states. The function

qk(α(t), Z(t), ρk) is assumed to be the magnitude of the claim sizes, where ρk has distribution

Πk(·), and qk(i, ·, ρk) is continuous for each ρk and each i ∈M. At different regimes and finan-

cial market states, taking into consideration of random environment, the values of qk(i, ·, ρk)
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could be much different. Then the Poisson measure Nk(·, ·) has intensity λkdt × Πk(dρk)

where Πk(dρk) = f(ρk)dρk.

Let νk,n denote the time of the n-th claim and ζk,n = νk,n+1 − νk,n. Let {ζk,v, ρk, v ≥

n} be independent of {Xk(s), α(s), s ≤ νk,n, ζk,v, ρk, v ≤ n}. Then the n-th claim

term is qk(α(νk,n), Z(νk,n), ρk), and the claim amount of Yk can be written as Yk(t) =∑
νk,n≤t

qk(α(νk,n), Z(νk,n), ρk).

3.1.2 Reinsurance and Investment

Let ak(t) be an Ft-progressively measurable process valued in [0, 1], an exogenous reten-

tion level, which is a control chosen by the insurance company representing the reinsurance

policy and g(ak) is the reinsurance premium rate. Denote by Ak := {ak(t) : 0 ≤ ak(t) ≤

1, 0 ≤ t ≤ T}, the set of reinsurance strategies of insurer k. Recall that Aki is the size of the

ith claim. Let Aki (ak) be the fraction of each claim paid by the primary insurance company.

Then the aggregation claim amount paid by the primary insurance company is denoted as

Y ak
k (t).

Remark 3.1. Note that both the claim frequencies and severities are depending on the

Markov regimes and market index. It is a more general formulation compared with the work

in [8], where only the claim frequencies depends on the Markov regimes and market index.

Furthermore, with the compound Poisson jumps, the surplus process forms a controlled jump-

diffusion regime-switching process. We aim to find optimal reinsurance strategies under the

jump-diffusion regime-switching process formulation numerically.

The insurance companies invest in both risk-free assets S0(t) and risky assets S(t) with

prices satisfying 
dS0(t)

S0(t)
= r(α(t))dt,

dS(t)

S(t)
= µS(α(t), Z(t))dt+ σS(α(t), Z(t))dWS(t),

(3.5)



38

where r(α(t)) and µ(α(t), Z(t)) are the return rates of the risk-free and risky assets, re-

spectively; σS(α(t), Z(t)) is the corresponding volatility; WS(t) is a standard Brownian

motion independent of WZ(t). For k = 1, 2, the investment behavior of the insurer k is

modelled as a portfolio process bk(t), where bk(t) is invested in the risky asset S(t). Let

Bk = {bk(t) : 0 ≤ t ≤ T} denote the set of investment strategies of insurer k.

Combining the reinsurance and investment strategies, the surplus process of the insurance

company k, denoted by X̃k(t), follows

dX̃k(t) =
{
r(α(t))X̃k(t) + bk(t)[µS(α(t), Z(t))− r(α(t))] + ck(α(t), Z(t))− g(ak(t))

}
dt

+bk(t)σS(α(t), Z(t))dWS(t)− dY ak
k (t),

X̃k(0) = x̃k,

(3.6)

where Y ak
k (t) =

∫ t

0

∫
R+

q̃k(qk, ak)Nk(dt, dρk) and q̃k(qk, ak) is the magnitude of the claim sizes

with respect to the surplus process.

In this work, we model the competition of the two insurance companies with investment

and reinsurance schemes in finite time horizon using a game theoretic formulation. The

performance of each company is measured by the relative performance of their surpluses

against their competitor’s. Thus, the competition between the two companies becomes a

game problem with two players, each of which can adjust its reinsurance strategies based

on the competitor’s scheme. Let the relative surplus performance for insurance company k

be Xk(t) := X̃k(t) − κkX̃l(t), where l = 3 − k. Hence, Xk(t) is governed by the following
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dynamic system

dXk(t)

=
∑
i∈M

I{α(t)=i}

{
r(i)Xk(t) + (bk(t)− κkbl(t))[µS(i, Z(t))− r(i)] + ck(i, Z(t))− κkcl(i, Z(t))

−(g(ak(t))− κkg(al(t)))dt+ (bk(t)− κkbl(t))σS(i, Z(t))dWS(t)

}
− dY ak

k (t) + κkdY
al
l (t),

(3.7)

where

Y ak
k (t) =

∫ t

0

∫
R+

q̃k(qk, ak)Nk(dt, dρk).

3.1.3 Proportional Reinsurance

We allow the insurance companies to continuously reinsure a fraction of its claim with

the retention level ak ∈ [0, 1] with k = 1, 2. Note that ak is the exogenous retention level, and

the control chosen by the insurance company for the reinsurance policy. Then q̃(qk, ak) =

ak(t)qk(α(t), Z(t), ρk). We have

Y ak
k (t) =

Nk(t)∑
i=1

Aki (ak) =

Nk(t)∑
i=1

akA
k
i .

Considering the proportional reinsurance strategies, for k = 1, 2. The relative surplus

process of the insurance company k, under the reinsurance and investment, follows

dXk(t) =

{
r(α(t))Xk(t) + (bk(t)− κkbl(t))[µS(α(t), Z(t))− r(α(t))] + ck(α(t), Z(t))

−κkcl(α(t), Z(t))− [g(ak(t))− κkg(al(t))]

}
dt+ (bk(t)− κkbl(t))σS(α(t), Z(t))dWS(t)

−ak(t)
∫
R+
qk(α(t), Z(t), ρk)Nt(dt, dρk) + κkal(t)

∫
R+
ql(α(t), Z(t), ρl)Nl(dt, dρl)

Xk(0) = x̃k − κkx̃l.
(3.8)
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3.1.4 Excess-of-loss Reinsurance

We allow the insurance companies to continuously reinsure its claim and pay all of the

claims up to a pre-given level of amount (termed retention level). We still let ak, k = 1, 2

be the retention level chosen by the insurance company to determine the reinsurance policy.

We have that

Y ak
k (t) =

Nk(t)∑
i=1

Aki (ak) =

Nk(t)∑
i=1

(Aki ∧ ak).

Then q̃k(qk, ak) = qk(α(t), Z(t), ρk) ∧ ak(t).

Considering the excess-of-loss reinsurance strategies, for k = 1, 2, under the reinsurance

control and investment, the relative surplus process of the insurance company k follows

dXk(t) =

{
r(α(t))Xk(t) + (bk(t)− κkbl(t))[µS(α(t), Z(t))− r(α(t))] + ck(α(t), Z(t))

−κkcl(α(t), Z(t))− [g(ak(t))− κkg(al(t))]

}
dt+ (bk(t)− κkbl(t))σS(α(t), Z(t))dWS(t)

−
∫
R+

(qk(α(t), Z(t), ρk) ∧ ak)Nk(dt, dρk) + κk
∫
R+

(ql(α(t), Z(t), ρl) ∧ al)Nl(dt, dρl)

Xk(0) = x̃k − κkx̃l.
(3.9)

3.1.5 Control Problem

For k = 1, 2, insurer k has a utility function Uk : R → R, where Uk is assumed to be

increasing, strictly concave, and satisfies the Inada conditions, i.e.,

∂xUk(−∞) = +∞, ∂xUk(+∞) = 0.

Following the work [16], the insurer k aims to maximize the expected utility of his relative

performance at the terminal time T by adopting a pair of investment and reinsurance strategy

uk = (ak, bk) ∈ Ak × Bk, denote Uk , Ak × Bk. For an arbitrary pair of admissible controls
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u = (u1, u2) ∈ U , U1 × U2, the objective function is

Jk(t, xk, z, i, u) = E
[
Uk

(
(1− κk)X̃k(T ) + κk(X̃k(T )− X̃l(T ))

)]
= E

[
Uk

(
X̃k(T )− κkX̃l(T )

)]
,

(3.10)

for k 6= l ∈ {1, 2}. For k = 1, 2, κk measures the sensitivity of insurer k to the performance

of his competitor.

The control uk = (ak, bk) with k ∈ {1, 2} is said to be admissible if ak and bk satisfy

(i) ak(t), bk(t) are nonnegative for any t ≥ 0,

(ii) Both ak, bk are adapted to Ft.
(iii) Jk(t, xk, z, i, u) <∞ for any admissible pair uk = (ak, bk).

For k = 1, 2, let B(Uk × [0,∞)) be the σ-algebra of Borel subsets of Uk × [0,∞). We use

a relaxed control formulation; see [23] for a definition and more discussions. Recall that an

admissible relaxed control mk(·) is a measure on B(Uk× [0,∞)) such that mk(Uk× [0, t)) = t

for each t ≥ 0. With the given probability space, we say that mk(·) is an admissible relaxed

(stochastic) control for F , if mk(·, ω) is a deterministic relaxed control with probability one

and if mk(A× [0, t]) is Ft-adapted for all A ∈ B(Uk).

Given a relaxed control mk(·) of uk(·), we define the derivative mt,k(·) such that

mk(K) =

∫
Uk×[0,∞)

I{(uk,t)∈K}mt,k(dφk)dt

for all K ∈ B(Uk × [0,∞)), and that for each t, mt,k(·) is a measure on B(Uk) satisfying

mt,k(Uk) = 1. For example, we can define mt,k(·) in any convenient way for t = 0 and as the

left-hand derivative for t > 0,

mt,k(A) = lim
%→0

mk(A× [t− %, t])
%

, ∀A ∈ B(Uk).

Note that mk(dφkdt) = mt,k(dφk)dt. It is natural to define the relaxed control representation

mk(·) of uk(·) by mt,k(A) = I{uk(t)∈A} ∀A ∈ B(Uk). Define the relaxed control m(·) =

(m1(·)×m2(·)) with derivative mt(·) = mt,1(·)×mt,2(·). Thus m(·) is a measure on the Borel

sets of U × [0,∞).
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3.1.6 Nash Equilibrium

A Nash equilibrium u∗ = (u∗1, u
∗
2) ∈ U is achieved such that

E[U1(X̃u1
1 (T )− κ1X̃

u∗2
2 (T ))] ≤ E[U1(X̃

u∗1
1 (T )− κ1X̃

u∗2
2 (T ))],

E[U2(X̃u2
2 (T )− κ2X̃

u∗1
1 (T ))] ≤ E[U2(X̃

u∗2
2 (T )− κ1X̃

u∗1
1 (T ))].

(3.11)

For α(t) = i ∈M, Z(t) = z, and Xk(t) = xk, where 0 ≤ t ≤ T and k 6= l ∈ {1, 2}, the value

function of insurance company k follows

V k(t, xk, z, i) = sup
uk∈Hk

E[Uk(X̃
uk
k (T )− κkX̃

u∗l
l (T ))], (3.12)

where V k(·, ·, ·, ·) is the value function in R+ × R× R×M.

To obtain the system of Hamilton-Jacobi-Bellman (HJB) equations, we assume the ex-

istence of optimal control. For an arbitrary uk ∈ Uk, α(t) = i ∈ M, k 6= l ∈ {1, 2}, and

V k(·, ·, ·, i) ∈ C2(R+ × R× R×M), define an integro-differential operator Luk,ul by

Luk,ulV k(t, xk, z, i) = V k
xk

(t, xk, z, i)

{
r(i)xk + (bk − κkbl)[µ(i, z)− r(i)] + ck(i, z)− κkcl(i, z)

−(g(ak)− κkg(al))

}
+ V k

z (t, xk, z, i)m(t, z)

+
1

2
(bk − κkbl)2σ2

S(i, z)Vxkxk(t, xk, z, i) +
1

2
σ2
Z(t, z)Vzz(t, xk, z, i)

−λk
∫
R+

[V k(t, xk − q̃(i, z, ρk), z, i)− V k(t, xk, z, i)]f(ρk)dρk

+λl

∫
R+

[V k(t, xk + κkq̃(i, z, ρl), z, i)− V k(t, xk, z, i)]f(ρl)dρl

+QV (t, xk, z, ·)(i),
(3.13)

where

QV (t, xk, z, ·)(i) =
∑
j 6=i

qij(V (t, xk, z, j)− V (t, xk, z, i)).

Formally, for k 6= l ∈ {1, 2}, we conclude that V k satisfies the following system of integro-
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differential HJI (Hamilton-Jacobi-Isaacs) equations: for each i ∈M,
V k
t (t, xk, z, i) + sup

uk∈Hk
Luk,u∗l V k(t, xk, z, i) = 0,

V k(T, xk, z, i) = Uk(xk).

(3.14)

Remark 3.2. In view of (3.14), a total of four control variables satisfy a system of HJI

equations. Due to the complexity of our formulation, it is very difficult to establish the

existence and uniqueness of the Nash equilibrium strategies constructively. It seems that it

might be only possible using an abstract setup such as a similar approach in [9] and [7]. In

fact, the existence and uniqueness of the solutions of system (3.14) is difficult to obtain for

any T > 0; see [6]. From an insurance practical point of view, such strategy always exists

in a well-posed formulation. Thus in lieu of construction of optimal solutions, our effort

in this dissertation is: Assuming the existence and uniqueness of the equilibrium strategy,

we focus on solving the problem numerically to obtain an approximation to the strategies

u∗ = (u∗1, u
∗
2) satisfying (3.14).

3.2 Numerical Algorithm

We begin by constructing a discrete-time, finite-state, controlled Markov chain to ap-

proximate the controlled diffusion process with regime-switching in the absence of jumps

with the dynamic system

dXk(t) =
∑
i∈M

I{α(t)=i}

{
r(i)Xk(t) + (bk(t)− κkbl(t))[µS(i, Z(t))− r(i)] + ck(i, Z(t))− κkcl(i, Z(t))

−(g(ak) + κkg(al))dt+ (bk(t)− κkbl(t))σS(i, Z(t))dWS(t)

}
,

dZ(t) = µZ(t, Z(t))dt+ σZ(t, Z(t))dWZ(t)

Xk(0) = x̃k − κkx̃l

Z(0) = z0.

(3.15)
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Because the value function depends on both the state x and the time variable t, two

stepsizes are needed. That is, we need to discretize both the state and time. We use h > 0 as

the stepsize of the state and δ > 0 as the stepsize for the time. In fact, for any given T > 0,

we use N = N(δ) = bT/δc.

Let ei denote the standard unit vector in the i-th coordinate direction and R3
h denote the

uniform h-grid on R3; i.e. R3
h = {(x1, x2, z) : (x1, x2, z) = h(k1e1 + k2e2 + k3e3); k1, k2, k3 =

0,±1,±2, . . . }. We use Sh = R3
h, denote x = (x1, x2, z) and y = (y1, y2, z

∗).

We can rewrite the system in the short form as follows

dX(t) = µ(X(t), α(t), u(t))dt+ σ(X(t), α(t), u(t))dW (t), (3.16)

where

µ(X(t), α(t), u(t))

=



r(α(t))X1(t) + (b1(t)− κ1b2(t))[µS(α(t), Z(t))− r(α(t))] + c1(α(t), Z(t))− κ1c2(α(t), Z(t))

−(g(a1(t)) + κ1g(a2(t)))

r(α(t))X2(t) + (b2(t)− κ2b1(t))[µS(α(t), Z(t))− r(α(t))] + c2(α(t), Z(t))− κ2c1(α(t), Z(t))

−(g(a2(t)) + κ2g(a1(t)))

µZ(t, Z(t))


σ(X(t), α(t), u(t))

= diag

(
(b1(t)− κ1b2(t))σS(α(t), Z(t)), (b2(t)− κ2b1(t))σS(α(t), Z(t)), σZ(t, Z(t))

)
W (t) =

(
WS(t),WS(t),WZ(t)

)′
,

where A′ is the transpose of A. Let {(ξh,δn , αh,δn , n <∞} be a controlled discrete-time Markov

chain on R3
h ×M and denote by ph,δD

(
(x, i), (y, j), nδ|φ

)
the transition probability from a

state (x, i) to another state (y, j), for φ ∈ U . We use uh,δn to denote the random variable

that is the control action for the chain at discrete time n and ph,δD is so defined that the
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constructed Markov chain’s evolution well approximates the local behavior of the controlled

regime-switching diffusion (3.7).

For each k = 1, 2, we construct the transition probability ph,δk,D
(
(x, i), (y, j), nδ|φ

)
which

is associated with Jk(t, x, i, φ) = E [Uk (Xk(T ))] satisfying the followings:
Jkt (t, x, i, φ) + Luk,ulJk(t, x, i, φ) = 0,

Jk(T, x, i, φ) = Uk(xk).

(3.17)

To figure out the form of ph,δk,D
(
(x, i), (y, j)|φ

)
, we define a finite difference approximation to

(3.17) as

Jkt (t, x, i, φ)→ Jk(t+ δ, x, i, φ)− Jk(t, x, i, φ)

δ
,

Jkxk(t, x, i, φ)→ Jk(t, x+ hek, i, φ)− Jk(t, x, i, φ)

h

if r(i)xk + (bk − κkbl)[µS(i, z)− r(i)] + ck(i, z)− κkcl(i, z)− (g(ak)− κkg(al)) > 0,

Jkxk(t, x, i, φ)→ Jk(t, x, i, φ)− Jk(t, x− hek, i, φ)

h

if r(i)xk + (bk − κkbl)[µS(i, z)− r(i)] + ck(i, z)− κkcl(i, z)− (g(ak)− κkg(al)) < 0,

Jkxkxk(t, x, i, φ)→ Jk(t, x+ hek, i, φ)− 2Jk(t, x, i, φ) + Jk(t, x− hek, i, φ)

h2
,

Jkz (t, x, i, φ)→ Jk(t, x+ he3, i, φ)− Jk(t, x, i, φ)

h
if µZ(t, z) > 0,

Jkz (t, x, i, φ)→ Jk(t, x, i, φ)− Jk(t, x− he3, i, φ)

h
if µZ(t, z) < 0,

Jkzz(t, x, i, φ)→ Jk(t, x+ he3, i, φ)− 2Jk(t, x, i, φ) + Jk(t, x− he3, i, φ)

h2
.
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To proceed, define

ph,δk,D
(
(x, i), (x± hek, i), nδ|φ

)
= δ

h

{
r(i)xk + (bk − κkbl)[µS(i, z)− r(i)] + ck(i, z)− κkcl(i, z)

−(g(ak)− κkg(al))

}±
+ δ

2h2
(bk − κkbl)2σ2

S(i, z),

ph,δk,D
(
(x, i), (x± he3, i), nδ|φ

)
= δ

h
µZ(t, z)± + δ

2h2
σ2
Z(t, z),

ph,δk,D
(
(x, i), (x, j), nδ|φ

)
= qijδ,

ph,δk,D
(
(x, i), (x, i), nδ|φ

)
= 1 + qiiδ − δ

h
|r(i)xk + (bk − κkbl)[µS(i, z)− r(i)] + ck(i, z)− κkcl(i, z)

−(g(ak)− κkg(al))| − δ
h
µZ(t, z)− δ

h2
(bk − κkbl)2σ2

S(i, z)− δ
h2
σ2
Z(t, z),

ph,δk,D
(
·
)

= 0, otherwise,

(3.18)

where K+ = max{K, 0} and K− = min{−K, 0}. By choosing δ and h appropriately, we

can have ph,δk,D
(
(x, i), (x, i), nδ|φ

)
given in (3.18) nonnegative. Thus, ph,δ(·|φ) are well-defined

transition probability.

Remark 3.3. To guarantee the nonnegativity of the transition probabilities in (3.18), we

need to choose the step sizes h and δ satisfying certain condition. For example, similar to [37],

we may choose h2 = O(δ) from a practical point of view.

Next, we need to approximate the Poisson jumps for ensuring the local properties of

claims for (3.7). We can rewrite the system in the matrix form as follow

dX(t) = µ(X(t), α(t), u(t))dt+ σ(X(t), α(t), u(t))dB(t) + Ỹ1(t)e1 + Ỹ2(t)e2, (3.19)

where Ỹk(t) is the jump process w.r.t the surplus process Xk(t), for k = 1, 2.

The relative surplus process Xk(t) is determined by two jump terms with the arriving

rate λk and λl, respectively. Denote by Rk(t) the difference of the two jumps. That is,

Rk(t) =

∫
R+

q̃k(qk, ak)Nk(dt, dρk)− κk
∫
R+

q̃l(ql, al)Nl(dt, dρl).

Since the difference of the two Poisson processes is again a Poisson process, events in the
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new process Rk(t) will occur according to a Poisson process with the rate λ = λk + λl; and

each event, independently, will be from the first jump process with probability λk/(λk + λl),

yielding the generic claim size

Ãk =


Ak(ak), with probability λk

λk+λl
,

−κkAl(al), with probability λl
λk+λl

.

Suppose that the current state is ξh,δn = x, αh,δn = i, and control is uh,δn = φ. The next

interpolation interval is determined by (3.18) and q̃hk (qk(i, z, ρk), ak) is the nearest value of

q̃k(qk(i, z, ρk), ak) so that ξh,δn+1 ∈ Sh. Then |q̃hk (qk(i, z, ρk), ak) − q̃k(qk(i, z, ρk), ak)| → 0 as

h→ 0, uniformly in x. To present the claim terms, we determine the next case (ξh,δn+1, α
h,δ
n+1)

by noting:

1. No claims occur in [nδ, nδ+δ) with probability 1−λδ+o(δ), we determine (ξh,δn+1, α
h,δ
n+1)

by transition probability ph,δk,D(·) as in (3.18).

2. There is a claim of the relative surplus process Xk(t) in [nδ, nδ + δ) with probability

λδ + o(δ), we determine (ξh,δn+1, α
h,δ
n+1) by

ξh,δn+1 = ξh,δn − q̃hk (qk(i, z, ρk), ak)ek, αh,δn+1 = αh,δn .

So, we define

ph,δk
(
(x, i), (y, j)|φ

)
= (1−λδ+o(δ))ph,δk,D

(
(x, i), (y, j)|φ

)
+(λδ+o(δ))Πk{ρ : q̃h(i, z, ρ)ek = x−y}.

(3.20)

Definition 3.4. For a controlled Markov chain {(ξh,δn , αh,δn ), n <∞}, the one-step transition

probability ph,δ
(
(x, i), (y, j)|φ

)
is given by

ph,δ
(
(x, i), (y, j)|φ

)
= ph,δ1

(
(x, i), (y, j)|φ

)
I{k=1} + ph,δ2

(
(x, i), (y, j)|φ

)
I{k=2}, (3.21)

where k is the index of the cost function.
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The piecewise constant interpolations ξh,δ(·), αh,δ(·), and uh,δ(·) are defined as

ξh,δ(t) = ξh,δn , αh,δ(t) = αh,δn , uh,δ(t) = uh,δn for t ∈ [nδ, nδ + δ) (3.22)

Use Eφ,h,δx,i,n ,Varφ,h,δx,i,n , and Pφ,h,δ
x,i,n to denote the conditional expectation, variance, and marginal

probability given {ξh,δι , αδι , u
h,δ
ι , ι ≤ n, ξh,δn = x, αh,δn = i, uh,δn = φ}, respectively. Define the

difference ∆ξh,δn = ξh,δn+1 − ξh,δn .

With the approximation of the Markov chain constructed above, we can obtain an ap-

proximation of the utility function as follows:

Jk,δ(nδ, x, i, uh,δ) = (1− λδ + o(δ))
∑
(y,j)

ph,δk

(
(x, i), (y, j)|uh,δ

)
Jk,δ(nδ + δ, y, j, uh,δ)

+(λkδ + o(δ))

∫
R+

Jk,δ(nδ + δ, xk − q̃hk (qk(i, z, ρk), a
h,δ
k ), z, i, uh,δ)Πk(dρk)

+(λlδ + o(δ))

∫
R+

Jk,δ(nδ + δ, xk + κkq̃
h
l (ql(i, z, ρl), a

h,δ
l ), z, i, uh,δ)Πl(dρl).

(3.23)

Moreover,

V k,h,δ(nδ, x, i) = sup
uh,δk,n

Jk,h,δ(nδ, x, i, uh,δ). (3.24)

Definition 3.5. The sequence {(ξh,δn , αh,δn )} is said to be locally consistent, if it satisfies

1. There is a transition probability ph,δD is locally consistent in the sense

Eφ,h,δx,i,n [∆ξh,δn ] = µh,δ(x, i, φ)δ + o(δ),

Varφ,h,δx,i,n [∆ξh,δn ] = σh,δ(x, i, φ)δ + o(δ).

(3.25)

where

µh,δ(x, i, φ) =


r(i)x1 + (b1 − κ1b2)[µS(i, z)− r(i)] + c1(i, z)− κ1c2(i, z)− g(a1) + κ1g(a2)

r(i)x2 + (b2 − κ2b1)[µS(i, z)− r(i)] + c2(i, z)− κ2c1(i, z)− g(a2) + κ2g(a1)

µZ(t, z)


σh,δ(x, i, φ) = diag

(
(b1 − κ1b2)2σ2

S(i, z), (b2 − κ2b1)2σ2
S(i, z), σ2

Z(t, z)

)
.
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2. The one-step transition probability ph,δ((x, i), (y, j)|φ) for the chain can be represented

in the form:

ph,δ((x, i), (y, j)|φ) = (1− λδ + o(δ))ph,δD ((x, i), (y, j)|φ) + (λδ + o(δ))Π{ρ : qh(i, z, ρ) = x− y}

3.3 Convergence of Numerical Approximation

3.3.1 Representations of Approximation Sequences

To proceed, we first show that the constructed Markov chain is locally consistent. This

ensures that our approximation is reasonable in certain sense.

Lemma 3.6. The Markov chain ξh,δn with transition probabilities ph,δ(·) defined in (3.21) is

locally consistent with the stochastic differential equation in (3.7).

Proof. Define ph,δD (·) = ph,δ1,D(·)I{k=1}+ ph,δ2,D(·)I{k=2}. Using (3.18) and (3.21), it is easy to see

that

Eφ,h,δx,i,n [∆ξh,δn ] = Eφ,h,δx,i,n [∆ξh,δn I{k=1}] + Eφ,h,δx,i,n [∆ξh,δI{k=2}]

=


r(i)x1 + (b1 − κ1b2)[µS(i, z)− r(i)] + c1(i, z)− κ1c2(i, z)− g(a1) + κ1g(a2)

r(i)x2 + (b2 − κ2b1)[µS(i, z)− r(i)] + c2(i, z)− κ2c1(i, z)− g(a2) + κ2g(a1)

µZ(t, z)

 δ.

Likewise, we obtain Eφ,h,δx,i,n

[
∆ξh,δn (∆ξh,δn )′

]
and Varφ,h,δx,i,n [∆ξh,δn ].

Let ξh,δ(0) = x, αh,δ(0) = i. Define the relaxed control representation mh,δ
k (·) of uh,δk (·)

by using its derivative mh,δ
t,k (A) = I{uh,δ(t)∈A}. Let Hh,δ

n denote the event that ξh,δn , αh,δn is

determined by the case of “no claim occurs” and use T h,δn to denote the event of “one

claim occurs”. Let IHh,δ
n

and ITh,δn
be corresponding indicator functions, respectively. If Hh,δ

n

happens, IHh,δ
n

= 1, ITh,δn
= 0, otherwise IHh,δ

n
= 0, ITh,δn

= 1. Therefore, IHh,δ
n

+ ITh,δn
= 1 and
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we can write

ξh,δ(t) = ξh,δ(0) +

bt/δc−1∑
r=0

[∆ξh,δr IHh,δ
r

+ ∆ξh,δr ITh,δr
]

= x+

bt/δc−1∑
r=0

Eφ,h,δx,i,r [∆ξh,δr IHh,δ
r

] +

bt/δc−1∑
r=0

(∆ξh,δr − Eφ,h,δx,i,r ∆ξh,δr )IHh,δ
r

+

bt/δc−1∑
r=0

∆ξh,δr ITh,δr
.

(3.26)

Define Fh,δn as the smallest σ-algebra generated by {ξh,δr , αh,δr ,mh,δ
r , Hh,δ

r , r ≤ n} and Fh,δt as

the smallest σ- algebra generated by {ξh,δ(s), αh,δ(s),mh,δ(s), Hh,δ(s), s ≤ t}.

For k, l = 1, 2 and k 6= l, denote

Mh,δ(t) =

bt/δc−1∑
r=0

(∆ξh,δr − Eφ,h,δx,i,r ∆ξh,δr )IHh,δ
r

Y h,δ
k (t) = −

bt/δc−1∑
r=0

[∆ξh,δr ]′ekITh,δr

=
∑

νh,δk,r≤bt/δc

q̃hk (qk(α
h,δ(νh,δk,r ), Zh,δ(νh,δk,r ), ρk), a

h,δ
k (νh,δk,r ))

−κk
∑

νh,δl,r ≤bt/δc

q̃hl (ql(α
δ(νh,δl,r ), Zδ(νh,δl,r ), ρl), a

h,δ
l (νh,δl,r ))

=

∫ t

0

∫
R+

q̃hk (qk(α
h,δ(s), Zh,δ(s), ρk), a

h,δ
k (s))Nh,δ

k (ds, dρk)

−
∫ t

0

∫
R+

κkq̃
h
l (ql(α

h,δ(s), Zh,δ(s), ρl), a
h,δ
l (s))Nh,δ

l (ds, dρl).

(3.27)

Then Mh,δ(t) is a martingale with respect to Fh,δbt/δc. Now, we represent Mh,δ(t) similar to the

diffusion term in (3.7). Define W h,δ(·) as

W h,δ(t) =

bt/δc−1∑
r=0

[σh,δ(x, i, φ)]−1(∆ξh,δr − Eφ,h,δx,i,r ∆ξh,δr )IHh,δ
r

=

∫ t

0

[σh,δ(ξh,δ(s), αh,δ(s), uh,δ(s))]−1dMh,δ(s).

(3.28)

Remark 3.7. For simplicity, we assume that there is a positive number c > 0 such that

(b1 − κ1b2)2σ2
S(i, z), (b2 − κ2b1)2σ2

S(i, z), and σ2
Z(t, z) ≥ c.
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The local consistency leads to

bt/δc−1∑
r=0

Eφ,h,δx,i,r [∆ξh,δr IHh,δ
r

]

=

bt/δc−1∑
r=0



r(αh,δr )ξδre1 + (bh,δ1,r − κ1b
h,δ
2,r )[µ(αh,δr , ξh,δr e3)− r(αh,δr )]

+c1(αh,δr , ξh,δr e3)− κ1c2(αh,δr , ξh,δr e3)− g(ah,δ1,r ) + κ1g(ah,δ2,r )

r(αh,δr )ξh,δr e2 + (bh,δ2,r − κ2b
h,δ
1,r )[µ(αh,δr , ξh,δr e3)− r(αh,δr )]

+c2(αh,δr , ξh,δr e3)− κ2c1(αh,δr , ξh,δr e3)− g(ah,δ2,r ) + κ2g(ah,δ1,r )

µZ(rδ, ξh,δr e3)


δIHh,δ

r
+ o(δ)IHh,δ

r

=

∫ t

0

µh,δ(ξh,δ(s), αh,δ(s), uδ(s))ds+ εh,δ(t).

For each t, E[number of r : νh,δk,r ≤ t] = λkt as h, δ → 0. This implies that we can drop IHh,δ
r

with no effect on the above limit.

As a consequence, we can rewrite (3.26) as following:

ξh,δ(t) = x+

∫ t

0

∫
U
µh,δ(ξh,δ(s), αh,δ(s), φ)mh,δ

s (dφ)ds

+

∫ t

0

∫
U
σh,δ(ξh,δ(s), αh,δ(s), φ)mh,δ

s (dφ)dW h,δ(s)

+

(∫ t

0

∫
R+

∫
U
q̃h1 (q1(αh,δ(s), Zh,δ(s), ρ1), a1)mh,δ

s (dφ)Nh,δ
1 (ds, dρ1)

−
∫ t

0

∫
R+

∫
U
κ1q̃

h
2 (q2(αh,δ(s), Zh,δ(s), ρ2), a2)mh,δ

s (dφ)Nh,δ
2 (ds, dρ2)

)
e1

+

(∫ t

0

∫
R+

∫
U
q̃h2 (q2(αh,δ(s), Zh,δ(s), ρ2), a2)mh,δ

s (dφ)Nh,δ
2 (ds, dρ2)

−
∫ t

0

∫
R+

∫
U
κ2q̃

h
1 (q1(αh,δ(s), Zh,δ(s), ρ1), a1)mh,δ

s (dφ)Nh,δ
1 (ds, dρ1)

)
e2 + εh,δ(t).

(3.29)
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We can also rewrite (3.19) as

X(t) = x+

∫ t

0

∫
U
µ(X(s), α(s), φ(s))ms(dφ)ds+

∫ t

0

∫
U
σ(X(s), α(s), φ)ms(dφ)dW (s)

+

(∫ t

0

∫
R+

∫
U
q̃1(q1(α(s), Z(s), ρ1), a1)ms(dφ)N1(ds, dρ1)

−
∫ t

0

∫
R+

∫
U
κ1q̃2(q2(α(s), Z(s), ρ2), a2)ms(dφ)N2(ds, dρ2)

)
e1

+

(∫ t

0

∫
R+

∫
U
q̃2(q2(α(s), Z(s), ρ2), a2)ms(dφ)N2(ds, dρ2)

−
∫ t

0

∫
R+

∫
U
κ2q̃1(q1(α(s), Z(s), ρ1), a1)ms(dφ)N1(ds, dρ1)

)
e2.

(3.30)

3.3.2 Convergence of Approximating Markov Chains

Lemma 3.8. Using the transition probability {ph,δ(·)} defined in (3.21), the interpolated

process of the constructed Markov chain {αh,δ(·)} converges weakly to α(·), the Markov chain

with generator Q.

Proof. The proof can be obtained similar to [41, Theorem 3.1]. The details are thus omitted.

Theorem 3.9. Let the approximating chain {ξh,δn , αh,δn , n < ∞} constructed with transition

probabilities defined in (3.21) be locally consistent with (3.25), mh,δ(·) be the relaxed control

representation of {uh,δ, n <∞}, (ξh,δ(·), αh,δ(·)) be the continuous-time interpolation defined

in (3.22). Then {ξh,δ(·), αh,δ(·),mh,δ(·),W h,δ(·), Nh,δ
1 (·, ·), Nh,δ

2 (·, ·)} is tight.

Proof. Note that αh,δ(·) is tight. It follows that for each ∆ > 0, each t > 0, and 0 < t̃ ≤ ∆,



53

there is a random variable γh,δ(∆) > 0 such that

Et|W h,δ(t+ t̃)−W h,δ(t)|2 =

b(t+t̃)/δc−1∑
bt/δc

Et{[σh,δ(x, φ, i)]−1(∆ξh,δr − Eφ,h,δx,i,r ∆ξh,δr )IHh,δ
r
}2

≤ Etγ
h,δ(∆)

(3.31)

satisfying lim
∆→0

lim sup
h,δ→0

Eγh,δ(∆) = 0, which yields the tightness of W h,δ(·). A similar argument

leads to the tightness of Mh,δ(·). The sequence mh,δ(·) is tight because of its compact range

space. By virtue of Theorem 9.2.1 in [23], we obtain the tightness of {Nh,δ
k (·), k = 1, 2} since

the mean number of claims on any bounded interval [t, t+ t1] is bounded and

lim
∆→0

inf
r

P{νh,δk,r+1 − ν
h,δ
k,r > ∆|νh,δk,r} = 1.

This implies the tightness of {Rh,δ
k (·), k = 1, 2}. As a consequence, ξh,δ(·) is tight and

{ξh,δ(·), αh,δ(·),mh,δ(·),W h,δ(·), Nh,δ
1 (·, ·), Nh,δ

2 (·, ·)} is tight.

Because {ξh,δ(·), αh,δ(·),mh,δ(·),W h,δ(·), Nh,δ
1 (·, ·), Nh,δ

2 (·, ·)} is tight, the Prohorov’s the-

orem implies that it is sequentially compact. Thus we can extract a weakly convergent

subsequence. Select such a convergent subsequence and still index the sequence by h, δ for

notational simplicity. We proceed to characterize the limit process.

Theorem 3.10. Let {ξ(·), α(·),m(·),W (·), N1(·, ·), N2(·, ·)} be the limit

of weakly convergent subsequence and Ft be the σ-algebra generated by

{X(s), α(s),m(s),W (s), N1(s, ·), N2(s, ·), s ≤ t}. Then W (·) is a standard Ft-Brownian

motion and N1(·, ·), N2(·, ·) are Ft-Poisson measures, and m(·) is an admissible relaxed

control.

Proof. The proof is divided into several steps.

Step 1: By the Skorohod representation, with a slight abuse of no-
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tation, {ξh,δ(·), αh,δ(·),mh,δ(·),W h,δ(·), Nh,δ
1 (·, ·), Nh,δ

2 (·, ·)} converges to

{ξ(·), α(·),m(·),W (·), N1(·, ·), N2(·, ·)} w.p.1, and the convergence is uniform on any

compact set.

To proceed, we first verify that W (·) is an Ft-Brownian motion. For any real-valued and

continuous function ψ, define

(ψ,m)t =

∫ t

0

∫
U
ψ(φ, s)ms(dφ). (3.32)

For any given f(·) ∈ C2
0(R3) (C2 function with compact support), consider an associate

operator Lwf(w) =
1

2

3∑
i=1

∂2

∂wi∂wi
f(w). Let t, t̃ > 0 be given with t + t̃ ≤ T , along with

arbitrary positive integers κ and κ̃, arbitrary ti ≤ t and continuous functions ψj with i ≤ κ

and j ≤ κ̃, any bounded and continuous function h(·), and arbitrary f ∈ C2
0(R3). Denote

{Γκi , i ≤ κ} as a sequence of nondecreasing partition of R+ such that Π(∂Γκi ) = 0 for all i, κ,

where ∂Γκi is the boundary of the set Γκi . As κ → ∞, let the diameter of the sets Γκi go to

zero.

By the tightness of W h,δ(·), it converges weakly to a limit W (·). Using the weak con-

vergence and the Skorohod representation, standard argument reveals that W h,δ(·) is an

Fh,δt -Brownian motion, and as h, δ → 0,

Eh(ξh,δ(ti), α
δ(ti),W

h,δ(ti), (ψj,m
h,δ)ti : i ≤ κ, j ≤ κ̃)

(
f(W h,δ(t+ t̃)− f(W h,δ(t))

)
→ Eh(ξ(ti), α(ti),W (ti), (ψj,m)ti : i ≤ κ, j ≤ κ̃)

(
f(W (t+ t̃)− f(W (t))

)
,

Eh(ξh,δ(ti), α
h,δ(ti),W

h,δ(ti), (ψj,m
h,δ)ti : i ≤ κ, j ≤ κ̃)

(∫ t+t̃

t

Lwf(W h,δ(s))ds

)
→ Eh(ξ(ti), α(ti),W (ti), (ψj,m)ti : i ≤ κ, j ≤ κ̃)

(∫ t+t̃

t

Lwf(W (s))ds

)
.

Thus,

Eh(ξ(ti), α(ti),W (ti), (ψj,m)ti : i ≤ κ, j ≤ κ̃)

(
f(W (t+ t̃))− f(W (t))−

∫ t+t̃

t

Lwf(W (s))ds

)
= 0.

It follows that f(W (t))−f(W (0)−
∫ t

0
Lwf(W (s))ds is a martingale. Moreover, the quadratic
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variation of the martingale W (t) is tI3, where I3 is an 3 × 3 identity matrix. Thus, W (·) is

an Ft-Brownian motion.

Step 2: We proceed to show that Nk(·, ·) is an Ft-Poisson measure for each k = 1, 2. Let

θ(·) be a continuous function on R+ and define the process

Θk =

∫ t

0

∫
R+

θ(ρ)Nk(ds, dρ).

Using similar argument as in the proof of the Brownian motion above, if f(·) ∈ C2
0(R3) then

Eh(ξ(ti), α(ti),W (ti), (ψj,m)ti , N(ti,Γ
κ
i ), i ≤ κ, j ≤ κ̃)

×
[
f(Θk(t+ t̃))− f(Θk(t))− λk

∫ t+t̃
t

∫
R+

[
f(Θk(s) + θ(ρ))− f(Θk(s))

]
Π(dρ)ds

]
= 0.

This implies that Nk(·, ·) is an Ft-Possion measure for each k = 1, 2.

Step 3.1: We will use (3.26) for the rest of the proof. Note that E|εh,δ(t)| → 0 as h, δ → 0.

Letting h, δ → 0 and using the Skorohod representation for (3.26), we have∫ t

0

∫
U
µh,δ(ξh,δ(s), αh,δ(s), φ)mh,δ

s (dφ)ds−
∫ t

0

∫
U
µ(ξ(s), α(s), φ)mh,δ

s (dφ)ds→ 0,

uniformly on any bounded time interval with probability one. On the other hand, the

sequence mh,δ(·) converges in the compact-weak topology, thus, for any continuous and

bounded function ψ(·) with compact support,∫ t

0

∫
U
ψ(φ, s)mh,δ(dφds)→

∫ t

0

∫
U
ψ(φ, s)m(dφds) as h, δ → 0.

By virtue of the Skorohod representation and the weak convergence, as h, δ → 0,∫ t

0

∫
U
µh,δ(ξh,δ(s), αh,δ(s), φ)mh,δ

s (dφ)ds−
∫ t

0

∫
U
µ(ξ(s), α(s), φ)ms(dφ)ds→ 0, (3.33)

uniformly in t with probability one on any bounded interval.

Step 3.2: For any t1 ≥ t, t2 ≥ 0 with t1+t2 ≤ T , any C1,2
0 function f(·) (functions that have

compact support whose first partial derivative w.r.t. the time variable and the second partial

derivatives w.r.t. the state variable x are continuous), bounded and continuous function h(·),
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any positive integers κ, κ̃, ti, and any continuous function ψj satisfying t ≤ ti ≤ t1 and i ≤ κ,

and j ≤ κ̃, the weak convergence and the Skorohod representation imply that

Eh(ξh,δ(ti), α
h,δ(ti),M

h,δ(ti), (ψj,m
h,δ)ti : i ≤ κ, j ≤ κ̃)

×[f(t1 + t2,Mh,δ(t1 + t2))− f(t1,Mh,δ(t1))]

→ Eh(ξ(ti), α(ti),M(ti), (ψj,m)ti : i ≤ κ, j ≤ κ̃)[f(t1 + t2,M(t1 + t2)− f(t1,M(t1))]

(3.34)

with h, δ → 0. Choose a sequence {nδ} such that nδ →∞ but ∆δ = δnδ → 0, then

Eh(ξh,δ(ti), α
h,δ(ti),M

h,δ(ti), (ψj,m
h,δ)ti : i ≤ κ, j ≤ κ̃)

×[f(t1 + t2,Mh,δ(t1 + t2))− f(t1,Mh,δ(t1))]

= Eh(ξh,δ(ti), α
δ(ti),M

h,δ(ti), (ψj,m
h,δ)ti : i ≤ κ, j ≤ κ̃)

×
[ (t1+t2)/δ−1∑

lnδ=t1/δ

f(δ(lnδ + nδ),Mh,δ(δ(lnδ + nδ)))

−f(δlnδ,Mh,δ(δ(lnδ + nδ))) + f(δlnδ,Mh,δ(δ(lnδ + nδ)))− f(δlnδ,M δ(δlnδ))

]
.

(3.35)

Note that

(t1+t2)/δ∑
lnδ=t1/δ

[f(δ(lnδ + nδ),M δ(δ(lnδ + nδ)))− f(δlnδ,Mh,δ(δ(lnδ + nδ)))]

=

(t1+t2)/δ∑
lnδ=t1/δ

lnδ+nδ−1∑
k=lnδ

[f(δ(k + 1),Mh,δ(δ(lnδ + nδ)))− f(δk,Mh,δ(δ(lnδ + nδ)))]

=

(t1+t2)/δ∑
lnδ=t1/δ

∂f(δlnδ,M δ(δ(lnδ + nδ)))

∂s
∆δ + o(1),

where o(1) → 0 in mean uniformly in t as δ → 0. Letting δlnδ → s as δ → 0, then

δ(lnδ + nδ) → s since ∆δ = δnδ → 0 as δ → 0. Then, by the weak convergence and the
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Skorohod representation, the continuity of h(·), and the smoothness of f(·) imply that

Eh(ξh,δ(ti), α
h,δ(ti),M

h,δ(ti), (ψj,m
h,δ)ti : i ≤ κ, j ≤ κ̃)

×
(t1+t2)/δ∑

lnδ

[
f(δ(lnδ + nδ),Mh,δ(δ(lnδ + nδ)))− f(δlnδ,Mh,δ(δ(lnδ + nδ)))

]
→ Eh(ξ(ti), α(ti),M(ti), (ψj,m)ti : i ≤ κ, j ≤ κ̃)

[∫ t1+t2

t1

∂f(s,M(s))

∂s
ds

]
as h, δ → 0.

(3.36)

The last part of (3.35) can be seen as

(t1+t2)/δ∑
lnδ=t1/δ

[f(δlnδ,Mh,δ(δ(lnδ + nδ)))− f(δlnδ,Mh,δ(δlnδ))]

=

(t1+t2)/δ∑
lnδ=t1/δ

{ 3∑
i=1

1

2
fMiMi

(δlnδ,Mh,δ(δlnδ))
lnδ+nδ−1∑
k=lnδ

[Mh,δ
i (δ(lnδ + nδ))−Mh,δ

i (δlnδ)]2
}

+ε̃h,δ(t1 + t2)− ε̃h,δ(t1),

where fMiMi
denotes the second partial derivatives, Mh,δ

i (·) is the i-th component of Mh,δ(·)

and sup
t≤t1≤T

E|ε̃h,δ(t1)| → 0 as h, δ → 0.

By (3.27) and the definition of σh,δ(·), we have

(t1+t2)/δ∑
lnδ=t1/δ

{ 2∑
i=1

fMiMi
(δlnδ,Mh,δ(δlnδ))

lnδ+nδ−1∑
k=lnδ

[Mh,δ
i (δ(lnδ + nδ))−Mh,δ

i (δlnδ)]2
}

→
∫ t1+t2

t1

∫
U
Tr

[
HMf(s,M(s))σ(ξ(s), α(s), φ)[σ(ξ(s), α(s), φ)]′

]
ms(dφ)ds,

(3.37)

where HM(f(s,M(s))) is the Hessian matrix of f(·) at time s, Tr(·) represents for the trace

of a matrix.

Using (3.34)-(3.37), we have

Eh(ξ(ti), α(ti),M(ti), (ψj,m)ti : i ≤ κ, j ≤ κ̃)

×
[
f(t1 + t2,M(t1 + t2))− f(t1,M(t1))−

∫ t1+t2

t1

∂f(s,M(s))

∂s
ds

−
∫ t1+t2

t1

∫
U

1

2
Tr

(
HMf(s,M(s))σ(ξ(s), α(s), φ)[σ(ξ(s), α(s), φ)]′

)
ms(dφ)ds

]
= 0.
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Therefore,∫ t

0

∫
U
σh,δ(ξh,δ(s), αh,δ(s), φ)mh,δ

s (dφ)ds→
∫ t

0

∫
U
σ(ξ(s), α(s), φ)ms(dφ)ds, (3.38)

uniformly in t with probability one on any bounded interval.

Using the same arguments as in Step 2 and Step 3.2, we obtain the limits for the latter

parts of (3.29). As a result, ξ(·) is the solution of (3.30), which means ξ(s) = X(s) w.p.1

and m(·) is an admissible relaxed control.

3.3.3 Convergence of the Cost and the Value Functions

Note that since Uk(·) satisfies the Inada’s conditions. There exist positive real numbers

K and k0 such that |Uk(Xk)| ≤ K(1 + |Xk|k0). We proceed to prove the following result.

Theorem 3.11. Suppose that the utility functions Uk(·) has at most polynomial growth.

Then the value functions V k,h,δ(t, x, i) converges to V k(t, x, i) for k = 1, 2, respectively, as

h, δ → 0.

Proof. By Theorem 3.9, each sequence {ξh,δ(·), αh,δ(·),mh,δ(·),W h,δ(·), Nh,δ
1 (·, ·), Nh,δ

2 (·, ·)}

has a weakly convergent subsequence with the limit ξh,δ(·) satisfying (3.30). Using the same

notation as above and applying the Skorohod representation, the weak convergence, as h, δ →

0, Jk,h,δ(t, x, i,mh,δ)→ Jk(t, x, i,m), for k = 1, 2. The cost function is given by (3.23). Since

V k(t, x, i) is the maximizing expected utility, for any admissible control m(·), Jk(t, x, i,m) ≤

V k(t, x, i), for k = 1, 2. Let m̃h,δ(·) be an optimal relaxed control for {ξh,δ(·)}, which implies

V k,h,δ(t, x, i) = Jk,h,δ(t, x, i, m̃h,δ) = sup
mh,δ

Jk,h,δ(t, x, i,mh,δ).

Choose a subsequence {h̃, δ̃} of {h, δ} such that

lim sup
h,δ→0

V k,h,δ(t, x, i) = lim
h̃,δ̃→0

V k,h̃,δ̃(t, x, i) = lim
h̃,δ̃→0

Jk,h̃,δ̃(t, x, i, m̃h̃,δ̃).

Without loss of generality, we may assume that {ξh̃,δ̃(·), αh̃,δ̃(·),W h̃,δ̃(·), m̃h̃,δ̃(·), N h̃,δ̃
1 (·, ·), N h̃,δ̃

2 (·, ·)}
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converges weakly to {X(·), α(·),W (·),m(·), N1(·, ·), N2(·, ·)}, where m(·) is an admissible

relaxed control. Then the weak convergence and the Skorohod representation leads to

lim sup
h,δ→0

V k,δ(t, x, i) = lim
h̃,δ̃→0

Jk,h̃,δ̃(t, x, i, m̃h̃,δ̃) = Jk(t, x, i,m) ≤ V k(t, x, i).

We claim that lim inf
δ

V k,δ(t, x, i) ≥ V k(t, x, i).

Suppose that m(·) is an optimal control with Brownian motion W (·) such that X(·) is

the associated trajectory. By the chattering lemma (see [37] and page 59-60 of [23]), for any

given η, δη > 0, there is an ε > 0 and an ordinary control uη,δη(·) that takes only finite many

values, uη,δη(·) is a constant in [ιε, ιε+ ε), mη,δη(·) is its relaxed control representation, and

Jk(t, x, i,mη,δη) ≥ V k(t, x, i) − η. For each η, δη > 0, and the corresponding ε > 0, consider

an optimal control problem with piecewise constant on [ιε, ιε+ ε). We consider the process

{Xη,δη(ιε), αη,δη ,mη,δη(ιε),W η,δη(ιε)}. Let ûη,δη(·) be the optimal control, m̂η,δη(·) the relaxed

control representation, and X̂η,δη(·) the associated trajectory. Since m̂η,δη(·) is the optimal

control, Jk(t, x, i, m̂η,δη) ≥ Jk(t, x, i,mη,δη) ≥ V k(t, x, i)− η. Using the chattering lemma, we

can approximate m̂η,δη(·) by a sequence of mh,δ(·). Then

V k,h,δ(t, x, i) ≥ Jk,h,δ(t, x, i,mh,δ)→ Jk(t, x, i, m̂η,δη).

Moreover,

lim inf
h,δ→0

V k,h,δ(t, x, i) ≥ lim
h,δ→0

Jk,h,δ(t, x, i,mh,δ) = Jk(t, x, i, m̂η,δη).

Thus, lim inf
h,δ→0

V k,h,δ(t, x, i) ≥ V k(t, x, i) − η. The arbitrariness of η implies that

lim inf
δ→0

V k,δ(t, x, i) ≥ V k(t, x, i), which completes the proof.

3.4 Numerical Examples

In this section, we present some numerical results for the case in which both insurance

companies are constant absolute risk aversion (CARA) agents, i.e., each agent has an expo-

nential utility function. More precisely, the utility function of each insurer has the form

Uk(Xk) = − 1

ηk
exp (−ηkXk), for ηk > 0, k = 1, 2. (3.39)
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Based on the algorithm constructed above, we carry out the computation by valuing itera-

tions in a backward manner by time.

1. Set t = T − δ and Jk,h,δ(T, x, i, uh,δ) = Uk(xk), for each k = 1, 2.

2. By (3.23), we obtain

Jk,δ(t, x, i, uh,δ) = (1− λδ)
∑
(y,j)

ph,δk

(
(x, i), (y, j)|uh,δ

)
Jk,δ(t+ δ, y, j, uh,δ)

+λkδ

∫
R+

Jk,δ(t+ δ, xk − q̃hk (qk(i, z, ρk), a
h,δ
k ), z, i, uh,δ)Πk(dρk)

+λlδ

∫
R+

Jk,δ(t+ δ, xk + κkq̃
h
l (ql(i, z, ρl), a

h,δ
l ), z, i, uh,δ)Πl(dρl).

Find the pair {ûh,δk , k = 1, 2} and record uh,δk (t) = ûh,δk satisfying that for any uh,δk ∈ Uk,:

J1,h,δ(t, x, i, uh,δ1 , ûh,δ2 ) ≤ J1,h,δ(t, x, i, ûh,δ1 , ûh,δ2 )

J2,h,δ(t, x, i, ûh,δ1 , uh,δ2 ) ≤ J2,h,δ(t, x, i, ûh,δ1 , ûh,δ2 ).

3. Let t = t − δ and continue the procedure until t = 0. We consider the case in which

the discrete event consists of two states, or equivalently, the Markov chain has two

states with given claim size distributions. In addition, we assume that the claim size

distributions are identical in each regime. By using the value iteration methods, we

numerically solve the optimal control problems. The continuous-time Markov chain

α(t) representing the discrete event state has the generator Q =

 −0.5 0.5

0.5 −0.5

 and

takes values in M = {1, 2}.

The parameters of the utility function are η1 = 17.0 and η1 = 21.0 respectively. The

sensitivities are κ1 = 0.8 and κ2 = 0.7. The claim severity of both players follows exponential

distribution f (y) = θke
−θky with θ1 = 0.3 and θ2 = 0.2. To incorporate the difference between

claim densities in different regimes, we assume arriving rates of Poisson jump are different.

So is the setup for risk-free return, and premium income rate. The detail of setup is as follows
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in Table 1.

Regime r c1 c2 λ1 λ2

0.02 0.05 0.02 0.20 0.30
2 0.03 0.10 0.20 0.80 0.70

Table 1: Parameters values

The reinsurance premium rates are computed from expectation premium principle as:

gk (ak) = (1 + lk) (1− ak)E [Ak] ,

where l1 = 1.1 and l2 = 1.15. Further, the volatility and the drift of the financial market

index and the risky return rate are modeled respectively by:

µS (i, Z) = 0.2iZ;

σS (i, Z) = 0.4iZ;

µZ (t, Z) = 0.4 (t+ 1)Z;

σZ (t, Z) = 0.1 (t+ 1)Z.

State discretization follows δ = 0.04 and h = 0.2. For reinsurance, we discretize the rein-

surance rate into six levels uniformly located from 0 to 1. The investment amount is free

from restrictions, and can vary from -3 to 3 with 0.2 increase. The trend of investment and

reinsurance for the varying relative surplus of player one is plotted in Figure 1, and that for

the second player is in Figure 2.

From Figure 1, we can observe that both players always hold a low proportion of claim,

which is due to the fact that both players are very risk-averse. A big claim will not only

reduce their relative surplus but also drive the surplus of their opponent side up. Precisely,

in regime one, the proportion held by player two is 0, which is less than 0.2 of player one.

This results from the claim arriving rate of the player two is relatively much higher than

that of player one. In regime two, considering the high premium income rate and the same

expected claim amount, a small proportion of claim is affordable for both players.
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Figure 1: Controls for varying X1 with T = 0.08, Z = 1.01, and X2 = 0.

In view of the investment part of Figure 1, player two’s investment amount is always no

less than that of player one. Since the relative sensitivity of player one to player two is higher,

and player two’s relative surplus is at a higher relative level initially, player two is willing to

accept more risk for higher expected return in order to beat player one. Then, along with

growing X1, since player one’s condition is improved, he tends to bear less risk. Meanwhile,

player two adopts conservative strategy as well, since he can lower the uncertainty and make

use of his advantage that he owns a higher premium income rate. Because a higher market

volatility in regime two will introduce more risk, both players choose the investment amount

much closer to 0 to lower the uncertainty.

Similar results can be seen from Figure 2. For the reinsurance part, player two initially

holds full proportion of a claim, since X2 = −1 leaves player two in a relative bad situation

compared to X1 = 1. To change this situation, he chooses to bear lots of risk to reduce the

loss from reinsurance premium. This is more obvious for regime 1, where the claim arriving

rate is lower. Hence, in more risky scenarios where claim arriving rate is higher, players show
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Figure 2: Controls for varying X2 with T = 0.08, Z = 1.01, and X1 = 1.

relative risk averse and transfer more risks by reinsurance tools. For the investment part, we

can see that player two hold higher positions in risky assets in his portfolio in both regimes,

which is consistent with the observations in Figure 1.
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CHAPTER 4 CONCLUDING REMARKS AND FUTURE DI-
RECTIONS

In this dissertation, we have concentrated on properties and numerical solutions for

stochastic differential systems with Markovian switching. First, in Chapter 2, we study eco-

logical properties of hybrid competitive Lotka-Volterra models. We formulate the ecosystems

as hybrid systems involve both continuous states and discrete events in which the discrete

events take values in a countable state space. We demonstrated such properties as existence

and uniqueness of solution, stochastic boundedness, sample path continuity for the models.

A main effort is placed on reduction of complexity by introducing a small parameter into

the system. This leads to a two-time-scale formulation. Although the two-time-scale system

has complex structures, it is shown that there is an associated averaged or reduced system.

Using the averaged system, we prove that the original system has similar properties such

as extinction and permanence etc. as that of the averaged system for the Lotka-Volterra

ecosystems with a two-time-scale Markov chain by perturbed Lyapunov function methods

when the ε is small enough.

A number of questions deserve further consideration.

• To begin, instead of the current formulation, we may consider the Markov chain involves

both fast and slow motions with more complex structure. For example, two-time-scale

Markov chains that are nearly decomposable were considered in [38]. Such setups may

be adopted to the ecosystems.

• Other related systems such as mutualism systems can also be formulated and studied.

Moreover, one may consider populations suffering sudden environmental shock (e.g.,

earthquakes, hurricanes, tornadoes, etc.), leading to the consideration regime-switching

jump diffusion systems. Designing feedback controls so as to achieve permanence and

extinction etc. is another area of future study.
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• There is a growing interest to study the associate harvesting problems [35]. To study

the harvesting strategies with systems proposed in this paper has not been done to

date and is a worthwhile direction.

In Chapter 3, we considered a non-zero-sum stochastic investment and reinsurance game

between two insurance companies. Both proportional and non-proportional reinsurance con-

tracts were considered. Although we are able to obtain the systems of HJI equations using

dynamic programming principle, solving the problem explicitly is virtually impossible. Based

on the assumption that there is a unique Nash equilibrium strategy, we developed a numerical

scheme using the Markov chain approximation method (MCAM) to solve the problem. Due

to the complexity of the stochastic game formulation, even numerically solving the systems

of HJI equations is much more difficult than that of the previous work in stochastic opti-

mization problems. The difficulties arise from the following two aspects. (1) With complex

nonlinear state processes, the formulated high-dimension problem adds much difficulties in

building approximating Markov chain. (2) The curse of dimensionality makes a significant

impact and slow down the computation due to the large numbers of control variables and

the dimensions of the HJI systems.

Although the chapter was devoted to a problem arising in risk management and insur-

ance fields, the game problem formulation and the numerical methods developed can be

more widely used in various other control and game problems. For our problem, the nature

of the Markov chain approximation relies on building a high dimensional lattice of both

driving state and control strategy to approximate the value functions under different control

scenarios. The optimization on every state follows the same computing rule, leading to the

possibility of using parallel acceleration techniques. The first option coming to our mind is to

incorporate multi-thread programming techniques into our completed C++ MCAM template

library, which enables us to reduce development time by reusing the algorithm architecture

of single-thread library. The latest eighth generation Intel CPUs are equipped with six com-
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putation cores, which allow maximal twelve threads to run simultaneously. If we parallelize

the algorithm using ten threads, we can enhance the time efficiency ten times. However, this

is not enough to handle the computational complexity required for our problem. The high

dimensionality requires the lattice to be very precise, thus obtaining accurate results relies

on generating a large number of nodes. Ten times acceleration seems a big enhancement, but

it can only allow us to explore 10
1
7 ≈ 1.39 times of Z, X1, X2, a1, a2, b1, and b2, which is

unable to meet requirements of the computational complexity.

GPU acceleration, e.g., CUDA, is another attractive choice here. Although the frequency

of GPU core is much lower than that of CPU, the number of GPU cores is usually hundreds

of times of the number of CPU cores, and this makes GPU more suitable for parallel com-

putation. The tenth generation NVidia GPU owns more than two thousand CUDA cores,

which make it an easy solution for solving the complexity issue of MCAM algorithm on com-

mon stochastic optimization problem, where the maximal or the minimal value on a state

is acquired from repeatedly comparing the newly computed value function value against the

temporary optimal value so far. However, focusing on MCAM algorithm on our high di-

mensional game problem, CUDA acceleration is of very limited use. Not like CPU memory,

which can be easily more than 64GB, the capacity of GPU memory is usually less than 8GB.

The equilibrium strategy is obtained by searching on the value function information stored

for different values of the control strategy. As a result, this memory consumption will occur

for every GPU thread, which will easily lead the aggregated memory consumed by MCAM

algorithm to exceed the GPUs memory capacity. From the above considerations, it appears

that using parallel programming techniques to high dimensional game problems needs a lot

of more thinking and effort. Finding more efficient way for the numerical solution is our on-

going work. Finally, we note that we have assumed the existence of the Nash equilibrium in

this work. From an application point of view, the existence of such equilibrium is reasonable.

If no such strategy exists, then the formulation of the physical problem is probably wrong.
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Nevertheless, mathematically establishing the existence and uniqueness of the equilibrium

strategy is interesting and challenging and deserves in-depth consideration.
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Recently, a class of dynamic systems called “hybrid systems” containing both continuous

dynamics and discrete events has been adapted to treat a wide variety of situations arising

in many real-world situations. Motivated by such development, this dissertation is devoted

to the study of dynamical systems involving a Markov chain as the randomly switching pro-

cess: hybrid competitive Lotka-Volterra ecosystems, and non-zero-sum stochastic differential

games between two insurance companies with regime-switching.

The first part is concerned with competitive Lotka-Volterra model with Markov switching.

A novelty of the contribution is that the Markov chain has a countable state space. Our

main objective is to reduce the computational complexity by using two-time-scale systems.

Because the existence and uniqueness, as well as continuity of solutions for Lotka-Volterra

ecosystems with Markovian switching in which the switching takes place in a countable set

are not available, such properties are studied first. The two-time scale feature is highlighted

by introducing a small parameter into the generator of the Markov chain. When the small

parameter goes to 0, there is a limit system or reduced system. It is established in this work

that if the reduced system possesses certain properties such as permanence and extinction,

etc., then the complex system also has the same properties when the parameter is sufficiently

small. These results are obtained by using the perturbed Lyapunov function methods.

The second part develops an approximation procedure for a class of non-zero-sum stochas-

tic differential investment and reinsurance games between two insurance companies. Both

proportional reinsurance and excess-of-loss reinsurance policies are considered. We develop
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numerical algorithms to obtain the approximation to the Nash equilibrium by adopting the

Markov chain approximation methodology. We establish the convergence of the approxi-

mation sequences and the approximation to the value functions. Numerical examples are

presented to illustrate the applicability of the algorithms.
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