85,413 research outputs found

    Numerical P Systems with Thresholds

    Get PDF
    Numerical P systems are a class of P systems inspired both from the structure of living cells and from economics. In this work, a control of using evolution programs is introduced into numerical P systems: a threshold is considered and a program can be applied only when the values of the variables involved in the production function of the program are greater than/equal to (lower-threshold) or smaller than/equal to (upper-threshold) the threshold. The computational power of numerical P systems with lower-threshold or upper-threshold is investigated. It is proved that numerical P systems with a lower-threshold, with one membrane and linear production functions, working both in the all-parallel mode and in the one-parallel mode are universal. The result is also extended to numerical P systems with an upperthreshold, by proving the equivalence of the numerical P systems with lower- and upper-thresholds

    Upscaling Low Salinity Waterflooding in Heterogeneous Reservoirs

    Get PDF
    Imperial Users onl

    Distributed machining control and monitoring using smart sensors/actuators

    Get PDF
    The study of smart sensors and actuators led, during the past few years, to the development of facilities which improve traditional sensors and actuators in a necessary way to automate production systems. In an other context, many studies are carried out aiming at defining a decisional structure for production activity control and the increasing need of reactivity leads to the autonomization of decisional levels close to the operational system. We suggest in this paper to study the natural convergence between these two approaches and we propose an integration architecture dealing with machine tool and machining control that enables the exploitation of distributed smart sensors and actuators in the decisional system

    Regime change thresholds in flute-like instruments: influence of the mouth pressure dynamics

    Full text link
    Since they correspond to a jump from a given note to another one, the mouth pressure thresholds leading to regime changes are particularly important quantities in flute-like instruments. In this paper, a comparison of such thresholds between an artificial mouth, an experienced flutist and a non player is provided. It highlights the ability of the experienced player to considerabily shift regime change thresholds, and thus to enlarge its control in terms of nuances and spectrum. Based on recent works on other wind instruments and on the theory of dynamic bifurcations, the hypothe- sis is tested experimentally and numerically that the dynamics of the blowing pressure influences regime change thresholds. The results highlight the strong influence of this parameter on thresholds, suggesting its wide use by experienced musicians. Starting from these observations and from an analysis of a physical model of flute-like instruments, involving numerical continuation methods and Floquet stability analysis, a phenomenological modelling of regime change is proposed and validated. It allows to predict the regime change thresholds in the dynamic case, in which time variations of the blowing pressure are taken into account

    A graphical theory of competition on spatial resource gradients

    Full text link
    Resource competition is a fundamental interaction in natural communities.However little is known about competition in spatial environments where organisms are able to regulate resource distributions. Here, we analyze the competition of two consumers for two resources in a one-dimensional habitat in which the resources are supplied from opposite sides. We show that the success of an invading species crucially depends on the slope of the resource gradients shaped by the resident. Our analysis reveals that parameter combinations which lead to coexistence in a uniform environment may favor alternative stable states in a spatial system, and vice versa. Furthermore, differences in growth rate, mortality or dispersal abilities allow a consumer to coexist stationarily with - or even outcompete - a competitor with lower resource requirements. Applying our theory to a phytoplankton model, we explain shifts in the community structure that are induced by environmental changes

    A framework for the selection of the right nuclear power plant

    Get PDF
    Civil nuclear reactors are used for the production of electrical energy. In the nuclear industry vendors propose several nuclear reactor designs with a size from 35–45 MWe up to 1600–1700 MWe. The choice of the right design is a multidimensional problem since a utility has to include not only financial factors as levelised cost of electricity (LCOE) and internal rate of return (IRR), but also the so called “external factors” like the required spinning reserve, the impact on local industry and the social acceptability. Therefore it is necessary to balance advantages and disadvantages of each design during the entire life cycle of the plant, usually 40–60 years. In the scientific literature there are several techniques for solving this multidimensional problem. Unfortunately it does not seem possible to apply these methodologies as they are, since the problem is too complex and it is difficult to provide consistent and trustworthy expert judgments. This paper fills the gap, proposing a two-step framework to choosing the best nuclear reactor at the pre-feasibility study phase. The paper shows in detail how to use the methodology, comparing the choice of a small-medium reactor (SMR) with a large reactor (LR), characterised, according to the International Atomic Energy Agency (2006), by an electrical output respectively lower and higher than 700 MWe

    Tree-Grass interactions dynamics and Pulse Fires: mathematical and numerical studies

    Full text link
    Savannas are dynamical systems where grasses and trees can either dominate or coexist. Fires are known to be central in the functioning of the savanna biome though their characteristics are expected to vary along the rainfall gradients as observed in Sub-Saharan Africa. In this paper, we model the tree-grass dynamics using impulsive differential equations that consider fires as discrete events. This framework allows us to carry out a comprehensive qualitative mathematical analysis that revealed more diverse possible outcomes than the analogous continuous model. We investigated local and global properties of the equilibria and show that various states exist for the physiognomy of vegetation. Though several abrupt shifts between vegetation states appeared determined by fire periodicity, we showed that direct shading of grasses by trees is also an influential process embodied in the model by a competition parameter leading to bifurcations. Relying on a suitable nonstandard finite difference scheme, we carried out numerical simulations in reference to three main climatic zones as observable in Central Africa.Comment: 51 pages, 7 figure
    • …
    corecore